leb128fmt/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
//! Leb128fmt is a library to decode and encode [LEB128][leb128] formatted numbers.
//! LEB128 is a variable length integer compression format.
//!
//! The library does not allocate memory and can be used in `no_std` and
//! `no_std::no_alloc` environments.
//!
//! Various functions are provided which encode and decode signed and unsigned
//! integers with the number of bits in the function name. There are generic
//! functions provided to read and write slices of encoded values as well.
//!
//! There are encoding functions with the word `fixed` in the name which will
//! write out a value using the maximum number of bytes for a given bit size.
//! For instance, using [`encode_fixed_u32`] will always use 5 bytes to
//! write out the value. While always using the maximum number of bytes removes
//! the benefit of compression, in some scenarios, it is beneficial to have a
//! fixed encoding size.
//!
//! Finally, there are macros provided which you can use to build your own
//! encoding and decoding functions for unusual variants like signed 33 bit
//! values.
//!
//! # Examples
//!
//! ## Functions using Arrays
//!
//! ```rust
//! // Encode an unsigned 32 bit number:
//! let (output, written_len) = leb128fmt::encode_u32(43110).unwrap();
//! // The number of bytes written in the output array
//! assert_eq!(written_len, 3);
//! assert_eq!(&output[..written_len], &[0xE6, 0xD0, 0x02]);
//! // The entire output array. Note you should only use &output[..written_len] to copy
//! // into your output buffer
//! assert_eq!(output, [0xE6, 0xD0, 0x02, 0x00, 0x00]);
//!
//! // Decode an unsigned 32 bit number:
//! let input = [0xE6, 0xD0, 0x02, 0x00, 0x00];
//! let (result, read_len) = leb128fmt::decode_u32(input).unwrap();
//! assert_eq!(result, 43110);
//! assert_eq!(read_len, 3);
//! ```
//!
//! ### Helper Functions
//!
//! If you are reading from an input buffer, you can use [`is_last`] and
//! [`max_len`] to determine the bytes to copy into the array.
//!
//! ```rust
//! let buffer = vec![0xFE, 0xFE, 0xE6, 0xD0, 0x02, 0xFE, 0xFE, 0xFE];
//! let pos = 2;
//! let end = buffer.iter().skip(pos).copied().position(leb128fmt::is_last).map(|p| pos + p);
//! if let Some(end) = end {
//!     if end <= pos + leb128fmt::max_len::<32>() {
//!         let mut input = [0u8; leb128fmt::max_len::<32>()];
//!         input[..=end - pos].copy_from_slice(&buffer[pos..=end]);
//!         let (result, read_len) = leb128fmt::decode_u32(input).unwrap();
//!         assert_eq!(result, 43110);
//!         assert_eq!(read_len, 3);
//!     } else {
//!         // invalid LEB128 encoding
//!#        panic!();
//!     }
//! } else {
//!   if buffer.len() - pos < leb128fmt::max_len::<32>() {
//!      // Need more bytes in the buffer
//!#     panic!();
//!   } else {
//!      // invalid LEB128 encoding
//!#     panic!();
//!   }
//! }
//!
//! ```
//!
//! ## Functions Using Slices
//!
//! ```rust
//! let mut buffer = vec![0xFE; 10];
//! let mut pos = 1;
//!
//! // Encode an unsigned 64 bit number with a mutable slice:
//! let result = leb128fmt::encode_uint_slice::<u64, 64>(43110u64, &mut buffer, &mut pos);
//! // The number of bytes written in the output array
//! assert_eq!(result, Some(3));
//! assert_eq!(pos, 4);
//!
//! assert_eq!(buffer, [0xFE, 0xE6, 0xD0, 0x02, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE]);
//!
//! // Decode an unsigned 64 bit number with a slice:
//! pos = 1;
//! let result = leb128fmt::decode_uint_slice::<u64, 64>(&buffer, &mut pos);
//! assert_eq!(result, Ok(43110));
//! assert_eq!(pos, 4);
//! ```
//!
//! ## Functions Using Fixed Sized Encoding
//!
//! There may be several different ways to encode a value. For instance, `0` can
//! be encoded as 32 bits unsigned:
//!
//! ```rust
//! let mut pos = 0;
//! assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x00], &mut pos), Ok(0));
//! pos = 0;
//! assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x00], &mut pos), Ok(0));
//! pos = 0;
//! assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x80, 0x00], &mut pos), Ok(0));
//! pos = 0;
//! assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x80, 0x80, 0x00], &mut pos), Ok(0));
//! pos = 0;
//! assert_eq!(leb128fmt::decode_uint_slice::<u32, 32>(&[0x80, 0x80, 0x80, 0x80, 0x00], &mut pos), Ok(0));
//! ```
//!
//! There are functions provided to encode a value using the maximum number of
//! bytes possible for a given bit size. Using the maximum number of bytes
//! removes the benefit of compression, but it may be useful in a few scenarios.
//!
//! For instance, if a binary format needs to store the size or offset of some
//! data before the size of data is known, it can be beneficial to write a fixed
//! sized `0` placeholder value first. Then, once the real value is known, the
//! `0` placeholder can be overwritten without moving other bytes. The real
//! value is also written out using the fixed maximum number of bytes.
//!
//! ```rust
//! // Encode an unsigned 32 bit number with all 5 bytes:
//! let output  = leb128fmt::encode_fixed_u32(43110).unwrap();
//! assert_eq!(output, [0xE6, 0xD0, 0x82, 0x80, 0x00]);
//!
//! // Decode an unsigned 32 bit number:
//! let input = output;
//! let (result, read_len) = leb128fmt::decode_u32(input).unwrap();
//! assert_eq!(result, 43110);
//!
//! // Note that all 5 bytes are read
//! assert_eq!(read_len, 5);
//! ```
//!
//! [leb128]: https://en.wikipedia.org/wiki/LEB128

#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![warn(
    missing_copy_implementations,
    missing_debug_implementations,
    missing_docs,
    rust_2018_idioms,
    unused_lifetimes,
    unused_qualifications
)]

use core::fmt;

/// Returns the maximum byte length that is used to encode a value for a given
/// number of `BITS`.
///
/// A value can possibly be encoded with a fewer number of bytes.
///
/// # Example
///
/// ```rust
/// assert_eq!(5, leb128fmt::max_len::<32>());
/// assert_eq!(10, leb128fmt::max_len::<64>());
///
/// assert_eq!(5, leb128fmt::max_len::<33>());
/// ```
#[inline]
#[must_use]
pub const fn max_len<const BITS: u32>() -> usize {
    let rem = if BITS % 7 == 0 { 0 } else { 1 };
    ((BITS / 7) + rem) as usize
}

