cranelift_codegen/machinst/
abi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
//! Implementation of a vanilla ABI, shared between several machines. The
//! implementation here assumes that arguments will be passed in registers
//! first, then additional args on the stack; that the stack grows downward,
//! contains a standard frame (return address and frame pointer), and the
//! compiler is otherwise free to allocate space below that with its choice of
//! layout; and that the machine has some notion of caller- and callee-save
//! registers. Most modern machines, e.g. x86-64 and AArch64, should fit this
//! mold and thus both of these backends use this shared implementation.
//!
//! See the documentation in specific machine backends for the "instantiation"
//! of this generic ABI, i.e., which registers are caller/callee-save, arguments
//! and return values, and any other special requirements.
//!
//! For now the implementation here assumes a 64-bit machine, but we intend to
//! make this 32/64-bit-generic shortly.
//!
//! # Vanilla ABI
//!
//! First, arguments and return values are passed in registers up to a certain
//! fixed count, after which they overflow onto the stack. Multiple return
//! values either fit in registers, or are returned in a separate return-value
//! area on the stack, given by a hidden extra parameter.
//!
//! Note that the exact stack layout is up to us. We settled on the
//! below design based on several requirements. In particular, we need
//! to be able to generate instructions (or instruction sequences) to
//! access arguments, stack slots, and spill slots before we know how
//! many spill slots or clobber-saves there will be, because of our
//! pass structure. We also prefer positive offsets to negative
//! offsets because of an asymmetry in some machines' addressing modes
//! (e.g., on AArch64, positive offsets have a larger possible range
//! without a long-form sequence to synthesize an arbitrary
//! offset). We also need clobber-save registers to be "near" the
//! frame pointer: Windows unwind information requires it to be within
//! 240 bytes of RBP. Finally, it is not allowed to access memory
//! below the current SP value.
//!
//! We assume that a prologue first pushes the frame pointer (and
//! return address above that, if the machine does not do that in
//! hardware). We set FP to point to this two-word frame record. We
//! store all other frame slots below this two-word frame record, as
//! well as enough space for arguments to the largest possible
//! function call. The stack pointer then remains at this position
//! for the duration of the function, allowing us to address all
//! frame storage at positive offsets from SP.
//!
//! Note that if we ever support dynamic stack-space allocation (for
//! `alloca`), we will need a way to reference spill slots and stack
//! slots relative to a dynamic SP, because we will no longer be able
//! to know a static offset from SP to the slots at any particular
//! program point. Probably the best solution at that point will be to
//! revert to using the frame pointer as the reference for all slots,
//! to allow generating spill/reload and stackslot accesses before we
//! know how large the clobber-saves will be.
//!
//! # Stack Layout
//!
//! The stack looks like:
//!
//! ```plain
//!   (high address)
//!                              |          ...              |
//!                              | caller frames             |
//!                              |          ...              |
//!                              +===========================+
//!                              |          ...              |
//!                              | stack args                |
//! Canonical Frame Address -->  | (accessed via FP)         |
//!                              +---------------------------+
//! SP at function entry ----->  | return address            |
//!                              +---------------------------+
//! FP after prologue -------->  | FP (pushed by prologue)   |
//!                              +---------------------------+           -----
//!                              |          ...              |             |
//!                              | clobbered callee-saves    |             |
//! unwind-frame base -------->  | (pushed by prologue)      |             |
//!                              +---------------------------+   -----     |
//!                              |          ...              |     |       |
//!                              | spill slots               |     |       |
//!                              | (accessed via SP)         |   fixed   active
//!                              |          ...              |   frame    size
//!                              | stack slots               |  storage    |
//!                              | (accessed via SP)         |    size     |
//!                              | (alloc'd by prologue)     |     |       |
//!                              +---------------------------+   -----     |
//!                              | [alignment as needed]     |             |
//!                              |          ...              |             |
//!                              | args for largest call     |             |
//! SP ----------------------->  | (alloc'd by prologue)     |             |
//!                              +===========================+           -----
//!
//!   (low address)
//! ```
//!
//! # Multi-value Returns
//!
//! We support multi-value returns by using multiple return-value
//! registers. In some cases this is an extension of the base system
//! ABI. See each platform's `abi.rs` implementation for details.

use crate::entity::SecondaryMap;
use crate::ir::types::*;
use crate::ir::{ArgumentExtension, ArgumentPurpose, Signature};
use crate::isa::TargetIsa;
use crate::settings::ProbestackStrategy;
use crate::CodegenError;
use crate::{ir, isa};
use crate::{machinst::*, trace};
use regalloc2::{MachineEnv, PReg, PRegSet};
use rustc_hash::FxHashMap;
use smallvec::smallvec;
use std::collections::HashMap;
use std::marker::PhantomData;
use std::mem;

/// A small vector of instructions (with some reasonable size); appropriate for
/// a small fixed sequence implementing one operation.
pub type SmallInstVec<I> = SmallVec<[I; 4]>;

/// A type used by backends to track argument-binding info in the "args"
/// pseudoinst. The pseudoinst holds a vec of `ArgPair` structs.
#[derive(Clone, Debug)]
pub struct ArgPair {
    /// The vreg that is defined by this args pseudoinst.
    pub vreg: Writable<Reg>,
    /// The preg that the arg arrives in; this constrains the vreg's
    /// placement at the pseudoinst.
    pub preg: Reg,
}

/// A type used by backends to track return register binding info in the "ret"
/// pseudoinst. The pseudoinst holds a vec of `RetPair` structs.
#[derive(Clone, Debug)]
pub struct RetPair {
    /// The vreg that is returned by this pseudionst.
    pub vreg: Reg,
    /// The preg that the arg is returned through; this constrains the vreg's
    /// placement at the pseudoinst.
    pub preg: Reg,
}

/// A location for (part of) an argument or return value. These "storage slots"
/// are specified for each register-sized part of an argument.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ABIArgSlot {
    /// In a real register.
    Reg {
        /// Register that holds this arg.
        reg: RealReg,
        /// Value type of this arg.
        ty: ir::Type,
        /// Should this arg be zero- or sign-extended?
        extension: ir::ArgumentExtension,
    },
    /// Arguments only: on stack, at given offset from SP at entry.
    Stack {
        /// Offset of this arg relative to the base of stack args.
        offset: i64,
        /// Value type of this arg.
        ty: ir::Type,
        /// Should this arg be zero- or sign-extended?
        extension: ir::ArgumentExtension,
    },
}

impl ABIArgSlot {
    /// The type of the value that will be stored in this slot.
    pub fn get_type(&self) -> ir::Type {
        match self {
            ABIArgSlot::Reg { ty, .. } => *ty,
            ABIArgSlot::Stack { ty, .. } => *ty,
        }
    }
}

/// A vector of `ABIArgSlot`s. Inline capacity for one element because basically
/// 100% of values use one slot. Only `i128`s need multiple slots, and they are
/// super rare (and never happen with Wasm).
pub type ABIArgSlotVec = SmallVec<[ABIArgSlot; 1]>;

/// An ABIArg is composed of one or more parts. This allows for a CLIF-level
/// Value to be passed with its parts in more than one location at the ABI
/// level. For example, a 128-bit integer may be passed in two 64-bit registers,
/// or even a 64-bit register and a 64-bit stack slot, on a 64-bit machine. The
/// number of "parts" should correspond to the number of registers used to store
/// this type according to the machine backend.
///
/// As an invariant, the `purpose` for every part must match. As a further
/// invariant, a `StructArg` part cannot appear with any other part.
#[derive(Clone, Debug)]
pub enum ABIArg {
    /// Storage slots (registers or stack locations) for each part of the
    /// argument value. The number of slots must equal the number of register
    /// parts used to store a value of this type.
    Slots {
        /// Slots, one per register part.
        slots: ABIArgSlotVec,
        /// Purpose of this arg.
        purpose: ir::ArgumentPurpose,
    },
    /// Structure argument. We reserve stack space for it, but the CLIF-level
    /// semantics are a little weird: the value passed to the call instruction,
    /// and received in the corresponding block param, is a *pointer*. On the
    /// caller side, we memcpy the data from the passed-in pointer to the stack
    /// area; on the callee side, we compute a pointer to this stack area and
    /// provide that as the argument's value.
    StructArg {
        /// Offset of this arg relative to base of stack args.
        offset: i64,
        /// Size of this arg on the stack.
        size: u64,
        /// Purpose of this arg.
        purpose: ir::ArgumentPurpose,
    },
    /// Implicit argument. Similar to a StructArg, except that we have the
    /// target type, not a pointer type, at the CLIF-level. This argument is
    /// still being passed via reference implicitly.
    ImplicitPtrArg {
        /// Register or stack slot holding a pointer to the buffer.
        pointer: ABIArgSlot,
        /// Offset of the argument buffer.
        offset: i64,
        /// Type of the implicit argument.
        ty: Type,
        /// Purpose of this arg.
        purpose: ir::ArgumentPurpose,
    },
}

impl ABIArg {
    /// Create an ABIArg from one register.
    pub fn reg(
        reg: RealReg,
        ty: ir::Type,
        extension: ir::ArgumentExtension,
        purpose: ir::ArgumentPurpose,
    ) -> ABIArg {
        ABIArg::Slots {
            slots: smallvec![ABIArgSlot::Reg { reg, ty, extension }],
            purpose,
        }
    }

    /// Create an ABIArg from one stack slot.
    pub fn stack(
        offset: i64,
        ty: ir::Type,
        extension: ir::ArgumentExtension,
        purpose: ir::ArgumentPurpose,
    ) -> ABIArg {
        ABIArg::Slots {
            slots: smallvec![ABIArgSlot::Stack {
                offset,
                ty,
                extension,
            }],
            purpose,
        }
    }
}

/// Are we computing information about arguments or return values? Much of the
/// handling is factored out into common routines; this enum allows us to
/// distinguish which case we're handling.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum ArgsOrRets {
    /// Arguments.
    Args,
    /// Return values.
    Rets,
}

/// Abstract location for a machine-specific ABI impl to translate into the
/// appropriate addressing mode.
#[derive(Clone, Copy, Debug)]
pub enum StackAMode {
    /// Offset into the current frame's argument area.
    IncomingArg(i64, u32),
    /// Offset within the stack slots in the current frame.
    Slot(i64),
    /// Offset into the callee frame's argument area.
    OutgoingArg(i64),
}

/// Trait implemented by machine-specific backend to represent ISA flags.
pub trait IsaFlags: Clone {
    /// Get a flag indicating whether forward-edge CFI is enabled.
    fn is_forward_edge_cfi_enabled(&self) -> bool {
        false
    }
}

