Trait serde::ser::Serializer
source · pub trait Serializer: Sized {
type Ok;
type Error: Error;
type SerializeSeq: SerializeSeq<Ok = Self::Ok, Error = Self::Error>;
type SerializeTuple: SerializeTuple<Ok = Self::Ok, Error = Self::Error>;
type SerializeTupleStruct: SerializeTupleStruct<Ok = Self::Ok, Error = Self::Error>;
type SerializeTupleVariant: SerializeTupleVariant<Ok = Self::Ok, Error = Self::Error>;
type SerializeMap: SerializeMap<Ok = Self::Ok, Error = Self::Error>;
type SerializeStruct: SerializeStruct<Ok = Self::Ok, Error = Self::Error>;
type SerializeStructVariant: SerializeStructVariant<Ok = Self::Ok, Error = Self::Error>;
Show 34 methods
// Required methods
fn serialize_bool(self, v: bool) -> Result<Self::Ok, Self::Error>;
fn serialize_i8(self, v: i8) -> Result<Self::Ok, Self::Error>;
fn serialize_i16(self, v: i16) -> Result<Self::Ok, Self::Error>;
fn serialize_i32(self, v: i32) -> Result<Self::Ok, Self::Error>;
fn serialize_i64(self, v: i64) -> Result<Self::Ok, Self::Error>;
fn serialize_u8(self, v: u8) -> Result<Self::Ok, Self::Error>;
fn serialize_u16(self, v: u16) -> Result<Self::Ok, Self::Error>;
fn serialize_u32(self, v: u32) -> Result<Self::Ok, Self::Error>;
fn serialize_u64(self, v: u64) -> Result<Self::Ok, Self::Error>;
fn serialize_f32(self, v: f32) -> Result<Self::Ok, Self::Error>;
fn serialize_f64(self, v: f64) -> Result<Self::Ok, Self::Error>;
fn serialize_char(self, v: char) -> Result<Self::Ok, Self::Error>;
fn serialize_str(self, v: &str) -> Result<Self::Ok, Self::Error>;
fn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok, Self::Error>;
fn serialize_none(self) -> Result<Self::Ok, Self::Error>;
fn serialize_some<T>(self, value: &T) -> Result<Self::Ok, Self::Error>
where T: ?Sized + Serialize;
fn serialize_unit(self) -> Result<Self::Ok, Self::Error>;
fn serialize_unit_struct(
self,
name: &'static str,
) -> Result<Self::Ok, Self::Error>;
fn serialize_unit_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
) -> Result<Self::Ok, Self::Error>;
fn serialize_newtype_struct<T>(
self,
name: &'static str,
value: &T,
) -> Result<Self::Ok, Self::Error>
where T: ?Sized + Serialize;
fn serialize_newtype_variant<T>(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
value: &T,
) -> Result<Self::Ok, Self::Error>
where T: ?Sized + Serialize;
fn serialize_seq(
self,
len: Option<usize>,
) -> Result<Self::SerializeSeq, Self::Error>;
fn serialize_tuple(
self,
len: usize,
) -> Result<Self::SerializeTuple, Self::Error>;
fn serialize_tuple_struct(
self,
name: &'static str,
len: usize,
) -> Result<Self::SerializeTupleStruct, Self::Error>;
fn serialize_tuple_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
len: usize,
) -> Result<Self::SerializeTupleVariant, Self::Error>;
fn serialize_map(
self,
len: Option<usize>,
) -> Result<Self::SerializeMap, Self::Error>;
fn serialize_struct(
self,
name: &'static str,
len: usize,
) -> Result<Self::SerializeStruct, Self::Error>;
fn serialize_struct_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
len: usize,
) -> Result<Self::SerializeStructVariant, Self::Error>;
// Provided methods
fn serialize_i128(self, v: i128) -> Result<Self::Ok, Self::Error> { ... }
fn serialize_u128(self, v: u128) -> Result<Self::Ok, Self::Error> { ... }
fn collect_seq<I>(self, iter: I) -> Result<Self::Ok, Self::Error>
where I: IntoIterator,
<I as IntoIterator>::Item: Serialize { ... }
fn collect_map<K, V, I>(self, iter: I) -> Result<Self::Ok, Self::Error>
where K: Serialize,
V: Serialize,
I: IntoIterator<Item = (K, V)> { ... }
fn collect_str<T>(self, value: &T) -> Result<Self::Ok, Self::Error>
where T: ?Sized + Display { ... }
fn is_human_readable(&self) -> bool { ... }
}
Expand description
A data format that can serialize any data structure supported by Serde.
