cranelift_assembler_x64/mem.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
//! Memory operands to instructions.
use crate::api::{AsReg, CodeSink, Constant, KnownOffset, KnownOffsetTable, Label, TrapCode};
use crate::reg::{self, NonRspGpr, Size};
use crate::rex::{encode_modrm, encode_sib, Imm, RexFlags};
use crate::xmm;
/// x64 memory addressing modes.
#[derive(Clone, Debug)]
#[cfg_attr(any(test, feature = "fuzz"), derive(arbitrary::Arbitrary))]
pub enum Amode<R: AsReg> {
ImmReg {
base: R,
simm32: AmodeOffsetPlusKnownOffset,
trap: Option<TrapCode>,
},
ImmRegRegShift {
base: R,
index: NonRspGpr<R>,
scale: Scale,
simm32: AmodeOffset,
trap: Option<TrapCode>,
},
RipRelative {
target: DeferredTarget,
},
}
impl<R: AsReg> Amode<R> {
/// Return the [`TrapCode`] associated with this [`Amode`], if any.
pub fn trap_code(&self) -> Option<TrapCode> {
match self {
Amode::ImmReg { trap, .. } | Amode::ImmRegRegShift { trap, .. } => *trap,
Amode::RipRelative { .. } => None,
}
}
/// Encode the [`Amode`] into a ModRM/SIB/displacement sequence.
pub fn emit_rex_prefix(&self, rex: RexFlags, enc_g: u8, sink: &mut impl CodeSink) {
match self {
Amode::ImmReg { base, .. } => {
let enc_e = base.enc();
rex.emit_two_op(sink, enc_g, enc_e);
}
Amode::ImmRegRegShift { base, index, .. } => {
let enc_base = base.enc();
let enc_index = index.enc();
rex.emit_three_op(sink, enc_g, enc_index, enc_base);
}
Amode::RipRelative { .. } => {
// note REX.B = 0.
rex.emit_two_op(sink, enc_g, 0);
}
}
}
/// Return the registers used by this [`Amode`].
///
/// This is useful in generated code to allow access by a
/// [`RegisterVisitor`](crate::RegisterVisitor).
pub fn registers_mut(&mut self) -> Vec<&mut R> {
match self {
Amode::ImmReg { base, .. } => {
vec![base]
}
Amode::ImmRegRegShift { base, index, .. } => {
vec![base, index.as_mut()]
}
Amode::RipRelative { .. } => {
vec![]
}
}
}
}
/// A 32-bit immediate for address offsets.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(any(test, feature = "fuzz"), derive(arbitrary::Arbitrary))]
pub struct AmodeOffset(i32);
impl AmodeOffset {
#[must_use]
pub fn new(value: i32) -> Self {
Self(value)
}
#[must_use]
pub fn value(self) -> i32 {
self.0
}
}
impl From<i32> for AmodeOffset {
fn from(value: i32) -> Self {
Self(value)
}
}
impl std::fmt::LowerHex for AmodeOffset {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
// This rather complex implementation is necessary to match how
// `capstone` pretty-prints memory immediates.
if self.0 == 0 {
return Ok(());
}
if self.0 < 0 {
write!(f, "-")?;
}
if self.0 > 9 || self.0 < -9 {
write!(f, "0x")?;
}
let abs = match self.0.checked_abs() {
Some(i) => i,
None => -2_147_483_648,
};
std::fmt::LowerHex::fmt(&abs, f)
}
}
/// An [`AmodeOffset`] immediate with an optional known offset.
///
/// Cranelift does not know certain offsets until emission time. To accommodate
/// Cranelift, this structure stores an optional [`KnownOffset`]. The following
/// happens immediately before emission:
/// - the [`KnownOffset`] is looked up, mapping it to an offset value
/// - the [`Simm32`] value is added to the offset value
#[derive(Clone, Debug)]
pub struct AmodeOffsetPlusKnownOffset {
pub simm32: AmodeOffset,
pub offset: Option<KnownOffset>,
}
impl AmodeOffsetPlusKnownOffset {
/// # Panics
///
/// Panics if the sum of the immediate and the known offset value overflows.