/// Used as an out-parameter to accumulate a sequence of `ABIArg`s in
/// `ABIMachineSpec::compute_arg_locs`. Wraps the shared allocation for all
/// `ABIArg`s in `SigSet` and exposes just the args for the current
/// `compute_arg_locs` call.
pub struct ArgsAccumulator<'a> {
    sig_set_abi_args: &'a mut Vec<ABIArg>,
    start: usize,
    non_formal_flag: bool,
}

impl<'a> ArgsAccumulator<'a> {
    fn new(sig_set_abi_args: &'a mut Vec<ABIArg>) -> Self {
        let start = sig_set_abi_args.len();
        ArgsAccumulator {
            sig_set_abi_args,
            start,
            non_formal_flag: false,
        }
    }

    #[inline]
    pub fn push(&mut self, arg: ABIArg) {
        debug_assert!(!self.non_formal_flag);
        self.sig_set_abi_args.push(arg)
    }

    #[inline]
    pub fn push_non_formal(&mut self, arg: ABIArg) {
        self.non_formal_flag = true;
        self.sig_set_abi_args.push(arg)
    }

    #[inline]
    pub fn args(&self) -> &[ABIArg] {
        &self.sig_set_abi_args[self.start..]
    }

    #[inline]
    pub fn args_mut(&mut self) -> &mut [ABIArg] {
        &mut self.sig_set_abi_args[self.start..]
    }
}

/// Trait implemented by machine-specific backend to provide information about
/// register assignments and to allow generating the specific instructions for
/// stack loads/saves, prologues/epilogues, etc.
pub trait ABIMachineSpec {
    /// The instruction type.
    type I: VCodeInst;

    /// The ISA flags type.
    type F: IsaFlags;

    /// This is the limit for the size of argument and return-value areas on the
    /// stack. We place a reasonable limit here to avoid integer overflow issues
    /// with 32-bit arithmetic.
    const STACK_ARG_RET_SIZE_LIMIT: u32;

    /// Returns the number of bits in a word, that is 32/64 for 32/64-bit architecture.
    fn word_bits() -> u32;

    /// Returns the number of bytes in a word.
    fn word_bytes() -> u32 {
        return Self::word_bits() / 8;
    }

    /// Returns word-size integer type.
    fn word_type() -> Type {
        match Self::word_bits() {
            32 => I32,
            64 => I64,
            _ => unreachable!(),
        }
    }

    /// Returns word register class.
    fn word_reg_class() -> RegClass {
        RegClass::Int
    }

    /// Returns required stack alignment in bytes.
    fn stack_align(call_conv: isa::CallConv) -> u32;

    /// Process a list of parameters or return values and allocate them to registers
    /// and stack slots.
    ///
    /// The argument locations should be pushed onto the given `ArgsAccumulator`
    /// in order. Any extra arguments added (such as return area pointers)
    /// should come at the end of the list so that the first N lowered
    /// parameters align with the N clif parameters.
    ///
    /// Returns the stack-space used (rounded up to as alignment requires), and
    /// if `add_ret_area_ptr` was passed, the index of the extra synthetic arg
    /// that was added.
    fn compute_arg_locs(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        params: &[ir::AbiParam],
        args_or_rets: ArgsOrRets,
        add_ret_area_ptr: bool,
        args: ArgsAccumulator,
    ) -> CodegenResult<(u32, Option<usize>)>;

    /// Generate a load from the stack.
    fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I;

    /// Generate a store to the stack.
    fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I;

    /// Generate a move.
    fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I;

    /// Generate an integer-extend operation.
    fn gen_extend(
        to_reg: Writable<Reg>,
        from_reg: Reg,
        is_signed: bool,
        from_bits: u8,
        to_bits: u8,
    ) -> Self::I;

    /// Generate an "args" pseudo-instruction to capture input args in
    /// registers.
    fn gen_args(args: Vec<ArgPair>) -> Self::I;

    /// Generate a "rets" pseudo-instruction that moves vregs to return
    /// registers.
    fn gen_rets(rets: Vec<RetPair>) -> Self::I;

    /// Generate an add-with-immediate. Note that even if this uses a scratch
    /// register, it must satisfy two requirements:
    ///
    /// - The add-imm sequence must only clobber caller-save registers that are
    ///   not used for arguments, because it will be placed in the prologue
    ///   before the clobbered callee-save registers are saved.
    ///
    /// - The add-imm sequence must work correctly when `from_reg` and/or
    ///   `into_reg` are the register returned by `get_stacklimit_reg()`.
    fn gen_add_imm(
        call_conv: isa::CallConv,
        into_reg: Writable<Reg>,
        from_reg: Reg,
        imm: u32,
    ) -> SmallInstVec<Self::I>;

    /// Generate a sequence that traps with a `TrapCode::StackOverflow` code if
    /// the stack pointer is less than the given limit register (assuming the
    /// stack grows downward).
    fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I>;

    /// Generate an instruction to compute an address of a stack slot (FP- or
    /// SP-based offset).
    fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I;

    /// Get a fixed register to use to compute a stack limit. This is needed for
    /// certain sequences generated after the register allocator has already
    /// run. This must satisfy two requirements:
    ///
    /// - It must be a caller-save register that is not used for arguments,
    ///   because it will be clobbered in the prologue before the clobbered
    ///   callee-save registers are saved.
    ///
    /// - It must be safe to pass as an argument and/or destination to
    ///   `gen_add_imm()`. This is relevant when an addition with a large
    ///   immediate needs its own temporary; it cannot use the same fixed
    ///   temporary as this one.
    fn get_stacklimit_reg(call_conv: isa::CallConv) -> Reg;

    /// Generate a load to the given [base+offset] address.
    fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I;

    /// Generate a store from the given [base+offset] address.
    fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I;

    /// Adjust the stack pointer up or down.
    fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I>;

    /// Compute a FrameLayout structure containing a sorted list of all clobbered
    /// registers that are callee-saved according to the ABI, as well as the sizes
    /// of all parts of the stack frame.  The result is used to emit the prologue
    /// and epilogue routines.
    fn compute_frame_layout(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        sig: &Signature,
        regs: &[Writable<RealReg>],
        is_leaf: bool,
        incoming_args_size: u32,
        tail_args_size: u32,
        fixed_frame_storage_size: u32,
        outgoing_args_size: u32,
    ) -> FrameLayout;

    /// Generate the usual frame-setup sequence for this architecture: e.g.,
    /// `push rbp / mov rbp, rsp` on x86-64, or `stp fp, lr, [sp, #-16]!` on
    /// AArch64.
    fn gen_prologue_frame_setup(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        isa_flags: &Self::F,
        frame_layout: &FrameLayout,
    ) -> SmallInstVec<Self::I>;

    /// Generate the usual frame-restore sequence for this architecture.
    fn gen_epilogue_frame_restore(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        isa_flags: &Self::F,
        frame_layout: &FrameLayout,
    ) -> SmallInstVec<Self::I>;

    /// Generate a return instruction.
    fn gen_return(
        call_conv: isa::CallConv,
        isa_flags: &Self::F,
        frame_layout: &FrameLayout,
    ) -> SmallInstVec<Self::I>;

    /// Generate a probestack call.
    fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32);

    /// Generate a inline stack probe.
    fn gen_inline_probestack(
        insts: &mut SmallInstVec<Self::I>,
        call_conv: isa::CallConv,
        frame_size: u32,
        guard_size: u32,
    );

    /// Generate a clobber-save sequence. The implementation here should return
    /// a sequence of instructions that "push" or otherwise save to the stack all
    /// registers written/modified by the function body that are callee-saved.
    /// The sequence of instructions should adjust the stack pointer downward,
    /// and should align as necessary according to ABI requirements.
    fn gen_clobber_save(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        frame_layout: &FrameLayout,
    ) -> SmallVec<[Self::I; 16]>;

    /// Generate a clobber-restore sequence. This sequence should perform the
    /// opposite of the clobber-save sequence generated above, assuming that SP
    /// going into the sequence is at the same point that it was left when the
    /// clobber-save sequence finished.
    fn gen_clobber_restore(
        call_conv: isa::CallConv,
        flags: &settings::Flags,
        frame_layout: &FrameLayout,
    ) -> SmallVec<[Self::I; 16]>;

    /// Generate a call instruction/sequence. This method is provided one
    /// temporary register to use to synthesize the called address, if needed.
    fn gen_call(dest: &CallDest, tmp: Writable<Reg>, info: CallInfo<()>) -> SmallVec<[Self::I; 2]>;

    /// Generate a memcpy invocation. Used to set up struct
    /// args. Takes `src`, `dst` as read-only inputs and passes a temporary
    /// allocator.
    fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
        call_conv: isa::CallConv,
        dst: Reg,
        src: Reg,
        size: usize,
        alloc_tmp: F,
    ) -> SmallVec<[Self::I; 8]>;

    /// Get the number of spillslots required for the given register-class.
    fn get_number_of_spillslots_for_value(
        rc: RegClass,
        target_vector_bytes: u32,
        isa_flags: &Self::F,
    ) -> u32;

    /// Get the ABI-dependent MachineEnv for managing register allocation.
    fn get_machine_env(flags: &settings::Flags, call_conv: isa::CallConv) -> &MachineEnv;

    /// Get all caller-save registers, that is, registers that we expect
    /// not to be saved across a call to a callee with the given ABI.
    fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet;

    /// Get the needed extension mode, given the mode attached to the argument
    /// in the signature and the calling convention. The input (the attribute in
    /// the signature) specifies what extension type should be done *if* the ABI
    /// requires extension to the full register; this method's return value
    /// indicates whether the extension actually *will* be done.
    fn get_ext_mode(
        call_conv: isa::CallConv,
        specified: ir::ArgumentExtension,
    ) -> ir::ArgumentExtension;
}

/// Out-of-line data for calls, to keep the size of `Inst` down.
#[derive(Clone, Debug)]
pub struct CallInfo<T> {
    /// Receiver of this call
    pub dest: T,
    /// Register uses of this call.
    pub uses: CallArgList,
    /// Register defs of this call.
    pub defs: CallRetList,
    /// Registers clobbered by this call, as per its calling convention.
    pub clobbers: PRegSet,
    /// The calling convention of the callee.
    pub callee_conv: isa::CallConv,
    /// The calling convention of the caller.
    pub caller_conv: isa::CallConv,
    /// The number of bytes that the callee will pop from the stack for the
    /// caller, if any. (Used for popping stack arguments with the `tail`
    /// calling convention.)
    pub callee_pop_size: u32,
}

impl<T> CallInfo<T> {
    /// Creates an empty set of info with no clobbers/uses/etc with the
    /// specified ABI
    pub fn empty(dest: T, call_conv: isa::CallConv) -> CallInfo<T> {
        CallInfo {
            dest,
            uses: smallvec![],
            defs: smallvec![],
            clobbers: PRegSet::empty(),
            caller_conv: call_conv,
            callee_conv: call_conv,
            callee_pop_size: 0,
        }
    }

    /// Change the `T` payload on this info to `U`.
    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> CallInfo<U> {
        CallInfo {
            dest: f(self.dest),
            uses: self.uses,
            defs: self.defs,
            clobbers: self.clobbers,
            caller_conv: self.caller_conv,
            callee_conv: self.callee_conv,
            callee_pop_size: self.callee_pop_size,
        }
    }
}