/// Returns true if this is the last byte in an encoded LEB128 value.
///
/// # Example
///
/// ```rust
/// let bytes = &[0x42, 0x8F, 0xFF, 0x7F, 0xFF];
/// let pos = 1;
/// let end = bytes.iter().skip(pos).copied().position(leb128fmt::is_last);
/// let end = end.unwrap();
/// assert_eq!(pos + end, 3);
/// let value = &bytes[pos..=pos + end];
/// ```
#[inline]
#[must_use]
pub const fn is_last(byte: u8) -> bool {
    byte & 0x80 == 0
}

/// Builds custom unsigned integer encode functions.
///
/// The macro's 3 parameters are:
///
/// 1. The name of the function.
/// 2. The type to return.
/// 3. The number of encoded BITS to decode.
///
/// ```rust
/// leb128fmt::encode_uint_arr!(encode_u33, u64, 33);
///
/// let result = encode_u33(0);
/// assert_eq!(Some(([0x00, 0x00, 0x00, 0x00, 0x00], 1)), result);
///
/// let result = encode_u33(8589934591);
/// assert_eq!(Some(([0xFF, 0xFF, 0xFF, 0xFF, 0x1F], 5)), result);
/// ```
#[macro_export]
macro_rules! encode_uint_arr {
    ($func:ident, $num_ty:ty, $bits:literal) => {
        /// Encodes a value as an unsigned LEB128 number.
        ///
        /// If the value can be encoded in the given number of bits, then return
        /// the encoded output and the index after the last byte written.
        ///
        /// If the value cannot be encoded with the given number of bits, then return None.
        #[must_use]
        pub const fn $func(
            mut value: $num_ty,
        ) -> Option<(
            [u8; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize],
            usize,
        )> {
            const BITS: u32 = $bits;
            if <$num_ty>::BITS > BITS && 1 < value >> BITS - 1 {
                return None;
            }

            let mut output = [0; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize];
            let mut index = 0;
            loop {
                let mut b = (value & 0x7f) as u8;

                value >>= 7;
                let done = value == 0;

                if !done {
                    b |= 0x80;
                }

                output[index] = b;
                index += 1;

                if done {
                    return Some((output, index));
                }
            }
        }
    };
}

encode_uint_arr!(encode_u32, u32, 32);
encode_uint_arr!(encode_u64, u64, 64);

/// Builds custom unsigned integer encode functions with the max byte length of
/// byte arrays used.
///
/// The macro's 3 parameters are:
///
/// 1. The name of the function.
/// 2. The type to return.
/// 3. The number of encoded BITS to decode.
///
/// ```rust
/// leb128fmt::encode_fixed_uint_arr!(encode_fixed_u33, u64, 33);
///
/// let output = encode_fixed_u33(0);
/// assert_eq!(Some([0x80, 0x80, 0x80, 0x80, 0x00]), output);
///
/// let output = encode_fixed_u33(8589934591);
/// assert_eq!(Some([0xFF, 0xFF, 0xFF, 0xFF, 0x1F]), output);
/// ```
#[macro_export]
macro_rules! encode_fixed_uint_arr {
    ($func:ident, $num_ty:ty, $bits:literal) => {
        /// Encodes an unsigned LEB128 number with using the maximum number of
        /// bytes for the given bits length.
        ///
        /// If the value can be encoded in the given number of bits, then return
        /// the encoded value.
        ///
        /// If the value cannot be encoded with the given number of bits, then return None.
        #[must_use]
        pub const fn $func(
            value: $num_ty,
        ) -> Option<[u8; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize]> {
            const BITS: u32 = $bits;
            if <$num_ty>::BITS > BITS && 1 < value >> BITS - 1 {
                return None;
            }

            let mut output = [0; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize];

            let mut index = 0;
            let mut shift: u32 = 0;
            loop {
                let v = value >> shift;

                let mut b = (v & 0x7f) as u8;

                let done = shift == BITS - (BITS % 7);

                if !done {
                    b |= 0x80;
                }

                output[index] = b;
                index += 1;
                shift += 7;

                if done {
                    return Some(output);
                }
            }
        }
    };
}

encode_fixed_uint_arr!(encode_fixed_u32, u32, 32);
encode_fixed_uint_arr!(encode_fixed_u64, u64, 64);

/// Builds custom unsigned integer decode functions.
///
/// The macro's 3 parameters are:
///
/// 1. The name of the function.
/// 2. The type to return.
/// 3. The number of encoded BITS to decode.
///
/// ```rust
/// leb128fmt::decode_uint_arr!(decode_u33, u64, 33);
///
/// let input = [0xFF, 0xFF, 0xFF, 0xFF, 0x1F];
/// let result = decode_u33(input);
/// assert_eq!(Some((8589934591, 5)), result);
/// ```
#[macro_export]
macro_rules! decode_uint_arr {
    ($func:ident, $num_ty:ty, $bits:literal) => {
        /// Decodes an unsigned LEB128 number.
        ///
        /// If there is a valid encoded value, returns the decoded value and the
        /// index after the last byte read.
        ///
        /// If the encoding is incorrect, returns `None`.
        ///
        /// If the size in bits of the returned type is less than the size of the value in bits, returns `None`.
        /// For instance, if 33 bits are being decoded, then the returned type must be at least a `u64`.
        #[must_use]
        pub const fn $func(
            input: [u8; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize],
        ) -> Option<($num_ty, usize)> {
            const BITS: u32 = $bits;
            if <$num_ty>::BITS < BITS {
                return None;
            }

            let n = input[0];
            if n & 0x80 == 0 {
                return Some((n as $num_ty, 1));
            }

            let mut result = (n & 0x7f) as $num_ty;
            let mut shift = 7;
            let mut pos = 1;
            loop {
                let n = input[pos];