The role of this trait is to define the serialization half of the Serde
data model, which is a way to categorize every Rust data structure into one
of 29 possible types. Each method of the Serializer
trait corresponds to
one of the types of the data model.
Implementations of Serialize
map themselves into this data model by
invoking exactly one of the Serializer
methods.
The types that make up the Serde data model are:
- 14 primitive types
- bool
- i8, i16, i32, i64, i128
- u8, u16, u32, u64, u128
- f32, f64
- char
- string
- UTF-8 bytes with a length and no null terminator.
- When serializing, all strings are handled equally. When deserializing, there are three flavors of strings: transient, owned, and borrowed.
- byte array - [u8]
- Similar to strings, during deserialization byte arrays can be transient, owned, or borrowed.
- option
- Either none or some value.
- unit
- The type of
()
in Rust. It represents an anonymous value containing no data.
- The type of
- unit_struct
- For example
struct Unit
orPhantomData<T>
. It represents a named value containing no data.
- For example
- unit_variant
- For example the
E::A
andE::B
inenum E { A, B }
.
- For example the
- newtype_struct
- For example
struct Millimeters(u8)
.
- For example
- newtype_variant
- For example the
E::N
inenum E { N(u8) }
.
- For example the
- seq
- A variably sized heterogeneous sequence of values, for example
Vec<T>
orHashSet<T>
. When serializing, the length may or may not be known before iterating through all the data. When deserializing, the length is determined by looking at the serialized data.
- A variably sized heterogeneous sequence of values, for example
- tuple
- A statically sized heterogeneous sequence of values for which the
length will be known at deserialization time without looking at the
serialized data, for example
(u8,)
or(String, u64, Vec<T>)
or[u64; 10]
.
- A statically sized heterogeneous sequence of values for which the
length will be known at deserialization time without looking at the
serialized data, for example
- tuple_struct
- A named tuple, for example
struct Rgb(u8, u8, u8)
.
- A named tuple, for example
- tuple_variant
- For example the
E::T
inenum E { T(u8, u8) }
.
- For example the
- map
- A heterogeneous key-value pairing, for example
BTreeMap<K, V>
.
- A heterogeneous key-value pairing, for example
- struct
- A heterogeneous key-value pairing in which the keys are strings and
will be known at deserialization time without looking at the
serialized data, for example
struct S { r: u8, g: u8, b: u8 }
.
- A heterogeneous key-value pairing in which the keys are strings and
will be known at deserialization time without looking at the
serialized data, for example
- struct_variant
- For example the
E::S
inenum E { S { r: u8, g: u8, b: u8 } }
.
- For example the
Many Serde serializers produce text or binary data as output, for example
JSON or Postcard. This is not a requirement of the Serializer
trait, and
there are serializers that do not produce text or binary output. One example
is the serde_json::value::Serializer
(distinct from the main serde_json
serializer) that produces a serde_json::Value
data structure in memory as
output.
§Example implementation
The example data format presented on the website contains example code for
a basic JSON Serializer
.