/// The id of an ABI signature within the `SigSet`.
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub struct Sig(u32);
cranelift_entity::entity_impl!(Sig);

impl Sig {
    fn prev(self) -> Option<Sig> {
        self.0.checked_sub(1).map(Sig)
    }
}

/// ABI information shared between body (callee) and caller.
#[derive(Clone, Debug)]
pub struct SigData {
    /// Currently both return values and arguments are stored in a continuous space vector
    /// in `SigSet::abi_args`.
    ///
    /// ```plain
    ///                  +----------------------------------------------+
    ///                  | return values                                |
    ///                  | ...                                          |
    ///   rets_end   --> +----------------------------------------------+
    ///                  | arguments                                    |
    ///                  | ...                                          |
    ///   args_end   --> +----------------------------------------------+
    ///
    /// ```
    ///
    /// Note we only store two offsets as rets_end == args_start, and rets_start == prev.args_end.
    ///
    /// Argument location ending offset (regs or stack slots). Stack offsets are relative to
    /// SP on entry to function.
    ///
    /// This is a index into the `SigSet::abi_args`.
    args_end: u32,

    /// Return-value location ending offset. Stack offsets are relative to the return-area
    /// pointer.
    ///
    /// This is a index into the `SigSet::abi_args`.
    rets_end: u32,

    /// Space on stack used to store arguments. We're storing the size in u32 to
    /// reduce the size of the struct.
    sized_stack_arg_space: u32,

    /// Space on stack used to store return values. We're storing the size in u32 to
    /// reduce the size of the struct.
    sized_stack_ret_space: u32,

    /// Index in `args` of the stack-return-value-area argument.
    stack_ret_arg: Option<u16>,

    /// Calling convention used.
    call_conv: isa::CallConv,
}

impl SigData {
    /// Get total stack space required for arguments.
    pub fn sized_stack_arg_space(&self) -> i64 {
        self.sized_stack_arg_space.into()
    }

    /// Get total stack space required for return values.
    pub fn sized_stack_ret_space(&self) -> i64 {
        self.sized_stack_ret_space.into()
    }

    /// Get calling convention used.
    pub fn call_conv(&self) -> isa::CallConv {
        self.call_conv
    }

    /// The index of the stack-return-value-area argument, if any.
    pub fn stack_ret_arg(&self) -> Option<u16> {
        self.stack_ret_arg
    }
}

/// A (mostly) deduplicated set of ABI signatures.
///
/// We say "mostly" because we do not dedupe between signatures interned via
/// `ir::SigRef` (direct and indirect calls; the vast majority of signatures in
/// this set) vs via `ir::Signature` (the callee itself and libcalls). Doing
/// this final bit of deduplication would require filling out the
/// `ir_signature_to_abi_sig`, which is a bunch of allocations (not just the
/// hash map itself but params and returns vecs in each signature) that we want
/// to avoid.
///
/// In general, prefer using the `ir::SigRef`-taking methods to the
/// `ir::Signature`-taking methods when you can get away with it, as they don't
/// require cloning non-copy types that will trigger heap allocations.
///
/// This type can be indexed by `Sig` to access its associated `SigData`.
pub struct SigSet {
    /// Interned `ir::Signature`s that we already have an ABI signature for.
    ir_signature_to_abi_sig: FxHashMap<ir::Signature, Sig>,

    /// Interned `ir::SigRef`s that we already have an ABI signature for.
    ir_sig_ref_to_abi_sig: SecondaryMap<ir::SigRef, Option<Sig>>,

    /// A single, shared allocation for all `ABIArg`s used by all
    /// `SigData`s. Each `SigData` references its args/rets via indices into
    /// this allocation.
    abi_args: Vec<ABIArg>,

    /// The actual ABI signatures, keyed by `Sig`.
    sigs: PrimaryMap<Sig, SigData>,
}

impl SigSet {
    /// Construct a new `SigSet`, interning all of the signatures used by the
    /// given function.
    pub fn new<M>(func: &ir::Function, flags: &settings::Flags) -> CodegenResult<Self>
    where
        M: ABIMachineSpec,
    {
        let arg_estimate = func.dfg.signatures.len() * 6;

        let mut sigs = SigSet {
            ir_signature_to_abi_sig: FxHashMap::default(),
            ir_sig_ref_to_abi_sig: SecondaryMap::with_capacity(func.dfg.signatures.len()),
            abi_args: Vec::with_capacity(arg_estimate),
            sigs: PrimaryMap::with_capacity(1 + func.dfg.signatures.len()),
        };

        sigs.make_abi_sig_from_ir_signature::<M>(func.signature.clone(), flags)?;
        for sig_ref in func.dfg.signatures.keys() {
            sigs.make_abi_sig_from_ir_sig_ref::<M>(sig_ref, &func.dfg, flags)?;
        }

        Ok(sigs)
    }

    /// Have we already interned an ABI signature for the given `ir::Signature`?
    pub fn have_abi_sig_for_signature(&self, signature: &ir::Signature) -> bool {
        self.ir_signature_to_abi_sig.contains_key(signature)
    }

    /// Construct and intern an ABI signature for the given `ir::Signature`.
    pub fn make_abi_sig_from_ir_signature<M>(
        &mut self,
        signature: ir::Signature,
        flags: &settings::Flags,
    ) -> CodegenResult<Sig>
    where
        M: ABIMachineSpec,
    {
        // Because the `HashMap` entry API requires taking ownership of the
        // lookup key -- and we want to avoid unnecessary clones of
        // `ir::Signature`s, even at the cost of duplicate lookups -- we can't
        // have a single, get-or-create-style method for interning
        // `ir::Signature`s into ABI signatures. So at least (debug) assert that
        // we aren't creating duplicate ABI signatures for the same
        // `ir::Signature`.
        debug_assert!(!self.have_abi_sig_for_signature(&signature));

        let sig_data = self.from_func_sig::<M>(&signature, flags)?;
        let sig = self.sigs.push(sig_data);
        self.ir_signature_to_abi_sig.insert(signature, sig);
        Ok(sig)
    }

    fn make_abi_sig_from_ir_sig_ref<M>(
        &mut self,
        sig_ref: ir::SigRef,
        dfg: &ir::DataFlowGraph,
        flags: &settings::Flags,
    ) -> CodegenResult<Sig>
    where
        M: ABIMachineSpec,
    {
        if let Some(sig) = self.ir_sig_ref_to_abi_sig[sig_ref] {
            return Ok(sig);
        }
        let signature = &dfg.signatures[sig_ref];
        let sig_data = self.from_func_sig::<M>(signature, flags)?;
        let sig = self.sigs.push(sig_data);
        self.ir_sig_ref_to_abi_sig[sig_ref] = Some(sig);
        Ok(sig)
    }

    /// Get the already-interned ABI signature id for the given `ir::SigRef`.
    pub fn abi_sig_for_sig_ref(&self, sig_ref: ir::SigRef) -> Sig {
        self.ir_sig_ref_to_abi_sig[sig_ref]
            .expect("must call `make_abi_sig_from_ir_sig_ref` before `get_abi_sig_for_sig_ref`")
    }

    /// Get the already-interned ABI signature id for the given `ir::Signature`.
    pub fn abi_sig_for_signature(&self, signature: &ir::Signature) -> Sig {
        self.ir_signature_to_abi_sig
            .get(signature)
            .copied()
            .expect("must call `make_abi_sig_from_ir_signature` before `get_abi_sig_for_signature`")
    }

    pub fn from_func_sig<M: ABIMachineSpec>(
        &mut self,
        sig: &ir::Signature,
        flags: &settings::Flags,
    ) -> CodegenResult<SigData> {
        // Keep in sync with ensure_struct_return_ptr_is_returned
        if sig.uses_special_return(ArgumentPurpose::StructReturn) {
            panic!("Explicit StructReturn return value not allowed: {sig:?}")
        }
        let tmp;
        let returns = if let Some(struct_ret_index) =
            sig.special_param_index(ArgumentPurpose::StructReturn)
        {
            if !sig.returns.is_empty() {
                panic!("No return values are allowed when using StructReturn: {sig:?}");
            }
            tmp = [sig.params[struct_ret_index]];
            &tmp
        } else {
            sig.returns.as_slice()
        };

        // Compute args and retvals from signature. Handle retvals first,
        // because we may need to add a return-area arg to the args.

        // NOTE: We rely on the order of the args (rets -> args) inserted to compute the offsets in
        // `SigSet::args()` and `SigSet::rets()`. Therefore, we cannot change the two
        // compute_arg_locs order.
        let (sized_stack_ret_space, _) = M::compute_arg_locs(
            sig.call_conv,
            flags,
            &returns,
            ArgsOrRets::Rets,
            /* extra ret-area ptr = */ false,
            ArgsAccumulator::new(&mut self.abi_args),
        )?;
        let rets_end = u32::try_from(self.abi_args.len()).unwrap();

        // To avoid overflow issues, limit the return size to something reasonable.
        if sized_stack_ret_space > M::STACK_ARG_RET_SIZE_LIMIT {
            return Err(CodegenError::ImplLimitExceeded);
        }

        let need_stack_return_area = sized_stack_ret_space > 0;
        if need_stack_return_area {
            assert!(!sig.uses_special_param(ir::ArgumentPurpose::StructReturn));
        }

        let (sized_stack_arg_space, stack_ret_arg) = M::compute_arg_locs(
            sig.call_conv,
            flags,
            &sig.params,
            ArgsOrRets::Args,
            need_stack_return_area,
            ArgsAccumulator::new(&mut self.abi_args),
        )?;
        let args_end = u32::try_from(self.abi_args.len()).unwrap();

        // To avoid overflow issues, limit the arg size to something reasonable.
        if sized_stack_arg_space > M::STACK_ARG_RET_SIZE_LIMIT {
            return Err(CodegenError::ImplLimitExceeded);
        }

        trace!(
            "ABISig: sig {:?} => args end = {} rets end = {}
             arg stack = {} ret stack = {} stack_ret_arg = {:?}",
            sig,
            args_end,
            rets_end,
            sized_stack_arg_space,
            sized_stack_ret_space,
            need_stack_return_area,
        );

        let stack_ret_arg = stack_ret_arg.map(|s| u16::try_from(s).unwrap());
        Ok(SigData {
            args_end,
            rets_end,
            sized_stack_arg_space,
            sized_stack_ret_space,
            stack_ret_arg,
            call_conv: sig.call_conv,
        })
    }

    /// Get this signature's ABI arguments.
    pub fn args(&self, sig: Sig) -> &[ABIArg] {
        let sig_data = &self.sigs[sig];
        // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
        let start = usize::try_from(sig_data.rets_end).unwrap();
        let end = usize::try_from(sig_data.args_end).unwrap();
        &self.abi_args[start..end]
    }