                // If unnecessary bits are set (the bits would be dropped when
                // the value is shifted), then return an error.
                //
                // This error may be too strict.
                //
                // There should be at least a simple check to quickly
                // determine that the decoding has failed instead of
                // misinterpreting further data.
                //
                // For a less strict check, the && condition could be:
                //
                // (n & 0x80) != 0
                //
                // Another stricter condition is if the last byte has a 0 value.
                // The encoding is correct but not the minimal number of bytes
                // was used to express the final value.
                if shift == BITS - (BITS % 7) && 1 << (BITS % 7) <= n {
                    return None;
                }

                if n & 0x80 == 0 {
                    result |= (n as $num_ty) << shift;
                    return Some((result, pos + 1));
                }

                result |= ((n & 0x7f) as $num_ty) << shift;
                shift += 7;
                pos += 1;
            }
        }
    };
}

decode_uint_arr!(decode_u32, u32, 32);
decode_uint_arr!(decode_u64, u64, 64);

mod private {
    pub trait Sealed {}

    impl Sealed for u8 {}
    impl Sealed for u16 {}
    impl Sealed for u32 {}
    impl Sealed for u64 {}
    impl Sealed for u128 {}

    impl Sealed for i8 {}
    impl Sealed for i16 {}
    impl Sealed for i32 {}
    impl Sealed for i64 {}
    impl Sealed for i128 {}
}

/// Sealed trait for supported unsigned integer types.
pub trait UInt: private::Sealed {
    /// Size of the type in bits.
    const BITS: u32;
}

impl UInt for u8 {
    const BITS: u32 = u8::BITS;
}

impl UInt for u16 {
    const BITS: u32 = u16::BITS;
}

impl UInt for u32 {
    const BITS: u32 = u32::BITS;
}

impl UInt for u64 {
    const BITS: u32 = u64::BITS;
}

impl UInt for u128 {
    const BITS: u32 = u128::BITS;
}

#[derive(Debug, Clone, PartialEq, Eq)]
enum InnerError {
    NeedMoreBytes,
    InvalidEncoding,
}

/// Error when decoding a LEB128 value.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Error(InnerError);

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.0 {
            InnerError::NeedMoreBytes => f.write_str("need more bytes"),
            InnerError::InvalidEncoding => f.write_str("invalid encoding"),
        }
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Error {
    fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
        None
    }
}

impl Error {
    /// If more bytes are needed in the slice to decode the value
    #[inline]
    #[must_use]
    pub const fn is_more_bytes_needed(&self) -> bool {
        matches!(self.0, InnerError::NeedMoreBytes)
    }

    /// If the value has an invalid encoding
    #[inline]
    #[must_use]
    pub const fn is_invalid_encoding(&self) -> bool {
        matches!(self.0, InnerError::InvalidEncoding)
    }
}

/// Encodes a given value into an output slice using the fixed set of bytes.
///
/// # Examples
///
/// ```rust
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_uint_slice::<_, 32>(0u32, &mut buffer, &mut pos);
/// assert_eq!(Some(1), result);
/// assert_eq!(1, pos);
/// assert_eq!(&[0x00], &buffer[..pos]);
///
/// assert_eq!(&[0x00, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// let result = leb128fmt::encode_uint_slice::<_, 32>(u32::MAX, &mut buffer, &mut pos);
/// assert_eq!(Some(5), result);
/// assert_eq!(6, pos);
/// assert_eq!(&[0xFF, 0xFF, 0xFF, 0xFF, 0x0F], &buffer[1..pos]);
///
/// assert_eq!(&[0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// // Will try to encode even if the output slice is not as big as the maximum
/// // number of bytes required to output every value for the given BITS
/// let mut buffer = vec![254; 4];
/// let mut pos = 0;
/// let result = leb128fmt::encode_uint_slice::<_, 32>(1028u32, &mut buffer, &mut pos);
/// assert_eq!(Some(2), result);
/// assert_eq!(&[0x84, 0x08, 0xFE, 0xFE], buffer.as_slice());
///
/// // Will return `None` if the output buffer is not long enough but will have partially written
/// // the value
/// let mut buffer = vec![254; 4];
/// let mut pos = 0;
/// let result = leb128fmt::encode_uint_slice::<_, 32>(u32::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFF, 0xFF, 0xFF, 0xFF], buffer.as_slice());
///
/// // Will return `None` if the given value cannot be encoded with the given number of bits.
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_uint_slice::<_, 32>(u64::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
/// ```
#[allow(clippy::manual_let_else)]
pub fn encode_uint_slice<T, const BITS: u32>(
    mut value: T,
    output: &mut [u8],
    pos: &mut usize,
) -> Option<usize>
where
    T: Copy
        + PartialEq
        + core::ops::BitAnd
        + core::ops::Shr<u32>
        + core::ops::ShrAssign<u32>
        + From<u8>
        + UInt,
    <T as core::ops::Shr<u32>>::Output: PartialEq<T>,
    u8: TryFrom<<T as core::ops::BitAnd<T>>::Output>,
{
    if BITS < T::BITS && value >> BITS != T::from(0) {
        return None;
    }

    let mut index = *pos;
    loop {
        if output.len() <= index {
            return None;
        }

        let mut b = match u8::try_from(value & T::from(0x7f)) {
            Ok(b) => b,
            Err(_) => unreachable!(),
        };

        value >>= 7;

        let done = value == T::from(0);

        if !done {
            b |= 0x80;
        }

        output[index] = b;
        index += 1;

        if done {
            let len = index - *pos;
            *pos = index;
            return Some(len);
        }
    }
}

/// Encodes a given value into an output slice using a fixed set of bytes.
///
/// # Examples
///
/// ```rust
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_fixed_uint_slice::<_, 32>(0u32, &mut buffer, &mut pos);
/// assert_eq!(Some(5), result);
/// assert_eq!(5, pos);
/// assert_eq!(&[0x80, 0x80, 0x80, 0x80, 0x00], &buffer[..pos]);
///
/// assert_eq!(&[0x80, 0x80, 0x80, 0x80, 0x00, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// let result = leb128fmt::encode_fixed_uint_slice::<_, 32>(u32::MAX, &mut buffer, &mut pos);
/// assert_eq!(Some(5), result);
/// assert_eq!(10, pos);
/// assert_eq!(&[0xFF, 0xFF, 0xFF, 0xFF, 0x0F], &buffer[5..pos]);
///
/// assert_eq!(&[0x80, 0x80, 0x80, 0x80, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F], buffer.as_slice());
///
/// // Will return `None` if the output buffer is not long enough.
/// let mut buffer = vec![254; 4];
/// let mut pos = 0;
/// let result = leb128fmt::encode_fixed_uint_slice::<_, 32>(u32::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// // Will return `None` if the given value cannot be encoded with the given number of bits.
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_fixed_uint_slice::<_, 32>(u64::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
/// ```
#[allow(clippy::manual_let_else)]
pub fn encode_fixed_uint_slice<T, const BITS: u32>(
    mut value: T,
    output: &mut [u8],
    pos: &mut usize,
) -> Option<usize>
where
    T: Copy + core::ops::BitAnd + core::ops::Shr<u32> + core::ops::ShrAssign<u32> + From<u8> + UInt,
    <T as core::ops::Shr<u32>>::Output: PartialEq<T>,
    u8: TryFrom<<T as core::ops::BitAnd>::Output>,
{
    if BITS < T::BITS && value >> BITS != T::from(0) {
        return None;
    }