Required Associated Types§
sourcetype Ok
type Ok
The output type produced by this Serializer
during successful
serialization. Most serializers that produce text or binary output
should set Ok = ()
and serialize into an io::Write
or buffer
contained within the Serializer
instance. Serializers that build
in-memory data structures may be simplified by using Ok
to propagate
the data structure around.
sourcetype SerializeSeq: SerializeSeq<Ok = Self::Ok, Error = Self::Error>
type SerializeSeq: SerializeSeq<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_seq
for serializing the content of the
sequence.
sourcetype SerializeTuple: SerializeTuple<Ok = Self::Ok, Error = Self::Error>
type SerializeTuple: SerializeTuple<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_tuple
for serializing the content of
the tuple.
sourcetype SerializeTupleStruct: SerializeTupleStruct<Ok = Self::Ok, Error = Self::Error>
type SerializeTupleStruct: SerializeTupleStruct<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_tuple_struct
for serializing the
content of the tuple struct.
sourcetype SerializeTupleVariant: SerializeTupleVariant<Ok = Self::Ok, Error = Self::Error>
type SerializeTupleVariant: SerializeTupleVariant<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_tuple_variant
for serializing the
content of the tuple variant.
sourcetype SerializeMap: SerializeMap<Ok = Self::Ok, Error = Self::Error>
type SerializeMap: SerializeMap<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_map
for serializing the content of the
map.
sourcetype SerializeStruct: SerializeStruct<Ok = Self::Ok, Error = Self::Error>
type SerializeStruct: SerializeStruct<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_struct
for serializing the content of
the struct.
sourcetype SerializeStructVariant: SerializeStructVariant<Ok = Self::Ok, Error = Self::Error>
type SerializeStructVariant: SerializeStructVariant<Ok = Self::Ok, Error = Self::Error>
Type returned from serialize_struct_variant
for serializing the
content of the struct variant.
Required Methods§
sourcefn serialize_bool(self, v: bool) -> Result<Self::Ok, Self::Error>
fn serialize_bool(self, v: bool) -> Result<Self::Ok, Self::Error>
Serialize a bool
value.
impl Serialize for bool {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_bool(*self)
}
}
sourcefn serialize_i8(self, v: i8) -> Result<Self::Ok, Self::Error>
fn serialize_i8(self, v: i8) -> Result<Self::Ok, Self::Error>
Serialize an i8
value.
If the format does not differentiate between i8
and i64
, a
reasonable implementation would be to cast the value to i64
and
forward to serialize_i64
.
impl Serialize for i8 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_i8(*self)
}
}
sourcefn serialize_i16(self, v: i16) -> Result<Self::Ok, Self::Error>
fn serialize_i16(self, v: i16) -> Result<Self::Ok, Self::Error>
Serialize an i16
value.
If the format does not differentiate between i16
and i64
, a
reasonable implementation would be to cast the value to i64
and
forward to serialize_i64
.
impl Serialize for i16 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_i16(*self)
}
}
sourcefn serialize_i32(self, v: i32) -> Result<Self::Ok, Self::Error>
fn serialize_i32(self, v: i32) -> Result<Self::Ok, Self::Error>
Serialize an i32
value.
If the format does not differentiate between i32
and i64
, a
reasonable implementation would be to cast the value to i64
and
forward to serialize_i64
.
impl Serialize for i32 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_i32(*self)
}
}
sourcefn serialize_i64(self, v: i64) -> Result<Self::Ok, Self::Error>
fn serialize_i64(self, v: i64) -> Result<Self::Ok, Self::Error>
Serialize an i64
value.
impl Serialize for i64 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_i64(*self)
}
}
sourcefn serialize_u8(self, v: u8) -> Result<Self::Ok, Self::Error>
fn serialize_u8(self, v: u8) -> Result<Self::Ok, Self::Error>
Serialize a u8
value.
If the format does not differentiate between u8
and u64
, a
reasonable implementation would be to cast the value to u64
and
forward to serialize_u64
.
impl Serialize for u8 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_u8(*self)
}
}
sourcefn serialize_u16(self, v: u16) -> Result<Self::Ok, Self::Error>
fn serialize_u16(self, v: u16) -> Result<Self::Ok, Self::Error>
Serialize a u16
value.
If the format does not differentiate between u16
and u64
, a
reasonable implementation would be to cast the value to u64
and
forward to serialize_u64
.
impl Serialize for u16 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_u16(*self)
}
}
sourcefn serialize_u32(self, v: u32) -> Result<Self::Ok, Self::Error>
fn serialize_u32(self, v: u32) -> Result<Self::Ok, Self::Error>
Serialize a u32
value.