    /// Get information specifying how to pass the implicit pointer
    /// to the return-value area on the stack, if required.
    pub fn get_ret_arg(&self, sig: Sig) -> Option<ABIArg> {
        let sig_data = &self.sigs[sig];
        if let Some(i) = sig_data.stack_ret_arg {
            Some(self.args(sig)[usize::from(i)].clone())
        } else {
            None
        }
    }

    /// Get information specifying how to pass one argument.
    pub fn get_arg(&self, sig: Sig, idx: usize) -> ABIArg {
        self.args(sig)[idx].clone()
    }

    /// Get this signature's ABI returns.
    pub fn rets(&self, sig: Sig) -> &[ABIArg] {
        let sig_data = &self.sigs[sig];
        // Please see comments in `SigSet::from_func_sig` of how we store the offsets.
        let start = usize::try_from(sig.prev().map_or(0, |prev| self.sigs[prev].args_end)).unwrap();
        let end = usize::try_from(sig_data.rets_end).unwrap();
        &self.abi_args[start..end]
    }

    /// Get information specifying how to pass one return value.
    pub fn get_ret(&self, sig: Sig, idx: usize) -> ABIArg {
        self.rets(sig)[idx].clone()
    }

    /// Get the number of arguments expected.
    pub fn num_args(&self, sig: Sig) -> usize {
        let len = self.args(sig).len();
        if self.sigs[sig].stack_ret_arg.is_some() {
            len - 1
        } else {
            len
        }
    }

    /// Get the number of return values expected.
    pub fn num_rets(&self, sig: Sig) -> usize {
        self.rets(sig).len()
    }
}

// NB: we do _not_ implement `IndexMut` because these signatures are
// deduplicated and shared!
impl std::ops::Index<Sig> for SigSet {
    type Output = SigData;

    fn index(&self, sig: Sig) -> &Self::Output {
        &self.sigs[sig]
    }
}

/// Structure describing the layout of a function's stack frame.
#[derive(Clone, Debug, Default)]
pub struct FrameLayout {
    /// N.B. The areas whose sizes are given in this structure fully
    /// cover the current function's stack frame, from high to low
    /// stack addresses in the sequence below.  Each size contains
    /// any alignment padding that may be required by the ABI.

    /// Size of incoming arguments on the stack.  This is not technically
    /// part of this function's frame, but code in the function will still
    /// need to access it.  Depending on the ABI, we may need to set up a
    /// frame pointer to do so; we also may need to pop this area from the
    /// stack upon return.
    pub incoming_args_size: u32,

    /// The size of the incoming argument area, taking into account any
    /// potential increase in size required for tail calls present in the
    /// function. In the case that no tail calls are present, this value
    /// will be the same as [`Self::incoming_args_size`].
    pub tail_args_size: u32,

    /// Size of the "setup area", typically holding the return address
    /// and/or the saved frame pointer.  This may be written either during
    /// the call itself (e.g. a pushed return address) or by code emitted
    /// from gen_prologue_frame_setup.  In any case, after that code has
    /// completed execution, the stack pointer is expected to point to the
    /// bottom of this area.  The same holds at the start of code emitted
    /// by gen_epilogue_frame_restore.
    pub setup_area_size: u32,

    /// Size of the area used to save callee-saved clobbered registers.
    /// This area is accessed by code emitted from gen_clobber_save and
    /// gen_clobber_restore.
    pub clobber_size: u32,

    /// Storage allocated for the fixed part of the stack frame.
    /// This contains stack slots and spill slots.
    pub fixed_frame_storage_size: u32,

    /// Stack size to be reserved for outgoing arguments, if used by
    /// the current ABI, or 0 otherwise.  After gen_clobber_save and
    /// before gen_clobber_restore, the stack pointer points to the
    /// bottom of this area.
    pub outgoing_args_size: u32,

    /// Sorted list of callee-saved registers that are clobbered
    /// according to the ABI.  These registers will be saved and
    /// restored by gen_clobber_save and gen_clobber_restore.
    pub clobbered_callee_saves: Vec<Writable<RealReg>>,
}

impl FrameLayout {
    /// Split the clobbered callee-save registers into integer-class and
    /// float-class groups.
    ///
    /// This method does not currently support vector-class callee-save
    /// registers because no current backend has them.
    pub fn clobbered_callee_saves_by_class(&self) -> (&[Writable<RealReg>], &[Writable<RealReg>]) {
        let (ints, floats) = self.clobbered_callee_saves.split_at(
            self.clobbered_callee_saves
                .partition_point(|r| r.to_reg().class() == RegClass::Int),
        );
        debug_assert!(floats.iter().all(|r| r.to_reg().class() == RegClass::Float));
        (ints, floats)
    }

    /// The size of FP to SP while the frame is active (not during prologue
    /// setup or epilogue tear down).
    pub fn active_size(&self) -> u32 {
        self.outgoing_args_size + self.fixed_frame_storage_size + self.clobber_size
    }

    /// Get the offset from the SP to the sized stack slots area.
    pub fn sp_to_sized_stack_slots(&self) -> u32 {
        self.outgoing_args_size
    }
}

/// ABI object for a function body.
pub struct Callee<M: ABIMachineSpec> {
    /// CLIF-level signature, possibly normalized.
    ir_sig: ir::Signature,
    /// Signature: arg and retval regs.
    sig: Sig,
    /// Defined dynamic types.
    dynamic_type_sizes: HashMap<Type, u32>,
    /// Offsets to each dynamic stackslot.
    dynamic_stackslots: PrimaryMap<DynamicStackSlot, u32>,
    /// Offsets to each sized stackslot.
    sized_stackslots: PrimaryMap<StackSlot, u32>,
    /// Total stack size of all stackslots
    stackslots_size: u32,
    /// Stack size to be reserved for outgoing arguments.
    outgoing_args_size: u32,
    /// Initially the number of bytes originating in the callers frame where stack arguments will
    /// live. After lowering this number may be larger than the size expected by the function being
    /// compiled, as tail calls potentially require more space for stack arguments.
    tail_args_size: u32,
    /// Register-argument defs, to be provided to the `args`
    /// pseudo-inst, and pregs to constrain them to.
    reg_args: Vec<ArgPair>,
    /// Finalized frame layout for this function.
    frame_layout: Option<FrameLayout>,
    /// The register holding the return-area pointer, if needed.
    ret_area_ptr: Option<Reg>,
    /// Calling convention this function expects.
    call_conv: isa::CallConv,
    /// The settings controlling this function's compilation.
    flags: settings::Flags,
    /// The ISA-specific flag values controlling this function's compilation.
    isa_flags: M::F,
    /// Whether or not this function is a "leaf", meaning it calls no other
    /// functions
    is_leaf: bool,
    /// If this function has a stack limit specified, then `Reg` is where the
    /// stack limit will be located after the instructions specified have been
    /// executed.
    ///
    /// Note that this is intended for insertion into the prologue, if
    /// present. Also note that because the instructions here execute in the
    /// prologue this happens after legalization/register allocation/etc so we
    /// need to be extremely careful with each instruction. The instructions are
    /// manually register-allocated and carefully only use caller-saved
    /// registers and keep nothing live after this sequence of instructions.
    stack_limit: Option<(Reg, SmallInstVec<M::I>)>,

    _mach: PhantomData<M>,
}

fn get_special_purpose_param_register(
    f: &ir::Function,
    sigs: &SigSet,
    sig: Sig,
    purpose: ir::ArgumentPurpose,
) -> Option<Reg> {
    let idx = f.signature.special_param_index(purpose)?;
    match &sigs.args(sig)[idx] {
        &ABIArg::Slots { ref slots, .. } => match &slots[0] {
            &ABIArgSlot::Reg { reg, .. } => Some(reg.into()),
            _ => None,
        },
        _ => None,
    }
}

fn checked_round_up(val: u32, mask: u32) -> Option<u32> {
    Some(val.checked_add(mask)? & !mask)
}

impl<M: ABIMachineSpec> Callee<M> {
    /// Create a new body ABI instance.
    pub fn new(
        f: &ir::Function,
        isa: &dyn TargetIsa,
        isa_flags: &M::F,
        sigs: &SigSet,
    ) -> CodegenResult<Self> {
        trace!("ABI: func signature {:?}", f.signature);

        let flags = isa.flags().clone();
        let sig = sigs.abi_sig_for_signature(&f.signature);

        let call_conv = f.signature.call_conv;
        // Only these calling conventions are supported.
        debug_assert!(
            call_conv == isa::CallConv::SystemV
                || call_conv == isa::CallConv::Tail
                || call_conv == isa::CallConv::Fast
                || call_conv == isa::CallConv::Cold
                || call_conv == isa::CallConv::WindowsFastcall
                || call_conv == isa::CallConv::AppleAarch64
                || call_conv == isa::CallConv::Winch,
            "Unsupported calling convention: {call_conv:?}"
        );

        // Compute sized stackslot locations and total stackslot size.
        let mut end_offset: u32 = 0;
        let mut sized_stackslots = PrimaryMap::new();

        for (stackslot, data) in f.sized_stack_slots.iter() {
            // We start our computation possibly unaligned where the previous
            // stackslot left off.
            let unaligned_start_offset = end_offset;

            // The start of the stackslot must be aligned.
            //
            // We always at least machine-word-align slots, but also
            // satisfy the user's requested alignment.
            debug_assert!(data.align_shift < 32);
            let align = std::cmp::max(M::word_bytes(), 1u32 << data.align_shift);
            let mask = align - 1;
            let start_offset = checked_round_up(unaligned_start_offset, mask)
                .ok_or(CodegenError::ImplLimitExceeded)?;

            // The end offset is the the start offset increased by the size
            end_offset = start_offset
                .checked_add(data.size)
                .ok_or(CodegenError::ImplLimitExceeded)?;

            debug_assert_eq!(stackslot.as_u32() as usize, sized_stackslots.len());
            sized_stackslots.push(start_offset);
        }

        // Compute dynamic stackslot locations and total stackslot size.
        let mut dynamic_stackslots = PrimaryMap::new();
        for (stackslot, data) in f.dynamic_stack_slots.iter() {
            debug_assert_eq!(stackslot.as_u32() as usize, dynamic_stackslots.len());