    if output[*pos..].len() < max_len::<BITS>() {
        return None;
    }

    let mut index = *pos;
    for _ in 0..(max_len::<BITS>() - 1) {
        let mut b = match u8::try_from(value & T::from(0x7f)) {
            Ok(b) => b,
            Err(_) => unreachable!(),
        };

        b |= 0x80;

        value >>= 7;

        output[index] = b;
        index += 1;
    }

    let b = match u8::try_from(value & T::from(0x7f)) {
        Ok(b) => b,
        Err(_) => unreachable!(),
    };
    output[index] = b;
    index += 1;

    let len = index - *pos;
    *pos = index;
    Some(len)
}

/// Decodes an unsigned integer from a slice of bytes and starting at a given position.
///
/// # Errors
///
/// Returns an error if the value is not properly encoded or if more bytes are
/// needed to decode the value.
///
/// # Panics
///
/// Panics if the size in bits of the returned type is less than the size of the value in bits.
/// For instance, if 33 bits are being decoded, then the returned type must be at least a `u64`.
///
/// ```rust
/// let input = [0x42, 0x8F, 0xFF, 0x7F, 0xFF];
/// let mut pos = 1;
/// let result = leb128fmt::decode_uint_slice::<u32, 32>(&input, &mut pos);
/// assert_eq!(result, Ok(2097039));
/// assert_eq!(pos, 4);
/// ```
pub fn decode_uint_slice<T, const BITS: u32>(input: &[u8], pos: &mut usize) -> Result<T, Error>
where
    T: core::ops::Shl<u32, Output = T> + core::ops::BitOrAssign + From<u8> + UInt,
{
    assert!(BITS <= T::BITS);
    if input.len() <= *pos {
        return Err(Error(InnerError::NeedMoreBytes));
    }

    let n = input[*pos];
    if is_last(n) {
        *pos += 1;
        return Ok(T::from(n));
    }

    let mut result = T::from(n & 0x7f);
    let mut shift: u32 = 7;

    let mut idx = *pos + 1;
    loop {
        if input.len() <= idx {
            return Err(Error(InnerError::NeedMoreBytes));
        }

        let n = input[idx];

        // If unnecessary bits are set (the bits would be dropped when
        // the value is shifted), then return an error.
        //
        // This error may be too strict.
        //
        // There should be at least a simple check to quickly
        // determine that the decoding has failed instead of
        // misinterpreting further data.
        //
        // For a less strict check, the && condition could be:
        //
        // (n & 0x80) != 0
        //
        // Another stricter condition is if the last byte has a 0 value.
        // The encoding is correct but not the minimal number of bytes
        // was used to express the final value.
        if shift == BITS - (BITS % 7) && 1 << (BITS % 7) <= n {
            return Err(Error(InnerError::InvalidEncoding));
        }

        if is_last(n) {
            result |= T::from(n) << shift;
            *pos = idx + 1;
            return Ok(result);
        }

        result |= T::from(n & 0x7f) << shift;
        shift += 7;
        idx += 1;
    }
}

/// Builds custom signed integer encode functions.
///
/// The macro's 3 parameters are:
///
/// 1. The name of the function.
/// 2. The type to return.
/// 3. The number of encoded BITS to decode.
///
/// ```rust
/// leb128fmt::encode_sint_arr!(encode_s33, i64, 33);
///
/// let result = encode_s33(0);
/// assert_eq!(Some(([0x00, 0x00, 0x00, 0x00, 0x00], 1)), result);
///
/// let result = encode_s33(4_294_967_295);
/// assert_eq!(Some(([0xFF, 0xFF, 0xFF, 0xFF, 0x0F], 5)), result);
///
/// let result = encode_s33(-4_294_967_296);
/// assert_eq!(Some(([0x80, 0x80, 0x80, 0x80, 0x70], 5)), result);
///
/// let result = encode_s33(-1);
/// assert_eq!(Some(([0x7F, 0x00, 0x00, 0x00, 0x00], 1)), result);
/// ```
#[macro_export]
macro_rules! encode_sint_arr {
    ($func:ident, $num_ty:ty, $bits:literal) => {
        /// Encodes a value as a signed LEB128 number.
        #[must_use]
        pub fn $func(
            mut value: $num_ty,
        ) -> Option<(
            [u8; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize],
            usize,
        )> {
            const BITS: u32 = $bits;
            if BITS < <$num_ty>::BITS {
                let v: $num_ty = value >> BITS - 1;
                if v != 0 && v != -1 {
                    return None;
                }
            }

            let mut output = [0; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize];
            let mut index = 0;
            loop {
                let b = (value & 0x7f) as u8;

                value >>= 7;

                if (value == 0 && b & 0x40 == 0) || (value == -1 && (b & 0x40) != 0) {
                    output[index] = b;
                    return Some((output, index + 1));
                }

                output[index] = b | 0x80;
                index += 1;
            }
        }
    };
}

encode_sint_arr!(encode_s32, i32, 32);
encode_sint_arr!(encode_s64, i64, 64);

/// Builds custom signed integer encode functions with the max byte length of
/// byte arrays used.
///
/// The macro's 3 parameters are:
///
/// 1. The name of the function.
/// 2. The type to return.
/// 3. The number of encoded BITS to decode.
///
/// ```rust
/// leb128fmt::encode_fixed_sint_arr!(encode_fixed_s33, i64, 33);
///
/// let result = encode_fixed_s33(0);
/// assert_eq!(Some([0x80, 0x80, 0x80, 0x80, 0x00]), result);
///
/// let result = encode_fixed_s33(4_294_967_295);
/// assert_eq!(Some([0xFF, 0xFF, 0xFF, 0xFF, 0x0F]), result);
///
/// let result = encode_fixed_s33(-4_294_967_296);
/// assert_eq!(Some([0x80, 0x80, 0x80, 0x80, 0x70]), result);
///
/// let result = encode_fixed_s33(-1);
/// assert_eq!(Some([0xFF, 0xFF, 0xFF, 0xFF, 0x7F]), result);
/// ```
#[macro_export]
macro_rules! encode_fixed_sint_arr {
    ($func:ident, $num_ty:ty, $bits:literal) => {
        /// Encodes a value as a signed LEB128 number.
        #[must_use]
        pub const fn $func(
            mut value: $num_ty,
        ) -> Option<[u8; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize]> {
            const BITS: u32 = $bits;
            if BITS < <$num_ty>::BITS {
                let v = value >> BITS - 1;
                if v != 0 && v != -1 {
                    return None;
                }
            }