#[must_use]
pub fn value(&self, offsets: &impl KnownOffsetTable) -> i32 {
let known_offset = match self.offset {
Some(offset) => offsets[offset],
None => 0,
};
known_offset
.checked_add(self.simm32.value())
.expect("no wrapping")
}
}
impl std::fmt::LowerHex for AmodeOffsetPlusKnownOffset {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
if let Some(offset) = self.offset {
write!(f, "<offset:{offset}>+")?;
}
std::fmt::LowerHex::fmt(&self.simm32, f)
}
}
/// For RIP-relative addressing, keep track of the [`CodeSink`]-specific target.
#[derive(Clone, Debug)]
#[cfg_attr(any(test, feature = "fuzz"), derive(arbitrary::Arbitrary))]
pub enum DeferredTarget {
Label(Label),
Constant(Constant),
}
impl<R: AsReg> std::fmt::Display for Amode<R> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
Amode::ImmReg { simm32, base, .. } => {
// Note: size is always 8; the address is 64 bits,
// even if the addressed operand is smaller.
let base = reg::enc::to_string(base.enc(), Size::Quadword);
write!(f, "{simm32:x}({base})")
}
Amode::ImmRegRegShift {
simm32,
base,
index,
scale,
..
} => {
let base = reg::enc::to_string(base.enc(), Size::Quadword);
let index = reg::enc::to_string(index.enc(), Size::Quadword);
let shift = scale.shift();
if shift > 1 {
write!(f, "{simm32:x}({base}, {index}, {shift})")
} else {
write!(f, "{simm32:x}({base}, {index})")
}
}
Amode::RipRelative { .. } => write!(f, "(%rip)"),
}
}
}
/// The scaling factor for the index register in certain [`Amode`]s.
#[derive(Clone, Debug)]
#[cfg_attr(any(test, feature = "fuzz"), derive(arbitrary::Arbitrary))]
pub enum Scale {
One,
Two,
Four,
Eight,
}
impl Scale {
/// Create a new [`Scale`] from its hardware encoding.
///
/// # Panics
///
/// Panics if `enc` is not a valid encoding for a scale (0-3).
#[must_use]
pub fn new(enc: u8) -> Self {
match enc {
0b00 => Scale::One,
0b01 => Scale::Two,
0b10 => Scale::Four,
0b11 => Scale::Eight,
_ => panic!("invalid scale encoding: {enc}"),
}
}
/// Return the hardware encoding of this [`Scale`].
fn enc(&self) -> u8 {
match self {
Scale::One => 0b00,
Scale::Two => 0b01,
Scale::Four => 0b10,
Scale::Eight => 0b11,
}
}
/// Return how much this [`Scale`] will shift the value in the index
/// register of the SIB byte.
///
/// This is useful for pretty-printing; when encoding, one usually needs
/// [`Scale::enc`].
fn shift(&self) -> u8 {
1 << self.enc()
}
}
/// A general-purpose register or memory operand.
#[derive(Clone, Debug)]
#[cfg_attr(any(test, feature = "fuzz"), derive(arbitrary::Arbitrary))]
#[allow(
clippy::module_name_repetitions,
reason = "'GprMem' indicates this has GPR and memory variants"
)]
pub enum GprMem<R: AsReg, M: AsReg> {
Gpr(R),
Mem(Amode<M>),
}
impl<R: AsReg, M: AsReg> GprMem<R, M> {
/// Pretty-print the operand.
pub fn to_string(&self, size: Size) -> String {
match self {
GprMem::Gpr(gpr) => reg::enc::to_string(gpr.enc(), size).to_owned(),
GprMem::Mem(amode) => amode.to_string(),
}
}
/// Proxy on the 8-bit REX flag emission; helpful for simplifying generated
/// code.
pub(crate) fn always_emit_if_8bit_needed(&self, rex: &mut RexFlags) {
match self {
GprMem::Gpr(gpr) => {
rex.always_emit_if_8bit_needed(gpr.enc());
}
GprMem::Mem(_) => {}
}
}
}
/// An XMM register or memory operand.