            // This computation is similar to the stackslots above
            let unaligned_start_offset = end_offset;

            let mask = M::word_bytes() - 1;
            let start_offset = checked_round_up(unaligned_start_offset, mask)
                .ok_or(CodegenError::ImplLimitExceeded)?;

            let ty = f.get_concrete_dynamic_ty(data.dyn_ty).ok_or_else(|| {
                CodegenError::Unsupported(format!("invalid dynamic vector type: {}", data.dyn_ty))
            })?;

            end_offset = start_offset
                .checked_add(isa.dynamic_vector_bytes(ty))
                .ok_or(CodegenError::ImplLimitExceeded)?;

            dynamic_stackslots.push(start_offset);
        }

        // The size of the stackslots needs to be word aligned
        let stackslots_size = checked_round_up(end_offset, M::word_bytes() - 1)
            .ok_or(CodegenError::ImplLimitExceeded)?;

        let mut dynamic_type_sizes = HashMap::with_capacity(f.dfg.dynamic_types.len());
        for (dyn_ty, _data) in f.dfg.dynamic_types.iter() {
            let ty = f
                .get_concrete_dynamic_ty(dyn_ty)
                .unwrap_or_else(|| panic!("invalid dynamic vector type: {dyn_ty}"));
            let size = isa.dynamic_vector_bytes(ty);
            dynamic_type_sizes.insert(ty, size);
        }

        // Figure out what instructions, if any, will be needed to check the
        // stack limit. This can either be specified as a special-purpose
        // argument or as a global value which often calculates the stack limit
        // from the arguments.
        let stack_limit = f
            .stack_limit
            .map(|gv| gen_stack_limit::<M>(f, sigs, sig, gv));

        let tail_args_size = sigs[sig].sized_stack_arg_space;

        Ok(Self {
            ir_sig: ensure_struct_return_ptr_is_returned(&f.signature),
            sig,
            dynamic_stackslots,
            dynamic_type_sizes,
            sized_stackslots,
            stackslots_size,
            outgoing_args_size: 0,
            tail_args_size,
            reg_args: vec![],
            frame_layout: None,
            ret_area_ptr: None,
            call_conv,
            flags,
            isa_flags: isa_flags.clone(),
            is_leaf: f.is_leaf(),
            stack_limit,
            _mach: PhantomData,
        })
    }

    /// Inserts instructions necessary for checking the stack limit into the
    /// prologue.
    ///
    /// This function will generate instructions necessary for perform a stack
    /// check at the header of a function. The stack check is intended to trap
    /// if the stack pointer goes below a particular threshold, preventing stack
    /// overflow in wasm or other code. The `stack_limit` argument here is the
    /// register which holds the threshold below which we're supposed to trap.
    /// This function is known to allocate `stack_size` bytes and we'll push
    /// instructions onto `insts`.
    ///
    /// Note that the instructions generated here are special because this is
    /// happening so late in the pipeline (e.g. after register allocation). This
    /// means that we need to do manual register allocation here and also be
    /// careful to not clobber any callee-saved or argument registers. For now
    /// this routine makes do with the `spilltmp_reg` as one temporary
    /// register, and a second register of `tmp2` which is caller-saved. This
    /// should be fine for us since no spills should happen in this sequence of
    /// instructions, so our register won't get accidentally clobbered.
    ///
    /// No values can be live after the prologue, but in this case that's ok
    /// because we just need to perform a stack check before progressing with
    /// the rest of the function.
    fn insert_stack_check(
        &self,
        stack_limit: Reg,
        stack_size: u32,
        insts: &mut SmallInstVec<M::I>,
    ) {
        // With no explicit stack allocated we can just emit the simple check of
        // the stack registers against the stack limit register, and trap if
        // it's out of bounds.
        if stack_size == 0 {
            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
            return;
        }

        // Note that the 32k stack size here is pretty special. See the
        // documentation in x86/abi.rs for why this is here. The general idea is
        // that we're protecting against overflow in the addition that happens
        // below.
        if stack_size >= 32 * 1024 {
            insts.extend(M::gen_stack_lower_bound_trap(stack_limit));
        }

        // Add the `stack_size` to `stack_limit`, placing the result in
        // `scratch`.
        //
        // Note though that `stack_limit`'s register may be the same as
        // `scratch`. If our stack size doesn't fit into an immediate this
        // means we need a second scratch register for loading the stack size
        // into a register.
        let scratch = Writable::from_reg(M::get_stacklimit_reg(self.call_conv));
        insts.extend(M::gen_add_imm(self.call_conv, scratch, stack_limit, stack_size).into_iter());
        insts.extend(M::gen_stack_lower_bound_trap(scratch.to_reg()));
    }
}

/// Generates the instructions necessary for the `gv` to be materialized into a
/// register.
///
/// This function will return a register that will contain the result of
/// evaluating `gv`. It will also return any instructions necessary to calculate
/// the value of the register.
///
/// Note that global values are typically lowered to instructions via the
/// standard legalization pass. Unfortunately though prologue generation happens
/// so late in the pipeline that we can't use these legalization passes to
/// generate the instructions for `gv`. As a result we duplicate some lowering
/// of `gv` here and support only some global values. This is similar to what
/// the x86 backend does for now, and hopefully this can be somewhat cleaned up
/// in the future too!
///
/// Also note that this function will make use of `writable_spilltmp_reg()` as a
/// temporary register to store values in if necessary. Currently after we write
/// to this register there's guaranteed to be no spilled values between where
/// it's used, because we're not participating in register allocation anyway!
fn gen_stack_limit<M: ABIMachineSpec>(
    f: &ir::Function,
    sigs: &SigSet,
    sig: Sig,
    gv: ir::GlobalValue,
) -> (Reg, SmallInstVec<M::I>) {
    let mut insts = smallvec![];
    let reg = generate_gv::<M>(f, sigs, sig, gv, &mut insts);
    return (reg, insts);
}

fn generate_gv<M: ABIMachineSpec>(
    f: &ir::Function,
    sigs: &SigSet,
    sig: Sig,
    gv: ir::GlobalValue,
    insts: &mut SmallInstVec<M::I>,
) -> Reg {
    match f.global_values[gv] {
        // Return the direct register the vmcontext is in
        ir::GlobalValueData::VMContext => {
            get_special_purpose_param_register(f, sigs, sig, ir::ArgumentPurpose::VMContext)
                .expect("no vmcontext parameter found")
        }
        // Load our base value into a register, then load from that register
        // in to a temporary register.
        ir::GlobalValueData::Load {
            base,
            offset,
            global_type: _,
            flags: _,
        } => {
            let base = generate_gv::<M>(f, sigs, sig, base, insts);
            let into_reg = Writable::from_reg(M::get_stacklimit_reg(f.stencil.signature.call_conv));
            insts.push(M::gen_load_base_offset(
                into_reg,
                base,
                offset.into(),
                M::word_type(),
            ));
            return into_reg.to_reg();
        }
        ref other => panic!("global value for stack limit not supported: {other}"),
    }
}

/// Returns true if the signature needs to be legalized.
fn missing_struct_return(sig: &ir::Signature) -> bool {
    sig.uses_special_param(ArgumentPurpose::StructReturn)
        && !sig.uses_special_return(ArgumentPurpose::StructReturn)
}

fn ensure_struct_return_ptr_is_returned(sig: &ir::Signature) -> ir::Signature {
    // Keep in sync with Callee::new
    let mut sig = sig.clone();
    if sig.uses_special_return(ArgumentPurpose::StructReturn) {
        panic!("Explicit StructReturn return value not allowed: {sig:?}")
    }
    if let Some(struct_ret_index) = sig.special_param_index(ArgumentPurpose::StructReturn) {
        if !sig.returns.is_empty() {
            panic!("No return values are allowed when using StructReturn: {sig:?}");
        }
        sig.returns.insert(0, sig.params[struct_ret_index]);
    }
    sig
}

/// ### Pre-Regalloc Functions
///
/// These methods of `Callee` may only be called before regalloc.
impl<M: ABIMachineSpec> Callee<M> {
    /// Access the (possibly legalized) signature.
    pub fn signature(&self) -> &ir::Signature {
        debug_assert!(
            !missing_struct_return(&self.ir_sig),
            "`Callee::ir_sig` is always legalized"
        );
        &self.ir_sig
    }

    /// Initialize. This is called after the Callee is constructed because it
    /// may allocate a temp vreg, which can only be allocated once the lowering
    /// context exists.
    pub fn init_retval_area(
        &mut self,
        sigs: &SigSet,
        vregs: &mut VRegAllocator<M::I>,
    ) -> CodegenResult<()> {
        if sigs[self.sig].stack_ret_arg.is_some() {
            let ret_area_ptr = vregs.alloc(M::word_type())?;
            self.ret_area_ptr = Some(ret_area_ptr.only_reg().unwrap());
        }
        Ok(())
    }

    /// Get the return area pointer register, if any.
    pub fn ret_area_ptr(&self) -> Option<Reg> {
        self.ret_area_ptr
    }

    /// Accumulate outgoing arguments.
    ///
    /// This ensures that at least `size` bytes are allocated in the prologue to
    /// be available for use in function calls to hold arguments and/or return
    /// values. If this function is called multiple times, the maximum of all
    /// `size` values will be available.
    pub fn accumulate_outgoing_args_size(&mut self, size: u32) {
        if size > self.outgoing_args_size {
            self.outgoing_args_size = size;
        }
    }

    /// Accumulate the incoming argument area size requirements for a tail call,
    /// as it could be larger than the incoming arguments of the function
    /// currently being compiled.
    pub fn accumulate_tail_args_size(&mut self, size: u32) {
        if size > self.tail_args_size {
            self.tail_args_size = size;
        }
    }

    pub fn is_forward_edge_cfi_enabled(&self) -> bool {
        self.isa_flags.is_forward_edge_cfi_enabled()
    }

    /// Get the calling convention implemented by this ABI object.
    pub fn call_conv(&self, sigs: &SigSet) -> isa::CallConv {
        sigs[self.sig].call_conv
    }

    /// Get the ABI-dependent MachineEnv for managing register allocation.
    pub fn machine_env(&self, sigs: &SigSet) -> &MachineEnv {
        M::get_machine_env(&self.flags, self.call_conv(sigs))
    }

    /// The offsets of all sized stack slots (not spill slots) for debuginfo purposes.
    pub fn sized_stackslot_offsets(&self) -> &PrimaryMap<StackSlot, u32> {
        &self.sized_stackslots
    }

    /// The offsets of all dynamic stack slots (not spill slots) for debuginfo purposes.
    pub fn dynamic_stackslot_offsets(&self) -> &PrimaryMap<DynamicStackSlot, u32> {
        &self.dynamic_stackslots
    }