            let mut output = [0; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize];
            let mut index = 0;
            let mut extend_negative = false;
            loop {
                let b = (value & 0x7f) as u8;

                value >>= 7;

                output[index] = b | 0x80;
                index += 1;

                if value == 0 && b & 0x40 == 0 {
                    break;
                }
                if value == -1 && (b & 0x40) != 0 {
                    extend_negative = true;
                    break;
                }
            }

            loop {
                if index == output.len() {
                    output[index - 1] &= 0x7F;
                    return Some(output);
                }

                if extend_negative {
                    output[index] = 0xFF;
                } else {
                    output[index] = 0x80;
                }

                index += 1;
            }
        }
    };
}

encode_fixed_sint_arr!(encode_fixed_s32, i32, 32);
encode_fixed_sint_arr!(encode_fixed_s64, i64, 64);

/// Builds custom signed integer decode functions.
///
/// The macro's 3 parameters are:
///
/// 1. The name of the function.
/// 2. The type to return.
/// 3. The number of encoded BITS to decode.
///
/// ```rust
/// leb128fmt::decode_sint_arr!(decode_s33, i64, 33);
///
/// let input = [0xFF, 0xFF, 0xFF, 0xFF, 0x0F];
/// let result = decode_s33(input);
/// assert_eq!(Some((4_294_967_295, 5)), result);
///
/// let input = [0x7F, 0x00, 0x00, 0x00, 0x00];
/// let result = decode_s33(input);
/// assert_eq!(Some((-1, 1)), result);
///
/// let input = [0xFF, 0xFF, 0xFF, 0xFF, 0x7F];
/// let result = decode_s33(input);
/// assert_eq!(Some((-1, 5)), result);
///
/// let input = [0xFF, 0xFF, 0xFF, 0xFF, 0x1F];
/// let result = decode_s33(input);
/// assert_eq!(None, result);
/// ```
#[macro_export]
macro_rules! decode_sint_arr {
    ($func:ident, $num_ty:ty, $bits:literal) => {
        /// Decodes an unsigned LEB128 number.
        ///
        /// If there is a valid encoded value, returns the decoded value and the
        /// index after the last byte read.
        ///
        /// If the encoding is incorrect, returns `None`.
        ///
        /// If the size in bits of the returned type is less than the size of the value in bits, returns `None`.
        /// For instance, if 33 bits are being decoded, then the returned type must be at least a `u64`.
        #[must_use]
        pub const fn $func(
            input: [u8; (($bits / 7) + if $bits % 7 == 0 { 0 } else { 1 }) as usize],
        ) -> Option<($num_ty, usize)> {
            const BITS: u32 = $bits;
            if <$num_ty>::BITS < BITS {
                return None;
            }

            let mut result = 0;
            let mut shift = 0;
            let mut n;
            let mut pos = 0;

            loop {
                n = input[pos];
                let more = n & 0x80 != 0;

                // For the last valid shift, perform some checks to ensure the
                // encoding is valid.
                //
                // Notably, the one bit that MUST NOT be set is the high order bit
                // indicating there are more bytes to decode.
                //
                // For a signed integer, depending on if the value is positive or negative,
                // some bits SHOULD or SHOULD NOT be set.
                //
                // The expectation is that if this is a negative number, then
                // there should have been a sign extension so that all the bits
                // greater than the highest order bit is a 1.
                //
                // 32-bit
                // ------
                //
                // The maximum shift value is 28 meaning a 32-bit number is
                // encoded in a maximum of 5 bytes. If the shift value is 35 or
                // greater, then, the byte's value will be shifted out beyond the
                // 32-bit value.
                //
                // With 28 being the highest valid shift value, the highest
                // order relevant bit in the final byte should be 0x08 or:
                //
                // 0000 1000
                //
                // Any higher bit is "lost" during the bitshift.
                //
                // Due to the encoding rules and two's complement, if the
                // highest order relevant bit is set, then the number is
                // negative and the `1` is extended to the higher bits like:
                //
                // 0111 1000
                //
                // Note that the highest order bit (the first bit from left to right)
                // MUST BE a 0. It is the bit which indicates more bytes should
                // be processed. For the maximum final byte (byte #5 for a
                // 32-bit number)), it MUST be 0. There are no additional bytes
                // to decode.
                //
                // If the highest order relevant bit is not set, then the
                // integer is positive. Any of the lower bits can be set.
                //
                // 0000 0111
                //
                // So the conditions to check are:
                //
                // 1. The highest order bit is not set (so there are no more
                //    bytes to decode). If it is set, the encoding is invalid.
                //    This is the "more" check.
                //
                // 2. Determine if any sign extended negative bit is set.
                //    So is any bit in:
                //
                //    0111 1000
                //
                //    set. If none of the bits are set, then the number is
                //    positive, and the encoding is valid.
                //    This is the "(n & mask != 0)" check.
                // 3. If any sign extended negative bits are set, the number is
                //    negative, and ALL of the bits MUST be set for a valid negative number.
                //    This is the "(n < mask)"" check.
                //    An equivalent check would be that "(n < mask) || (n >= 0x80)"
                //    But the earlier check for "more" removes the need for the additional check.
                //
                //    The check could also be "(n & mask) != mask".
                //
                // Another stricter condition is if the last byte has a 0 value.
                // The encoding is correct but not the minimal number of bytes
                // was used to express the final value.
                if shift == BITS - (BITS % 7) {
                    #[allow(clippy::cast_sign_loss)]
                    let mask = ((-1i8 << ((BITS % 7).saturating_sub(1))) & 0x7f) as u8;
                    if more || (n & mask != 0 && n < mask) {
                        return None;
                    }
                }

                result |= ((n & 0x7f) as $num_ty) << shift;
                shift += 7;
                pos += 1;

                if !more {
                    break;
                }
            }

            if shift < <$num_ty>::BITS && n & 0x40 != 0 {
                result |= -1 << shift;
            }

            Some((result, pos))
        }
    };
}

decode_sint_arr!(decode_s32, i32, 32);
decode_sint_arr!(decode_s64, i64, 64);