If the format does not differentiate between u32
and u64
, a
reasonable implementation would be to cast the value to u64
and
forward to serialize_u64
.
impl Serialize for u32 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_u32(*self)
}
}
sourcefn serialize_u64(self, v: u64) -> Result<Self::Ok, Self::Error>
fn serialize_u64(self, v: u64) -> Result<Self::Ok, Self::Error>
Serialize a u64
value.
impl Serialize for u64 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_u64(*self)
}
}
sourcefn serialize_f32(self, v: f32) -> Result<Self::Ok, Self::Error>
fn serialize_f32(self, v: f32) -> Result<Self::Ok, Self::Error>
Serialize an f32
value.
If the format does not differentiate between f32
and f64
, a
reasonable implementation would be to cast the value to f64
and
forward to serialize_f64
.
impl Serialize for f32 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_f32(*self)
}
}
sourcefn serialize_f64(self, v: f64) -> Result<Self::Ok, Self::Error>
fn serialize_f64(self, v: f64) -> Result<Self::Ok, Self::Error>
Serialize an f64
value.
impl Serialize for f64 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_f64(*self)
}
}
sourcefn serialize_char(self, v: char) -> Result<Self::Ok, Self::Error>
fn serialize_char(self, v: char) -> Result<Self::Ok, Self::Error>
Serialize a character.
If the format does not support characters, it is reasonable to serialize
it as a single element str
or a u32
.
impl Serialize for char {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_char(*self)
}
}
sourcefn serialize_str(self, v: &str) -> Result<Self::Ok, Self::Error>
fn serialize_str(self, v: &str) -> Result<Self::Ok, Self::Error>
Serialize a &str
.
impl Serialize for str {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_str(self)
}
}
sourcefn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok, Self::Error>
fn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok, Self::Error>
Serialize a chunk of raw byte data.
Enables serializers to serialize byte slices more compactly or more
efficiently than other types of slices. If no efficient implementation
is available, a reasonable implementation would be to forward to
serialize_seq
. If forwarded, the implementation looks usually just
like this:
fn serialize_bytes(self, v: &[u8]) -> Result<Self::Ok, Self::Error> {
let mut seq = self.serialize_seq(Some(v.len()))?;
for b in v {
seq.serialize_element(b)?;
}
seq.end()
}
sourcefn serialize_none(self) -> Result<Self::Ok, Self::Error>
fn serialize_none(self) -> Result<Self::Ok, Self::Error>
sourcefn serialize_unit(self) -> Result<Self::Ok, Self::Error>
fn serialize_unit(self) -> Result<Self::Ok, Self::Error>
Serialize a ()
value.
impl Serialize for () {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_unit()
}
}
sourcefn serialize_unit_struct(
self,
name: &'static str,
) -> Result<Self::Ok, Self::Error>
fn serialize_unit_struct( self, name: &'static str, ) -> Result<Self::Ok, Self::Error>
Serialize a unit struct like struct Unit
or PhantomData<T>
.
A reasonable implementation would be to forward to serialize_unit
.
use serde::{Serialize, Serializer};
struct Nothing;
impl Serialize for Nothing {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_unit_struct("Nothing")
}
}
sourcefn serialize_unit_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
) -> Result<Self::Ok, Self::Error>
fn serialize_unit_variant( self, name: &'static str, variant_index: u32, variant: &'static str, ) -> Result<Self::Ok, Self::Error>
Serialize a unit variant like E::A
in enum E { A, B }
.
The name
is the name of the enum, the variant_index
is the index of
this variant within the enum, and the variant
is the name of the
variant.
use serde::{Serialize, Serializer};
enum E {
A,
B,
}
impl Serialize for E {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
match *self {
E::A => serializer.serialize_unit_variant("E", 0, "A"),
E::B => serializer.serialize_unit_variant("E", 1, "B"),
}
}
}
sourcefn serialize_newtype_struct<T>(
self,
name: &'static str,
value: &T,
) -> Result<Self::Ok, Self::Error>
fn serialize_newtype_struct<T>( self, name: &'static str, value: &T, ) -> Result<Self::Ok, Self::Error>
Serialize a newtype struct like struct Millimeters(u8)
.