    /// Generate an instruction which copies an argument to a destination
    /// register.
    pub fn gen_copy_arg_to_regs(
        &mut self,
        sigs: &SigSet,
        idx: usize,
        into_regs: ValueRegs<Writable<Reg>>,
        vregs: &mut VRegAllocator<M::I>,
    ) -> SmallInstVec<M::I> {
        let mut insts = smallvec![];
        let mut copy_arg_slot_to_reg = |slot: &ABIArgSlot, into_reg: &Writable<Reg>| {
            match slot {
                &ABIArgSlot::Reg { reg, .. } => {
                    // Add a preg -> def pair to the eventual `args`
                    // instruction.  Extension mode doesn't matter
                    // (we're copying out, not in; we ignore high bits
                    // by convention).
                    let arg = ArgPair {
                        vreg: *into_reg,
                        preg: reg.into(),
                    };
                    self.reg_args.push(arg);
                }
                &ABIArgSlot::Stack {
                    offset,
                    ty,
                    extension,
                    ..
                } => {
                    // However, we have to respect the extension mode for stack
                    // slots, or else we grab the wrong bytes on big-endian.
                    let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
                    let ty =
                        if ext != ArgumentExtension::None && M::word_bits() > ty_bits(ty) as u32 {
                            M::word_type()
                        } else {
                            ty
                        };
                    insts.push(M::gen_load_stack(
                        StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
                        *into_reg,
                        ty,
                    ));
                }
            }
        };

        match &sigs.args(self.sig)[idx] {
            &ABIArg::Slots { ref slots, .. } => {
                assert_eq!(into_regs.len(), slots.len());
                for (slot, into_reg) in slots.iter().zip(into_regs.regs().iter()) {
                    copy_arg_slot_to_reg(&slot, &into_reg);
                }
            }
            &ABIArg::StructArg { offset, .. } => {
                let into_reg = into_regs.only_reg().unwrap();
                // Buffer address is implicitly defined by the ABI.
                insts.push(M::gen_get_stack_addr(
                    StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
                    into_reg,
                ));
            }
            &ABIArg::ImplicitPtrArg { pointer, ty, .. } => {
                let into_reg = into_regs.only_reg().unwrap();
                // We need to dereference the pointer.
                let base = match &pointer {
                    &ABIArgSlot::Reg { reg, ty, .. } => {
                        let tmp = vregs.alloc_with_deferred_error(ty).only_reg().unwrap();
                        self.reg_args.push(ArgPair {
                            vreg: Writable::from_reg(tmp),
                            preg: reg.into(),
                        });
                        tmp
                    }
                    &ABIArgSlot::Stack { offset, ty, .. } => {
                        let addr_reg = writable_value_regs(vregs.alloc_with_deferred_error(ty))
                            .only_reg()
                            .unwrap();
                        insts.push(M::gen_load_stack(
                            StackAMode::IncomingArg(offset, sigs[self.sig].sized_stack_arg_space),
                            addr_reg,
                            ty,
                        ));
                        addr_reg.to_reg()
                    }
                };
                insts.push(M::gen_load_base_offset(into_reg, base, 0, ty));
            }
        }
        insts
    }

    /// Generate an instruction which copies a source register to a return value slot.
    pub fn gen_copy_regs_to_retval(
        &self,
        sigs: &SigSet,
        idx: usize,
        from_regs: ValueRegs<Reg>,
        vregs: &mut VRegAllocator<M::I>,
    ) -> (SmallVec<[RetPair; 2]>, SmallInstVec<M::I>) {
        let mut reg_pairs = smallvec![];
        let mut ret = smallvec![];
        let word_bits = M::word_bits() as u8;
        match &sigs.rets(self.sig)[idx] {
            &ABIArg::Slots { ref slots, .. } => {
                assert_eq!(from_regs.len(), slots.len());
                for (slot, &from_reg) in slots.iter().zip(from_regs.regs().iter()) {
                    match slot {
                        &ABIArgSlot::Reg {
                            reg, ty, extension, ..
                        } => {
                            let from_bits = ty_bits(ty) as u8;
                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
                            let vreg = match (ext, from_bits) {
                                (ir::ArgumentExtension::Uext, n)
                                | (ir::ArgumentExtension::Sext, n)
                                    if n < word_bits =>
                                {
                                    let signed = ext == ir::ArgumentExtension::Sext;
                                    let dst =
                                        writable_value_regs(vregs.alloc_with_deferred_error(ty))
                                            .only_reg()
                                            .unwrap();
                                    ret.push(M::gen_extend(
                                        dst, from_reg, signed, from_bits,
                                        /* to_bits = */ word_bits,
                                    ));
                                    dst.to_reg()
                                }
                                _ => {
                                    // No move needed, regalloc2 will emit it using the constraint
                                    // added by the RetPair.
                                    from_reg
                                }
                            };
                            reg_pairs.push(RetPair {
                                vreg,
                                preg: Reg::from(reg),
                            });
                        }
                        &ABIArgSlot::Stack {
                            offset,
                            ty,
                            extension,
                            ..
                        } => {
                            let mut ty = ty;
                            let from_bits = ty_bits(ty) as u8;
                            // A machine ABI implementation should ensure that stack frames
                            // have "reasonable" size. All current ABIs for machinst
                            // backends (aarch64 and x64) enforce a 128MB limit.
                            let off = i32::try_from(offset).expect(
                                "Argument stack offset greater than 2GB; should hit impl limit first",
                                );
                            let ext = M::get_ext_mode(sigs[self.sig].call_conv, extension);
                            // Trash the from_reg; it should be its last use.
                            match (ext, from_bits) {
                                (ir::ArgumentExtension::Uext, n)
                                | (ir::ArgumentExtension::Sext, n)
                                    if n < word_bits =>
                                {
                                    assert_eq!(M::word_reg_class(), from_reg.class());
                                    let signed = ext == ir::ArgumentExtension::Sext;
                                    let dst =
                                        writable_value_regs(vregs.alloc_with_deferred_error(ty))
                                            .only_reg()
                                            .unwrap();
                                    ret.push(M::gen_extend(
                                        dst, from_reg, signed, from_bits,
                                        /* to_bits = */ word_bits,
                                    ));
                                    // Store the extended version.
                                    ty = M::word_type();
                                }
                                _ => {}
                            };
                            ret.push(M::gen_store_base_offset(
                                self.ret_area_ptr.unwrap(),
                                off,
                                from_reg,
                                ty,
                            ));
                        }
                    }
                }
            }
            ABIArg::StructArg { .. } => {
                panic!("StructArg in return position is unsupported");
            }
            ABIArg::ImplicitPtrArg { .. } => {
                panic!("ImplicitPtrArg in return position is unsupported");
            }
        }
        (reg_pairs, ret)
    }

    /// Generate any setup instruction needed to save values to the
    /// return-value area. This is usually used when were are multiple return
    /// values or an otherwise large return value that must be passed on the
    /// stack; typically the ABI specifies an extra hidden argument that is a
    /// pointer to that memory.
    pub fn gen_retval_area_setup(
        &mut self,
        sigs: &SigSet,
        vregs: &mut VRegAllocator<M::I>,
    ) -> Option<M::I> {
        if let Some(i) = sigs[self.sig].stack_ret_arg {
            let ret_area_ptr = Writable::from_reg(self.ret_area_ptr.unwrap());
            let insts =
                self.gen_copy_arg_to_regs(sigs, i.into(), ValueRegs::one(ret_area_ptr), vregs);
            insts.into_iter().next().map(|inst| {
                trace!(
                    "gen_retval_area_setup: inst {:?}; ptr reg is {:?}",
                    inst,
                    ret_area_ptr.to_reg()
                );
                inst
            })
        } else {
            trace!("gen_retval_area_setup: not needed");
            None
        }
    }

    /// Generate a return instruction.
    pub fn gen_rets(&self, rets: Vec<RetPair>) -> M::I {
        M::gen_rets(rets)
    }

    /// Produce an instruction that computes a sized stackslot address.
    pub fn sized_stackslot_addr(
        &self,
        slot: StackSlot,
        offset: u32,
        into_reg: Writable<Reg>,
    ) -> M::I {
        // Offset from beginning of stackslot area.
        let stack_off = self.sized_stackslots[slot] as i64;
        let sp_off: i64 = stack_off + (offset as i64);
        M::gen_get_stack_addr(StackAMode::Slot(sp_off), into_reg)
    }

    /// Produce an instruction that computes a dynamic stackslot address.
    pub fn dynamic_stackslot_addr(&self, slot: DynamicStackSlot, into_reg: Writable<Reg>) -> M::I {
        let stack_off = self.dynamic_stackslots[slot] as i64;
        M::gen_get_stack_addr(StackAMode::Slot(stack_off), into_reg)
    }

    /// Get an `args` pseudo-inst, if any, that should appear at the
    /// very top of the function body prior to regalloc.
    pub fn take_args(&mut self) -> Option<M::I> {
        if self.reg_args.len() > 0 {
            // Very first instruction is an `args` pseudo-inst that
            // establishes live-ranges for in-register arguments and
            // constrains them at the start of the function to the
            // locations defined by the ABI.
            Some(M::gen_args(std::mem::take(&mut self.reg_args)))
        } else {
            None
        }
    }
}

/// ### Post-Regalloc Functions
///
/// These methods of `Callee` may only be called after
/// regalloc.
impl<M: ABIMachineSpec> Callee<M> {
    /// Compute the final frame layout, post-regalloc.
    ///
    /// This must be called before gen_prologue or gen_epilogue.
    pub fn compute_frame_layout(
        &mut self,
        sigs: &SigSet,
        spillslots: usize,
        clobbered: Vec<Writable<RealReg>>,
    ) {
        let bytes = M::word_bytes();
        let total_stacksize = self.stackslots_size + bytes * spillslots as u32;
        let mask = M::stack_align(self.call_conv) - 1;
        let total_stacksize = (total_stacksize + mask) & !mask; // 16-align the stack.
        self.frame_layout = Some(M::compute_frame_layout(
            self.call_conv,
            &self.flags,
            self.signature(),
            &clobbered,
            self.is_leaf,
            self.stack_args_size(sigs),
            self.tail_args_size,
            total_stacksize,
            self.outgoing_args_size,
        ));
    }

    /// Generate a prologue, post-regalloc.
    ///
    /// This should include any stack frame or other setup necessary to use the
    /// other methods (`load_arg`, `store_retval`, and spillslot accesses.)
    pub fn gen_prologue(&self) -> SmallInstVec<M::I> {
        let frame_layout = self.frame_layout();
        let mut insts = smallvec![];

        // Set up frame.
        insts.extend(M::gen_prologue_frame_setup(
            self.call_conv,
            &self.flags,
            &self.isa_flags,
            &frame_layout,
        ));

        // The stack limit check needs to cover all the stack adjustments we
        // might make, up to the next stack limit check in any function we
        // call. Since this happens after frame setup, the current function's
        // setup area needs to be accounted for in the caller's stack limit
        // check, but we need to account for any setup area that our callees
        // might need. Note that s390x may also use the outgoing args area for
        // backtrace support even in leaf functions, so that should be accounted
        // for unconditionally.
        let total_stacksize = (frame_layout.tail_args_size - frame_layout.incoming_args_size)
            + frame_layout.clobber_size
            + frame_layout.fixed_frame_storage_size
            + frame_layout.outgoing_args_size
            + if self.is_leaf {
                0
            } else {
                frame_layout.setup_area_size
            };