/// Sealed trait for supported signed integer types.
pub trait SInt: private::Sealed {
    /// Size of the type in bits.
    const BITS: u32;
}

impl SInt for i8 {
    const BITS: u32 = i8::BITS;
}

impl SInt for i16 {
    const BITS: u32 = i16::BITS;
}

impl SInt for i32 {
    const BITS: u32 = i32::BITS;
}

impl SInt for i64 {
    const BITS: u32 = i64::BITS;
}

impl SInt for i128 {
    const BITS: u32 = i128::BITS;
}

/// Encodes a given value into an output slice using the fixed set of bytes.
///
/// # Examples
///
/// ```rust
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_sint_slice::<_, 32>(0i32, &mut buffer, &mut pos);
/// assert_eq!(Some(1), result);
/// assert_eq!(1, pos);
/// assert_eq!(&[0x00], &buffer[..pos]);
///
/// assert_eq!(&[0x00, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// let result = leb128fmt::encode_sint_slice::<_, 32>(i32::MAX, &mut buffer, &mut pos);
/// assert_eq!(Some(5), result);
/// assert_eq!(6, pos);
/// assert_eq!(&[0xFF, 0xFF, 0xFF, 0xFF, 0x07], &buffer[1..pos]);
///
/// assert_eq!(&[0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x07, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// // Will try to encode even if the output slice is not as big as the maximum
/// // number of bytes required to output every value for the given BITS
/// let mut buffer = vec![254; 4];
/// let mut pos = 0;
/// let result = leb128fmt::encode_sint_slice::<_, 32>(1028i32, &mut buffer, &mut pos);
/// assert_eq!(Some(2), result);
/// assert_eq!(&[0x84, 0x08, 0xFE, 0xFE], buffer.as_slice());
///
/// // Will return `None` if the output buffer is not long enough but will have partially written
/// // the value
/// let mut buffer = vec![254; 4];
/// let mut pos = 0;
/// let result = leb128fmt::encode_sint_slice::<_, 32>(i32::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFF, 0xFF, 0xFF, 0xFF], buffer.as_slice());
///
/// // Will return `None` if the given value cannot be encoded with the given number of bits.
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_sint_slice::<_, 32>(i64::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
/// ```
#[allow(clippy::manual_let_else)]
pub fn encode_sint_slice<T, const BITS: u32>(
    mut value: T,
    output: &mut [u8],
    pos: &mut usize,
) -> Option<usize>
where
    T: Copy
        + PartialEq
        + core::ops::BitAnd
        + core::ops::Shr<u32>
        + core::ops::ShrAssign<u32>
        + From<i8>
        + SInt,
    <T as core::ops::Shr<u32>>::Output: PartialEq<T>,
    u8: TryFrom<<T as core::ops::BitAnd<T>>::Output>,
{
    if BITS < T::BITS {
        let v = value >> BITS;
        if v != T::from(0) && v != T::from(-1) {
            return None;
        }
    }

    let mut index = *pos;
    loop {
        if output.len() <= index {
            return None;
        }

        let b = match u8::try_from(value & T::from(0x7f)) {
            Ok(b) => b,
            Err(_) => unreachable!(),
        };

        value >>= 7;

        if (value == T::from(0) && b & 0x40 == 0) || (value == T::from(-1) && (b & 0x40) != 0) {
            output[index] = b;
            index += 1;
            let len = index - *pos;
            *pos = index;
            return Some(len);
        }

        output[index] = b | 0x80;
        index += 1;
    }
}

/// Encodes a given value into an output slice using a fixed set of bytes.
///
/// # Examples
///
/// ```rust
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_fixed_sint_slice::<_, 32>(0i32, &mut buffer, &mut pos);
/// assert_eq!(Some(5), result);
/// assert_eq!(5, pos);
/// assert_eq!(&[0x80, 0x80, 0x80, 0x80, 0x00], &buffer[..pos]);
///
/// assert_eq!(&[0x80, 0x80, 0x80, 0x80, 0x00, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// let result = leb128fmt::encode_fixed_sint_slice::<_, 32>(i32::MAX, &mut buffer, &mut pos);
/// assert_eq!(Some(5), result);
/// assert_eq!(10, pos);
/// assert_eq!(&[0xFF, 0xFF, 0xFF, 0xFF, 0x07], &buffer[5..pos]);
///
/// assert_eq!(&[0x80, 0x80, 0x80, 0x80, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x07], buffer.as_slice());
///
/// // Will return `None` if the output buffer is not long enough.
/// let mut buffer = vec![254; 4];
/// let mut pos = 0;
/// let result = leb128fmt::encode_fixed_sint_slice::<_, 32>(i32::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
///
/// // Will return `None` if the given value cannot be encoded with the given number of bits.
/// let mut buffer = vec![254; 10];
/// let mut pos = 0;
/// let result = leb128fmt::encode_fixed_sint_slice::<_, 32>(i64::MAX, &mut buffer, &mut pos);
/// assert_eq!(None, result);
/// assert_eq!(&[0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE], buffer.as_slice());
/// ```
#[allow(clippy::manual_let_else)]
pub fn encode_fixed_sint_slice<T, const BITS: u32>(
    mut value: T,
    output: &mut [u8],
    pos: &mut usize,
) -> Option<usize>
where
    T: Copy
        + PartialEq
        + core::ops::BitAnd
        + core::ops::Shr<u32>
        + core::ops::ShrAssign<u32>
        + From<i8>
        + SInt,
    <T as core::ops::Shr<u32>>::Output: PartialEq<T>,
    u8: TryFrom<<T as core::ops::BitAnd>::Output>,
{
    if BITS < T::BITS {
        let v = value >> BITS;
        if v != T::from(0) && v != T::from(-1) {
            return None;
        }
    }

    if output[*pos..].len() < max_len::<BITS>() {
        return None;
    }

    let mut index = *pos;
    let mut extend_negative = false;
    loop {
        let b = match u8::try_from(value & T::from(0x7f)) {
            Ok(b) => b,
            Err(_) => unreachable!(),
        };

        value >>= 7;

        output[index] = b | 0x80;
        index += 1;

        if value == T::from(0) && b & 0x40 == 0 {
            break;
        }
        if value == T::from(-1) && (b & 0x40) != 0 {
            extend_negative = true;
            break;
        }
    }

    loop {
        if index == *pos + max_len::<BITS>() {
            output[index - 1] &= 0x7F;
            let len = index - *pos;
            *pos = index;
            return Some(len);
        }

        if extend_negative {
            output[index] = 0xFF;
        } else {
            output[index] = 0x80;
        }