#[derive(Clone, Debug)]
#[cfg_attr(any(test, feature = "fuzz"), derive(arbitrary::Arbitrary))]
#[allow(
clippy::module_name_repetitions,
reason = "'XmmMem' indicates this has Xmm and memory variants"
)]
pub enum XmmMem<R: AsReg, M: AsReg> {
Xmm(R),
Mem(Amode<M>),
}
impl<R: AsReg, M: AsReg> XmmMem<R, M> {
/// Pretty-print the operand.
pub fn to_string(&self) -> String {
match self {
XmmMem::Xmm(xmm) => xmm::enc::to_string(xmm.enc()).to_owned(),
XmmMem::Mem(amode) => amode.to_string(),
}
}
}
/// Emit the ModRM/SIB/displacement sequence for a memory operand.
pub fn emit_modrm_sib_disp<R: AsReg>(
sink: &mut impl CodeSink,
offsets: &impl KnownOffsetTable,
enc_g: u8,
mem_e: &Amode<R>,
bytes_at_end: u8,
evex_scaling: Option<i8>,
) {
match mem_e.clone() {
Amode::ImmReg { simm32, base, .. } => {
let enc_e = base.enc();
let mut imm = Imm::new(simm32.value(offsets), evex_scaling);
// Most base registers allow for a single ModRM byte plus an
// optional immediate. If rsp is the base register, however, then a
// SIB byte must be used.
let enc_e_low3 = enc_e & 7;
if enc_e_low3 == reg::enc::RSP {
// Displacement from RSP is encoded with a SIB byte where
// the index and base are both encoded as RSP's encoding of
// 0b100. This special encoding means that the index register
// isn't used and the base is 0b100 with or without a
// REX-encoded 4th bit (e.g. rsp or r12)
sink.put1(encode_modrm(imm.m0d(), enc_g & 7, 0b100));
sink.put1(0b00_100_100);
imm.emit(sink);
} else {
// If the base register is rbp and there's no offset then force
// a 1-byte zero offset since otherwise the encoding would be
// invalid.
if enc_e_low3 == reg::enc::RBP {
imm.force_immediate();
}
sink.put1(encode_modrm(imm.m0d(), enc_g & 7, enc_e & 7));
imm.emit(sink);
}
}
Amode::ImmRegRegShift {
simm32,
base,
index,
scale,
..
} => {
let enc_base = base.enc();
let enc_index = index.enc();
// Encoding of ModRM/SIB bytes don't allow the index register to
// ever be rsp. Note, though, that the encoding of r12, whose three
// lower bits match the encoding of rsp, is explicitly allowed with
// REX bytes so only rsp is disallowed.
assert!(enc_index != reg::enc::RSP);
// If the offset is zero then there is no immediate. Note, though,
// that if the base register's lower three bits are `101` then an
// offset must be present. This is a special case in the encoding of
// the SIB byte and requires an explicit displacement with rbp/r13.
let mut imm = Imm::new(simm32.value(), evex_scaling);
if enc_base & 7 == reg::enc::RBP {
imm.force_immediate();
}
// With the above determined encode the ModRM byte, then the SIB
// byte, then any immediate as necessary.
sink.put1(encode_modrm(imm.m0d(), enc_g & 7, 0b100));
sink.put1(encode_sib(scale.enc(), enc_index & 7, enc_base & 7));
imm.emit(sink);
}
Amode::RipRelative { target } => {
// RIP-relative is mod=00, rm=101.
sink.put1(encode_modrm(0b00, enc_g & 7, 0b101));
let offset = sink.current_offset();
let target = match target {
DeferredTarget::Label(label) => label.clone(),
DeferredTarget::Constant(constant) => sink.get_label_for_constant(constant.clone()),
};
sink.use_label_at_offset(offset, target);
// N.B.: some instructions (XmmRmRImm format for example)
// have bytes *after* the RIP-relative offset. The
// addressed location is relative to the end of the
// instruction, but the relocation is nominally relative
// to the end of the u32 field. So, to compensate for
// this, we emit a negative extra offset in the u32 field
// initially, and the relocation will add to it.
#[allow(clippy::cast_sign_loss, reason = "bit conversion is intended here")]
sink.put4(-(i32::from(bytes_at_end)) as u32);
}
}
}