        // Leaf functions with zero stack don't need a stack check if one's
        // specified, otherwise always insert the stack check.
        if total_stacksize > 0 || !self.is_leaf {
            if let Some((reg, stack_limit_load)) = &self.stack_limit {
                insts.extend(stack_limit_load.clone());
                self.insert_stack_check(*reg, total_stacksize, &mut insts);
            }

            if self.flags.enable_probestack() {
                let guard_size = 1 << self.flags.probestack_size_log2();
                if total_stacksize >= guard_size {
                    match self.flags.probestack_strategy() {
                        ProbestackStrategy::Inline => M::gen_inline_probestack(
                            &mut insts,
                            self.call_conv,
                            total_stacksize,
                            guard_size,
                        ),
                        ProbestackStrategy::Outline => {
                            M::gen_probestack(&mut insts, total_stacksize)
                        }
                    }
                }
            }
        }

        // Save clobbered registers.
        insts.extend(M::gen_clobber_save(
            self.call_conv,
            &self.flags,
            &frame_layout,
        ));

        insts
    }

    /// Generate an epilogue, post-regalloc.
    ///
    /// Note that this must generate the actual return instruction (rather than
    /// emitting this in the lowering logic), because the epilogue code comes
    /// before the return and the two are likely closely related.
    pub fn gen_epilogue(&self) -> SmallInstVec<M::I> {
        let frame_layout = self.frame_layout();
        let mut insts = smallvec![];

        // Restore clobbered registers.
        insts.extend(M::gen_clobber_restore(
            self.call_conv,
            &self.flags,
            &frame_layout,
        ));

        // Tear down frame.
        insts.extend(M::gen_epilogue_frame_restore(
            self.call_conv,
            &self.flags,
            &self.isa_flags,
            &frame_layout,
        ));

        // And return.
        insts.extend(M::gen_return(
            self.call_conv,
            &self.isa_flags,
            &frame_layout,
        ));

        trace!("Epilogue: {:?}", insts);
        insts
    }

    /// Return a reference to the computed frame layout information. This
    /// function will panic if it's called before [`Self::compute_frame_layout`].
    pub fn frame_layout(&self) -> &FrameLayout {
        self.frame_layout
            .as_ref()
            .expect("frame layout not computed before prologue generation")
    }

    /// Returns the full frame size for the given function, after prologue
    /// emission has run. This comprises the spill slots and stack-storage
    /// slots as well as storage for clobbered callee-save registers, but
    /// not arguments arguments pushed at callsites within this function,
    /// or other ephemeral pushes.
    pub fn frame_size(&self) -> u32 {
        let frame_layout = self.frame_layout();
        frame_layout.clobber_size + frame_layout.fixed_frame_storage_size
    }

    /// Returns offset from the slot base in the current frame to the caller's SP.
    pub fn slot_base_to_caller_sp_offset(&self) -> u32 {
        let frame_layout = self.frame_layout();
        frame_layout.clobber_size
            + frame_layout.fixed_frame_storage_size
            + frame_layout.setup_area_size
    }

    /// Returns the size of arguments expected on the stack.
    pub fn stack_args_size(&self, sigs: &SigSet) -> u32 {
        sigs[self.sig].sized_stack_arg_space
    }

    /// Get the spill-slot size.
    pub fn get_spillslot_size(&self, rc: RegClass) -> u32 {
        let max = if self.dynamic_type_sizes.len() == 0 {
            16
        } else {
            *self
                .dynamic_type_sizes
                .iter()
                .max_by(|x, y| x.1.cmp(&y.1))
                .map(|(_k, v)| v)
                .unwrap()
        };
        M::get_number_of_spillslots_for_value(rc, max, &self.isa_flags)
    }

    /// Get the spill slot offset relative to the fixed allocation area start.
    pub fn get_spillslot_offset(&self, slot: SpillSlot) -> i64 {
        // Offset from beginning of spillslot area.
        let islot = slot.index() as i64;
        let spill_off = islot * M::word_bytes() as i64;
        let sp_off = self.stackslots_size as i64 + spill_off;

        sp_off
    }

    /// Generate a spill.
    pub fn gen_spill(&self, to_slot: SpillSlot, from_reg: RealReg) -> M::I {
        let ty = M::I::canonical_type_for_rc(from_reg.class());
        debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);

        let sp_off = self.get_spillslot_offset(to_slot);
        trace!("gen_spill: {from_reg:?} into slot {to_slot:?} at offset {sp_off}");

        let from = StackAMode::Slot(sp_off);
        <M>::gen_store_stack(from, Reg::from(from_reg), ty)
    }

    /// Generate a reload (fill).
    pub fn gen_reload(&self, to_reg: Writable<RealReg>, from_slot: SpillSlot) -> M::I {
        let ty = M::I::canonical_type_for_rc(to_reg.to_reg().class());
        debug_assert_eq!(<M>::I::rc_for_type(ty).unwrap().1, &[ty]);

        let sp_off = self.get_spillslot_offset(from_slot);
        trace!("gen_reload: {to_reg:?} from slot {from_slot:?} at offset {sp_off}");

        let from = StackAMode::Slot(sp_off);
        <M>::gen_load_stack(from, to_reg.map(Reg::from), ty)
    }
}

/// An input argument to a call instruction: the vreg that is used,
/// and the preg it is constrained to (per the ABI).
#[derive(Clone, Debug)]
pub struct CallArgPair {
    /// The virtual register to use for the argument.
    pub vreg: Reg,
    /// The real register into which the arg goes.
    pub preg: Reg,
}

/// An output return value from a call instruction: the vreg that is
/// defined, and the preg it is constrained to (per the ABI).
#[derive(Clone, Debug)]
pub struct CallRetPair {
    /// The virtual register to define from this return value.
    pub vreg: Writable<Reg>,
    /// The real register from which the return value is read.
    pub preg: Reg,
}

pub type CallArgList = SmallVec<[CallArgPair; 8]>;
pub type CallRetList = SmallVec<[CallRetPair; 8]>;

pub enum IsTailCall {
    Yes,
    No,
}

/// ABI object for a callsite.
pub struct CallSite<M: ABIMachineSpec> {
    /// The called function's signature.
    sig: Sig,
    /// All register uses for the callsite, i.e., function args, with
    /// VReg and the physical register it is constrained to.
    uses: CallArgList,
    /// All defs for the callsite, i.e., return values.
    defs: CallRetList,
    /// Call destination.
    dest: CallDest,
    is_tail_call: IsTailCall,
    /// Caller's calling convention.
    caller_conv: isa::CallConv,
    /// The settings controlling this compilation.
    flags: settings::Flags,

    _mach: PhantomData<M>,
}

/// Destination for a call.
#[derive(Debug, Clone)]
pub enum CallDest {
    /// Call to an ExtName (named function symbol).
    ExtName(ir::ExternalName, RelocDistance),
    /// Indirect call to a function pointer in a register.
    Reg(Reg),
}

impl<M: ABIMachineSpec> CallSite<M> {
    /// Create a callsite ABI object for a call directly to the specified function.
    pub fn from_func(
        sigs: &SigSet,
        sig_ref: ir::SigRef,
        extname: &ir::ExternalName,
        is_tail_call: IsTailCall,
        dist: RelocDistance,
        caller_conv: isa::CallConv,
        flags: settings::Flags,
    ) -> CallSite<M> {
        let sig = sigs.abi_sig_for_sig_ref(sig_ref);
        CallSite {
            sig,
            uses: smallvec![],
            defs: smallvec![],
            dest: CallDest::ExtName(extname.clone(), dist),
            is_tail_call,
            caller_conv,
            flags,
            _mach: PhantomData,
        }
    }

    /// Create a callsite ABI object for a call directly to the specified
    /// libcall.
    pub fn from_libcall(
        sigs: &SigSet,
        sig: &ir::Signature,
        extname: &ir::ExternalName,
        dist: RelocDistance,
        caller_conv: isa::CallConv,
        flags: settings::Flags,
    ) -> CallSite<M> {
        let sig = sigs.abi_sig_for_signature(sig);
        CallSite {
            sig,
            uses: smallvec![],
            defs: smallvec![],
            dest: CallDest::ExtName(extname.clone(), dist),
            is_tail_call: IsTailCall::No,
            caller_conv,
            flags,
            _mach: PhantomData,
        }
    }

    /// Create a callsite ABI object for a call to a function pointer with the
    /// given signature.
    pub fn from_ptr(
        sigs: &SigSet,
        sig_ref: ir::SigRef,
        ptr: Reg,
        is_tail_call: IsTailCall,
        caller_conv: isa::CallConv,
        flags: settings::Flags,
    ) -> CallSite<M> {
        let sig = sigs.abi_sig_for_sig_ref(sig_ref);
        CallSite {
            sig,
            uses: smallvec![],
            defs: smallvec![],
            dest: CallDest::Reg(ptr),
            is_tail_call,
            caller_conv,
            flags,
            _mach: PhantomData,
        }
    }

    pub(crate) fn dest(&self) -> &CallDest {
        &self.dest
    }

    pub(crate) fn take_uses(self) -> CallArgList {
        self.uses
    }

    pub(crate) fn sig<'a>(&self, sigs: &'a SigSet) -> &'a SigData {
        &sigs[self.sig]
    }

    pub(crate) fn is_tail_call(&self) -> bool {
        matches!(self.is_tail_call, IsTailCall::Yes)
    }
}

impl<M: ABIMachineSpec> CallSite<M> {
    /// Get the number of arguments expected.
    pub fn num_args(&self, sigs: &SigSet) -> usize {
        sigs.num_args(self.sig)
    }

    /// Get the number of return values expected.
    pub fn num_rets(&self, sigs: &SigSet) -> usize {
        sigs.num_rets(self.sig)
    }

    /// Emit a copy of a large argument into its associated stack buffer, if
    /// any.  We must be careful to perform all these copies (as necessary)
    /// before setting up the argument registers, since we may have to invoke
    /// memcpy(), which could clobber any registers already set up.  The
    /// back-end should call this routine for all arguments before calling
    /// `gen_arg` for all arguments.
    pub fn emit_copy_regs_to_buffer(
        &self,
        ctx: &mut Lower<M::I>,
        idx: usize,
        from_regs: ValueRegs<Reg>,
    ) {
        match &ctx.sigs().args(self.sig)[idx] {
            &ABIArg::Slots { .. } | &ABIArg::ImplicitPtrArg { .. } => {}
            &ABIArg::StructArg { offset, size, .. } => {
                let src_ptr = from_regs.only_reg().unwrap();
                let dst_ptr = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
                ctx.emit(M::gen_get_stack_addr(
                    StackAMode::OutgoingArg(offset),
                    dst_ptr,
                ));
                // Emit a memcpy from `src_ptr` to `dst_ptr` of `size` bytes.
                // N.B.: because we process StructArg params *first*, this is
                // safe w.r.t. clobbers: we have not yet filled in any other
                // arg regs.
                let memcpy_call_conv =
                    isa::CallConv::for_libcall(&self.flags, ctx.sigs()[self.sig].call_conv);
                for insn in M::gen_memcpy(
                    memcpy_call_conv,
                    dst_ptr.to_reg(),
                    src_ptr,
                    size as usize,
                    |ty| ctx.alloc_tmp(ty).only_reg().unwrap(),
                )
                .into_iter()
                {
                    ctx.emit(insn);
                }
            }
        }
    }