        index += 1;
    }
}

/// Decodes an unsigned integer from a slice of bytes and starting at a given position.
///
/// # Errors
///
/// Returns an error if the value is not properly encoded or if more bytes are
/// needed to decode the value.
///
/// # Panics
///
/// Panics if the size in bits of the returned type is less than the size of the value in bits.
/// For instance, if 33 bits are being decoded, then the returned type must be at least a `u64`.
///
/// ```rust
/// let input = [0x42, 0x8F, 0xFF, 0x7F, 0xFF];
/// let mut pos = 1;
/// let result = leb128fmt::decode_sint_slice::<i32, 32>(&input, &mut pos);
/// assert_eq!(result, Ok(-113));
/// assert_eq!(pos, 4);
/// ```
pub fn decode_sint_slice<T, const BITS: u32>(input: &[u8], pos: &mut usize) -> Result<T, Error>
where
    T: core::ops::Shl<u32, Output = T> + core::ops::BitOrAssign + From<i8> + From<u8> + SInt,
{
    assert!(BITS <= T::BITS);

    let mut result = T::from(0i8);
    let mut shift = 0;
    let mut n;

    let mut idx = *pos;
    loop {
        if input.len() <= idx {
            return Err(Error(InnerError::NeedMoreBytes));
        }

        n = input[idx];
        let more = n & 0x80 != 0;

        // For the last valid shift, perform some checks to ensure the
        // encoding is valid.
        //
        // Notably, the one bit that MUST NOT be set is the high order bit
        // indicating there are more bytes to decode.
        //
        // For a signed integer, depending on if the value is positive or negative,
        // some bits SHOULD or SHOULD NOT be set.
        //
        // The expectation is that if this is a negative number, then
        // there should have been a sign extension so that all the bits
        // greater than the highest order bit is a 1.
        //
        // 32-bit
        // ------
        //
        // The maximum shift value is 28 meaning a 32-bit number is
        // encoded in a maximum of 5 bytes. If the shift value is 35 or
        // greater, then, the byte's value will be shifted out beyond the
        // 32-bit value.
        //
        // With 28 being the highest valid shift value, the highest
        // order relevant bit in the final byte should be 0x08 or:
        //
        // 0000 1000
        //
        // Any higher bit is "lost" during the bitshift.
        //
        // Due to the encoding rules and two's complement, if the
        // highest order relevant bit is set, then the number is
        // negative and the `1` is extended to the higher bits like:
        //
        // 0111 1000
        //
        // Note that the highest order bit (the first bit from left to right)
        // MUST BE a 0. It is the bit which indicates more bytes should
        // be processed. For the maximum final byte (byte #5 for a
        // 32-bit number)), it MUST be 0. There are no additional bytes
        // to decode.
        //
        // If the highest order relevant bit is not set, then the
        // integer is positive. Any of the lower bits can be set.
        //
        // 0000 0111
        //
        // So the conditions to check are:
        //
        // 1. The highest order bit is not set (so there are no more
        //    bytes to decode). If it is set, the encoding is invalid.
        //    This is the "more" check.
        //
        // 2. Determine if any sign extended negative bit is set.
        //    So is any bit in:
        //
        //    0111 1000
        //
        //    set. If none of the bits are set, then the number is
        //    positive, and the encoding is valid.
        //    This is the "(n & mask != 0)" check.
        // 3. If any sign extended negative bits are set, the number is
        //    negative, and ALL of the bits MUST be set for a valid negative number.
        //    This is the "(n < mask)"" check.
        //    An equivalent check would be that "(n < mask) || (n >= 0x80)"
        //    But the earlier check for "more" removes the need for the additional check.
        //
        //    The check could also be "(n & mask) != mask".
        //
        // Another stricter condition is if the last byte has a 0 value.
        // The encoding is correct but not the minimal number of bytes
        // was used to express the final value.
        if shift == BITS - (BITS % 7) {
            #[allow(clippy::cast_sign_loss)]
            let mask = ((-1i8 << ((BITS % 7).saturating_sub(1))) & 0x7f) as u8;
            if more || (n & mask != 0 && n < mask) {
                return Err(Error(InnerError::InvalidEncoding));
            }
        }

        result |= T::from(n & 0x7f) << shift;
        shift += 7;
        idx += 1;

        if !more {
            break;
        }
    }

    if shift < T::BITS && n & 0x40 != 0 {
        result |= T::from(-1i8) << shift;
    }

    *pos = idx;
    Ok(result)
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_encode_u8() {
        let mut buffer = [0; 4];
        let mut pos = 1;
        let written = encode_fixed_uint_slice::<_, 8>(u8::MAX, &mut buffer, &mut pos);
        assert_eq!(3, pos);
        assert_eq!([0x00, 0xFF, 0x01, 0x00], buffer);
        assert_eq!(Some(2), written);
    }

    #[test]
    fn test_encode_u32() {
        let mut buffer = [0; 6];
        let mut pos = 1;
        let written = encode_fixed_uint_slice::<_, 32>(u32::MAX, &mut buffer, &mut pos);
        assert_eq!(6, pos);
        assert_eq!([0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x0F], buffer);
        assert_eq!(Some(5), written);
    }

    #[test]
    fn test_encode_u64_as_33_bits_2() {
        let mut buffer = [0; 6];
        let mut pos = 1;
        let written = encode_fixed_uint_slice::<_, 33>(2u64.pow(33) - 1, &mut buffer, &mut pos);
        let mut pos = 1;
        let value = decode_uint_slice::<u64, 33>(&buffer, &mut pos).unwrap();
        assert_eq!(8_589_934_592 - 1, value);
        assert_eq!(6, pos);
        assert_eq!([0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0x1F], buffer);
        assert_eq!(Some(5), written);
    }

    #[test]
    fn test_encode_u64_as_33_bits_with_too_large_value() {
        let mut buffer = [0; 6];
        let mut pos = 1;
        let written = encode_fixed_uint_slice::<_, 33>(2u64.pow(34) - 1, &mut buffer, &mut pos);
        assert_eq!(1, pos);
        assert_eq!([0x00, 0x00, 0x00, 0x00, 0x00, 0x00], buffer);
        assert_eq!(None, written);
    }

    #[test]
    fn test_encode_u64() {
        let mut buffer = [0; 20];
        let mut pos = 1;
        let written = encode_fixed_uint_slice::<_, 64>(u64::MAX, &mut buffer, &mut pos);
        assert_eq!(11, pos);
        assert_eq!(Some(10), written);
    }