Serializers are encouraged to treat newtype structs as insignificant
wrappers around the data they contain. A reasonable implementation would
be to forward to value.serialize(self)
.
use serde::{Serialize, Serializer};
struct Millimeters(u8);
impl Serialize for Millimeters {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_newtype_struct("Millimeters", &self.0)
}
}
sourcefn serialize_newtype_variant<T>(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
value: &T,
) -> Result<Self::Ok, Self::Error>
fn serialize_newtype_variant<T>( self, name: &'static str, variant_index: u32, variant: &'static str, value: &T, ) -> Result<Self::Ok, Self::Error>
Serialize a newtype variant like E::N
in enum E { N(u8) }
.
The name
is the name of the enum, the variant_index
is the index of
this variant within the enum, and the variant
is the name of the
variant. The value
is the data contained within this newtype variant.
use serde::{Serialize, Serializer};
enum E {
M(String),
N(u8),
}
impl Serialize for E {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
match *self {
E::M(ref s) => serializer.serialize_newtype_variant("E", 0, "M", s),
E::N(n) => serializer.serialize_newtype_variant("E", 1, "N", &n),
}
}
}
sourcefn serialize_seq(
self,
len: Option<usize>,
) -> Result<Self::SerializeSeq, Self::Error>
fn serialize_seq( self, len: Option<usize>, ) -> Result<Self::SerializeSeq, Self::Error>
Begin to serialize a variably sized sequence. This call must be
followed by zero or more calls to serialize_element
, then a call to
end
.
The argument is the number of elements in the sequence, which may or may not be computable before the sequence is iterated. Some serializers only support sequences whose length is known up front.
use serde::ser::{Serialize, SerializeSeq, Serializer};
impl<T> Serialize for Vec<T>
where
T: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut seq = serializer.serialize_seq(Some(self.len()))?;
for element in self {
seq.serialize_element(element)?;
}
seq.end()
}
}
sourcefn serialize_tuple(
self,
len: usize,
) -> Result<Self::SerializeTuple, Self::Error>
fn serialize_tuple( self, len: usize, ) -> Result<Self::SerializeTuple, Self::Error>
Begin to serialize a statically sized sequence whose length will be
known at deserialization time without looking at the serialized data.
This call must be followed by zero or more calls to serialize_element
,
then a call to end
.
use serde::ser::{Serialize, SerializeTuple, Serializer};
impl<A, B, C> Serialize for (A, B, C)
where
A: Serialize,
B: Serialize,
C: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut tup = serializer.serialize_tuple(3)?;
tup.serialize_element(&self.0)?;
tup.serialize_element(&self.1)?;
tup.serialize_element(&self.2)?;
tup.end()
}
}
use serde::ser::{Serialize, SerializeTuple, Serializer};
const VRAM_SIZE: usize = 386;
struct Vram([u16; VRAM_SIZE]);
impl Serialize for Vram {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut seq = serializer.serialize_tuple(VRAM_SIZE)?;
for element in &self.0[..] {
seq.serialize_element(element)?;
}
seq.end()
}
}
sourcefn serialize_tuple_struct(
self,
name: &'static str,
len: usize,
) -> Result<Self::SerializeTupleStruct, Self::Error>
fn serialize_tuple_struct( self, name: &'static str, len: usize, ) -> Result<Self::SerializeTupleStruct, Self::Error>
Begin to serialize a tuple struct like struct Rgb(u8, u8, u8)
. This
call must be followed by zero or more calls to serialize_field
, then a
call to end
.
The name
is the name of the tuple struct and the len
is the number
of data fields that will be serialized.
use serde::ser::{Serialize, SerializeTupleStruct, Serializer};
struct Rgb(u8, u8, u8);
impl Serialize for Rgb {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut ts = serializer.serialize_tuple_struct("Rgb", 3)?;
ts.serialize_field(&self.0)?;
ts.serialize_field(&self.1)?;
ts.serialize_field(&self.2)?;
ts.end()
}
}
sourcefn serialize_tuple_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
len: usize,
) -> Result<Self::SerializeTupleVariant, Self::Error>
fn serialize_tuple_variant( self, name: &'static str, variant_index: u32, variant: &'static str, len: usize, ) -> Result<Self::SerializeTupleVariant, Self::Error>
Begin to serialize a tuple variant like E::T
in enum E { T(u8, u8) }
. This call must be followed by zero or more calls to
serialize_field
, then a call to end
.