    /// Add a constraint for an argument value from a source register.
    /// For large arguments with associated stack buffer, this may
    /// load the address of the buffer into the argument register, if
    /// required by the ABI.
    pub fn gen_arg(&mut self, ctx: &mut Lower<M::I>, idx: usize, from_regs: ValueRegs<Reg>) {
        let stack_arg_space = ctx.sigs()[self.sig].sized_stack_arg_space;
        let stack_arg = if self.is_tail_call() {
            StackAMode::IncomingArg
        } else {
            |offset, _| StackAMode::OutgoingArg(offset)
        };
        let word_rc = M::word_reg_class();
        let word_bits = M::word_bits() as usize;

        match ctx.sigs().args(self.sig)[idx].clone() {
            ABIArg::Slots { ref slots, .. } => {
                assert_eq!(from_regs.len(), slots.len());
                for (slot, from_reg) in slots.iter().zip(from_regs.regs().iter()) {
                    match slot {
                        &ABIArgSlot::Reg {
                            reg, ty, extension, ..
                        } => {
                            let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
                            let vreg =
                                if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
                                    assert_eq!(word_rc, reg.class());
                                    let signed = match ext {
                                        ir::ArgumentExtension::Uext => false,
                                        ir::ArgumentExtension::Sext => true,
                                        _ => unreachable!(),
                                    };
                                    let extend_result =
                                        ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
                                    ctx.emit(M::gen_extend(
                                        extend_result,
                                        *from_reg,
                                        signed,
                                        ty_bits(ty) as u8,
                                        word_bits as u8,
                                    ));
                                    extend_result.to_reg()
                                } else {
                                    *from_reg
                                };

                            let preg = reg.into();
                            self.uses.push(CallArgPair { vreg, preg });
                        }
                        &ABIArgSlot::Stack {
                            offset,
                            ty,
                            extension,
                            ..
                        } => {
                            let ext = M::get_ext_mode(ctx.sigs()[self.sig].call_conv, extension);
                            let (data, ty) =
                                if ext != ir::ArgumentExtension::None && ty_bits(ty) < word_bits {
                                    assert_eq!(word_rc, from_reg.class());
                                    let signed = match ext {
                                        ir::ArgumentExtension::Uext => false,
                                        ir::ArgumentExtension::Sext => true,
                                        _ => unreachable!(),
                                    };
                                    let extend_result =
                                        ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
                                    ctx.emit(M::gen_extend(
                                        extend_result,
                                        *from_reg,
                                        signed,
                                        ty_bits(ty) as u8,
                                        word_bits as u8,
                                    ));
                                    // Store the extended version.
                                    (extend_result.to_reg(), M::word_type())
                                } else {
                                    (*from_reg, ty)
                                };
                            ctx.emit(M::gen_store_stack(
                                stack_arg(offset, stack_arg_space),
                                data,
                                ty,
                            ));
                        }
                    }
                }
            }
            ABIArg::StructArg { .. } => {
                // Only supported via ISLE.
            }
            ABIArg::ImplicitPtrArg {
                offset,
                pointer,
                ty,
                purpose: _,
            } => {
                assert_eq!(from_regs.len(), 1);
                let vreg = from_regs.regs()[0];
                let amode = StackAMode::OutgoingArg(offset);
                let tmp = ctx.alloc_tmp(M::word_type()).only_reg().unwrap();
                ctx.emit(M::gen_get_stack_addr(amode, tmp));
                let tmp = tmp.to_reg();
                ctx.emit(M::gen_store_base_offset(tmp, 0, vreg, ty));
                match pointer {
                    ABIArgSlot::Reg { reg, .. } => self.uses.push(CallArgPair {
                        vreg: tmp,
                        preg: reg.into(),
                    }),
                    ABIArgSlot::Stack { offset, .. } => ctx.emit(M::gen_store_stack(
                        stack_arg(offset, stack_arg_space),
                        tmp,
                        M::word_type(),
                    )),
                }
            }
        }
    }

    /// Call `gen_arg` for each non-hidden argument and emit all instructions
    /// generated.
    pub fn emit_args(&mut self, ctx: &mut Lower<M::I>, (inputs, off): isle::ValueSlice) {
        let num_args = self.num_args(ctx.sigs());
        assert_eq!(inputs.len(&ctx.dfg().value_lists) - off, num_args);

        let mut arg_value_regs: SmallVec<[_; 16]> = smallvec![];
        for i in 0..num_args {
            let input = inputs.get(off + i, &ctx.dfg().value_lists).unwrap();
            arg_value_regs.push(ctx.put_value_in_regs(input));
        }
        for (i, arg_regs) in arg_value_regs.iter().enumerate() {
            self.emit_copy_regs_to_buffer(ctx, i, *arg_regs);
        }
        for (i, value_regs) in arg_value_regs.iter().enumerate() {
            self.gen_arg(ctx, i, *value_regs);
        }
    }

    /// Emit the code to forward a stack-return pointer argument through a tail
    /// call.
    pub fn emit_stack_ret_arg_for_tail_call(&mut self, ctx: &mut Lower<M::I>) {
        if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg() {
            let ret_area_ptr = ctx.abi().ret_area_ptr.expect(
                "if the tail callee has a return pointer, then the tail caller \
                 must as well",
            );
            self.gen_arg(ctx, i.into(), ValueRegs::one(ret_area_ptr));
        }
    }

    /// Define a return value after the call returns.
    pub fn gen_retval(
        &mut self,
        ctx: &mut Lower<M::I>,
        idx: usize,
    ) -> (SmallInstVec<M::I>, ValueRegs<Reg>) {
        let mut insts = smallvec![];
        let mut into_regs: SmallVec<[Reg; 2]> = smallvec![];
        let ret = ctx.sigs().rets(self.sig)[idx].clone();
        match ret {
            ABIArg::Slots { ref slots, .. } => {
                for slot in slots {
                    match slot {
                        // Extension mode doesn't matter because we're copying out, not in,
                        // and we ignore high bits in our own registers by convention.
                        &ABIArgSlot::Reg { reg, ty, .. } => {
                            let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
                            self.defs.push(CallRetPair {
                                vreg: into_reg,
                                preg: reg.into(),
                            });
                            into_regs.push(into_reg.to_reg());
                        }
                        &ABIArgSlot::Stack { offset, ty, .. } => {
                            let into_reg = ctx.alloc_tmp(ty).only_reg().unwrap();
                            let sig_data = &ctx.sigs()[self.sig];
                            // The outgoing argument area must always be restored after a call,
                            // ensuring that the return values will be in a consistent place after
                            // any call.
                            let ret_area_base = sig_data.sized_stack_arg_space();
                            insts.push(M::gen_load_stack(
                                StackAMode::OutgoingArg(offset + ret_area_base),
                                into_reg,
                                ty,
                            ));
                            into_regs.push(into_reg.to_reg());
                        }
                    }
                }
            }
            ABIArg::StructArg { .. } => {
                panic!("StructArg not supported in return position");
            }
            ABIArg::ImplicitPtrArg { .. } => {
                panic!("ImplicitPtrArg not supported in return position");
            }
        }

        let value_regs = match *into_regs {
            [a] => ValueRegs::one(a),
            [a, b] => ValueRegs::two(a, b),
            _ => panic!("Expected to see one or two slots only from {ret:?}"),
        };
        (insts, value_regs)
    }

    /// Emit the call itself.
    ///
    /// The returned instruction should have proper use- and def-sets according
    /// to the argument registers, return-value registers, and clobbered
    /// registers for this function signature in this ABI.
    ///
    /// (Arg registers are uses, and retval registers are defs. Clobbered
    /// registers are also logically defs, but should never be read; their
    /// values are "defined" (to the regalloc) but "undefined" in every other
    /// sense.)
    ///
    /// This function should only be called once, as it is allowed to re-use
    /// parts of the `CallSite` object in emitting instructions.
    pub fn emit_call(&mut self, ctx: &mut Lower<M::I>) {
        let word_type = M::word_type();
        if let Some(i) = ctx.sigs()[self.sig].stack_ret_arg {
            let rd = ctx.alloc_tmp(word_type).only_reg().unwrap();
            let ret_area_base = ctx.sigs()[self.sig].sized_stack_arg_space();
            ctx.emit(M::gen_get_stack_addr(
                StackAMode::OutgoingArg(ret_area_base),
                rd,
            ));
            self.gen_arg(ctx, i.into(), ValueRegs::one(rd.to_reg()));
        }

        let uses = mem::take(&mut self.uses);
        let defs = mem::take(&mut self.defs);
        let clobbers = {
            // Get clobbers: all caller-saves. These may include return value
            // regs, which we will remove from the clobber set below.
            let mut clobbers = <M>::get_regs_clobbered_by_call(ctx.sigs()[self.sig].call_conv);

            // Remove retval regs from clobbers.
            for def in &defs {
                clobbers.remove(PReg::from(def.preg.to_real_reg().unwrap()));
            }

            clobbers
        };

        let sig = &ctx.sigs()[self.sig];
        let callee_pop_size = if sig.call_conv() == isa::CallConv::Tail {
            // The tail calling convention has callees pop stack arguments.
            sig.sized_stack_arg_space
        } else {
            0
        };

        let call_conv = sig.call_conv;
        let ret_space = sig.sized_stack_ret_space;
        let arg_space = sig.sized_stack_arg_space;

        ctx.abi_mut()
            .accumulate_outgoing_args_size(ret_space + arg_space);

        let tmp = ctx.alloc_tmp(word_type).only_reg().unwrap();

        // Any adjustment to SP to account for required outgoing arguments/stack return values must
        // be done inside of the call pseudo-op, to ensure that SP is always in a consistent
        // state for all other instructions. For example, if a tail-call abi function is called
        // here, the reclamation of the outgoing argument area must be done inside of the call
        // pseudo-op's emission to ensure that SP is consistent at all other points in the lowered
        // function. (Except the prologue and epilogue, but those are fairly special parts of the
        // function that establish the SP invariants that are relied on elsewhere and are generated
        // after the register allocator has run and thus cannot have register allocator-inserted
        // references to SP offsets.)
        for inst in M::gen_call(
            &self.dest,
            tmp,
            CallInfo {
                dest: (),
                uses,
                defs,
                clobbers,
                callee_conv: call_conv,
                caller_conv: self.caller_conv,
                callee_pop_size,
            },
        )
        .into_iter()
        {
            ctx.emit(inst);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::SigData;

    #[test]
    fn sig_data_size() {
        // The size of `SigData` is performance sensitive, so make sure
        // we don't regress it unintentionally.
        assert_eq!(std::mem::size_of::<SigData>(), 24);
    }
}