The name
is the name of the enum, the variant_index
is the index of
this variant within the enum, the variant
is the name of the variant,
and the len
is the number of data fields that will be serialized.
use serde::ser::{Serialize, SerializeTupleVariant, Serializer};
enum E {
T(u8, u8),
U(String, u32, u32),
}
impl Serialize for E {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
match *self {
E::T(ref a, ref b) => {
let mut tv = serializer.serialize_tuple_variant("E", 0, "T", 2)?;
tv.serialize_field(a)?;
tv.serialize_field(b)?;
tv.end()
}
E::U(ref a, ref b, ref c) => {
let mut tv = serializer.serialize_tuple_variant("E", 1, "U", 3)?;
tv.serialize_field(a)?;
tv.serialize_field(b)?;
tv.serialize_field(c)?;
tv.end()
}
}
}
}
sourcefn serialize_map(
self,
len: Option<usize>,
) -> Result<Self::SerializeMap, Self::Error>
fn serialize_map( self, len: Option<usize>, ) -> Result<Self::SerializeMap, Self::Error>
Begin to serialize a map. This call must be followed by zero or more
calls to serialize_key
and serialize_value
, then a call to end
.
The argument is the number of elements in the map, which may or may not be computable before the map is iterated. Some serializers only support maps whose length is known up front.
use serde::ser::{Serialize, SerializeMap, Serializer};
impl<K, V> Serialize for HashMap<K, V>
where
K: Serialize,
V: Serialize,
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut map = serializer.serialize_map(Some(self.len()))?;
for (k, v) in self {
map.serialize_entry(k, v)?;
}
map.end()
}
}
sourcefn serialize_struct(
self,
name: &'static str,
len: usize,
) -> Result<Self::SerializeStruct, Self::Error>
fn serialize_struct( self, name: &'static str, len: usize, ) -> Result<Self::SerializeStruct, Self::Error>
Begin to serialize a struct like struct Rgb { r: u8, g: u8, b: u8 }
.
This call must be followed by zero or more calls to serialize_field
,
then a call to end
.
The name
is the name of the struct and the len
is the number of
data fields that will be serialized. len
does not include fields
which are skipped with SerializeStruct::skip_field
.
use serde::ser::{Serialize, SerializeStruct, Serializer};
struct Rgb {
r: u8,
g: u8,
b: u8,
}
impl Serialize for Rgb {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
let mut rgb = serializer.serialize_struct("Rgb", 3)?;
rgb.serialize_field("r", &self.r)?;
rgb.serialize_field("g", &self.g)?;
rgb.serialize_field("b", &self.b)?;
rgb.end()
}
}
sourcefn serialize_struct_variant(
self,
name: &'static str,
variant_index: u32,
variant: &'static str,
len: usize,
) -> Result<Self::SerializeStructVariant, Self::Error>
fn serialize_struct_variant( self, name: &'static str, variant_index: u32, variant: &'static str, len: usize, ) -> Result<Self::SerializeStructVariant, Self::Error>
Begin to serialize a struct variant like E::S
in enum E { S { r: u8, g: u8, b: u8 } }
. This call must be followed by zero or more calls to
serialize_field
, then a call to end
.
The name
is the name of the enum, the variant_index
is the index of
this variant within the enum, the variant
is the name of the variant,
and the len
is the number of data fields that will be serialized.
len
does not include fields which are skipped with
SerializeStructVariant::skip_field
.
use serde::ser::{Serialize, SerializeStructVariant, Serializer};
enum E {
S { r: u8, g: u8, b: u8 },
}
impl Serialize for E {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
match *self {
E::S {
ref r,
ref g,
ref b,
} => {
let mut sv = serializer.serialize_struct_variant("E", 0, "S", 3)?;
sv.serialize_field("r", r)?;
sv.serialize_field("g", g)?;
sv.serialize_field("b", b)?;
sv.end()
}
}
}
}
Provided Methods§
sourcefn serialize_i128(self, v: i128) -> Result<Self::Ok, Self::Error>
fn serialize_i128(self, v: i128) -> Result<Self::Ok, Self::Error>
Serialize an i128
value.
impl Serialize for i128 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_i128(*self)
}
}
The default behavior unconditionally returns an error.
sourcefn serialize_u128(self, v: u128) -> Result<Self::Ok, Self::Error>
fn serialize_u128(self, v: u128) -> Result<Self::Ok, Self::Error>
Serialize a u128
value.
impl Serialize for u128 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.serialize_u128(*self)
}
}
The default behavior unconditionally returns an error.
sourcefn collect_seq<I>(self, iter: I) -> Result<Self::Ok, Self::Error>
fn collect_seq<I>(self, iter: I) -> Result<Self::Ok, Self::Error>
Collect an iterator as a sequence.
The default implementation serializes each item yielded by the iterator
using serialize_seq
. Implementors should not need to override this
method.
use serde::{Serialize, Serializer};
struct SecretlyOneHigher {
data: Vec<i32>,
}
impl Serialize for SecretlyOneHigher {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.collect_seq(self.data.iter().map(|x| x + 1))
}
}
sourcefn collect_map<K, V, I>(self, iter: I) -> Result<Self::Ok, Self::Error>
fn collect_map<K, V, I>(self, iter: I) -> Result<Self::Ok, Self::Error>
Collect an iterator as a map.
The default implementation serializes each pair yielded by the iterator
using serialize_map
. Implementors should not need to override this
method.
use serde::{Serialize, Serializer};
use std::collections::BTreeSet;
struct MapToUnit {
keys: BTreeSet<i32>,
}
// Serializes as a map in which the values are all unit.
impl Serialize for MapToUnit {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.collect_map(self.keys.iter().map(|k| (k, ())))
}
}
sourcefn collect_str<T>(self, value: &T) -> Result<Self::Ok, Self::Error>
fn collect_str<T>(self, value: &T) -> Result<Self::Ok, Self::Error>
Serialize a string produced by an implementation of Display
.
The default implementation builds a heap-allocated String
and
delegates to serialize_str
. Serializers are encouraged to provide a
more efficient implementation if possible.
use serde::{Serialize, Serializer};
impl Serialize for DateTime {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
serializer.collect_str(&format_args!("{:?}{:?}", self.naive_local(), self.offset()))
}
}
sourcefn is_human_readable(&self) -> bool
fn is_human_readable(&self) -> bool
Determine whether Serialize
implementations should serialize in
human-readable form.
Some types have a human-readable form that may be somewhat expensive to construct, as well as a binary form that is compact and efficient. Generally text-based formats like JSON and YAML will prefer to use the human-readable one and binary formats like Postcard will prefer the compact one.
use serde::{Serialize, Serializer};
impl Serialize for Timestamp {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
{
if serializer.is_human_readable() {
// Serialize to a human-readable string "2015-05-15T17:01:00Z".
self.to_string().serialize(serializer)
} else {
// Serialize to a compact binary representation.
self.seconds_since_epoch().serialize(serializer)
}
}
}
The default implementation of this method returns true
. Data formats
may override this to false
to request a compact form for types that
support one. Note that modifying this method to change a format from
human-readable to compact or vice versa should be regarded as a breaking
change, as a value serialized in human-readable mode is not required to
deserialize from the same data in compact mode.
Object Safety§
Implementations on Foreign Types§
source§impl<'a, 'b> Serializer for &'a mut Formatter<'b>
impl<'a, 'b> Serializer for &'a mut Formatter<'b>
use serde::ser::Serialize;
use serde_derive::Serialize;
use std::fmt::{self, Display};
#[derive(Serialize)]
#[serde(rename_all = "kebab-case")]
pub enum MessageType {
StartRequest,
EndRequest,
}
impl Display for MessageType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.serialize(f)
}
}