    #[test]
    fn test_decode_u32() {
        let input = [0xff, 0xff, 0xff, 0xff, 0x0f];
        let result = decode_u32(input);
        assert_eq!(result, Some((u32::MAX, 5)));

        let input = [0x00, 0x00, 0x00, 0x00, 0x00];
        let result = decode_u32(input);
        assert_eq!(result, Some((u32::MIN, 1)));

        // Valid but in-efficient way to encode 0.
        let input = [0x80, 0x80, 0x80, 0x80, 0x00];
        let result = decode_u32(input);
        assert_eq!(result, Some((u32::MIN, 5)));
    }

    #[test]
    fn test_decode_u32_errors() {
        // Maximum of 5 bytes encoding, the 0x80 bit must not be set.
        let input = [0xff, 0xff, 0xff, 0xff, 0x8f];
        let result = decode_u32(input);
        assert_eq!(result, None);

        // Parts of 0x1f (0x10) will be shifted out of the final value and lost.
        // This may too strict of a check since it could be ok.
        let input = [0xff, 0xff, 0xff, 0xff, 0x1f];
        let result = decode_u32(input);
        assert_eq!(result, None);
    }

    #[test]
    fn test_decode_u64() {
        let input = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x01];
        let result = decode_u64(input);
        assert_eq!(result, Some((u64::MAX, 10)));

        let input = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
        let result = decode_u64(input);
        assert_eq!(result, Some((u64::MIN, 1)));

        // Valid but in-efficient way to encode 0.
        let input = [0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00];
        let result = decode_u64(input);
        assert_eq!(result, Some((u64::MIN, 10)));
    }

    #[test]
    fn test_decode_u64_errors() {
        // Maximum of 10 bytes encoding, the 0x80 bit must not be set in the final byte.
        let input = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x81];
        let result = decode_u64(input);
        assert_eq!(result, None);

        // 0x02 will be shifted out of the final value and lost.
        // This may too strict of a check since it could be ok.
        let input = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x02];
        let result = decode_u64(input);
        assert_eq!(result, None);
    }

    #[test]
    fn test_decode_s32() {
        let input = [0xff, 0xff, 0xff, 0xff, 0x07];
        let result = decode_s32(input);
        assert_eq!(result, Some((i32::MAX, 5)));

        let input = [0x80, 0x80, 0x80, 0x80, 0x78];
        let result = decode_s32(input);
        assert_eq!(result, Some((i32::MIN, 5)));

        let input = [0x00, 0x00, 0x00, 0x00, 0x00];
        let result = decode_s32(input);
        assert_eq!(result, Some((0, 1)));

        // Valid but in-efficient way to encode 0.
        let input = [0x80, 0x80, 0x80, 0x80, 0x00];
        let result = decode_s32(input);
        assert_eq!(result, Some((0, 5)));

        let input = [0x40, 0x00, 0x00, 0x00, 0x00];
        let result = decode_s32(input);
        assert_eq!(result, Some((-64, 1)));

        // Valid but in-efficient way to encode -64.
        let input = [0xc0, 0x7f, 0x00, 0x00, 0x00];
        let result = decode_s32(input);
        assert_eq!(result, Some((-64, 2)));
    }

    #[test]
    fn test_decode_s32_errors() {
        // Maximum of 5 bytes encoding, the 0x80 bit must not be set in the final byte.
        let input = [0x80, 0x80, 0x80, 0x80, 0x80];
        let result = decode_s32(input);
        assert_eq!(result, None);

        // If the highest valid bit is set, it should be sign extended. (final byte should be 0x78)
        let input = [0x80, 0x80, 0x80, 0x80, 0x08];
        let result = decode_s32(input);
        assert_eq!(result, None);

        // If the highest valid bit is set, it should be sign extended. (final byte should be 0x78)
        let input = [0x80, 0x80, 0x80, 0x80, 0x38];
        let result = decode_s32(input);
        assert_eq!(result, None);
    }

    #[test]
    fn test_decode_s33() {
        decode_sint_arr!(decode_s33, i64, 33);

        let input = [0xff, 0xff, 0xff, 0xff, 0x0f];
        let result = decode_s33(input);
        assert_eq!(result, Some((i64::from(u32::MAX), 5)));

        let input = [0x80, 0x80, 0x80, 0x80, 0x70];
        let result = decode_s33(input);
        assert_eq!(result, Some((i64::from(i32::MIN) * 2, 5)));

        let input = [0x00, 0x00, 0x00, 0x00, 0x00];
        let result = decode_s33(input);
        assert_eq!(result, Some((0, 1)));

        // Valid but in-efficient way to encode 0.
        let input = [0x80, 0x80, 0x80, 0x80, 0x00];
        let result = decode_s33(input);
        assert_eq!(result, Some((0, 5)));

        let input = [0x40, 0x00, 0x00, 0x00, 0x00];
        let result = decode_s33(input);
        assert_eq!(result, Some((-64, 1)));

        // Valid but in-efficient way to encode -64.
        let input = [0xc0, 0x7f, 0x00, 0x00, 0x00];
        let result = decode_s33(input);
        assert_eq!(result, Some((-64, 2)));
    }

    #[test]
    fn test_decode_s33_errors() {
        decode_sint_arr!(decode_s33, i64, 33);

        // Maximum of 5 bytes encoding, the 0x80 bit must not be set in the final byte.
        let input = [0x80, 0x80, 0x80, 0x80, 0x80];
        let result = decode_s33(input);
        assert_eq!(result, None);

        // If the highest valid bit is set, it should be sign extended. (final byte should be 0x70)
        let input = [0x80, 0x80, 0x80, 0x80, 0x10];
        let result = decode_s33(input);
        assert_eq!(result, None);

        // If the highest valid bit is set, it should be sign extended. (final byte should be 0x70)
        let input = [0x80, 0x80, 0x80, 0x80, 0x30];
        let result = decode_s33(input);
        assert_eq!(result, None);
    }

    #[test]
    fn test_decode_s64() {
        let input = [0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00];
        let result = decode_s64(input);
        assert_eq!(result, Some((i64::MAX, 10)));

        let input = [0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x7f];
        let result = decode_s64(input);
        assert_eq!(result, Some((i64::MIN, 10)));

        let input = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];
        let result = decode_s64(input);
        assert_eq!(result, Some((0, 1)));

        // Valid but in-efficient way to encode 0.
        let input = [0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x00];
        let result = decode_s64(input);
        assert_eq!(result, Some((0, 10)));
    }

    #[test]
    fn test_decode_s64_errors() {
        // Maximum of 10 bytes encoding, the 0x80 bit must not be set in the final byte.
        let input = [0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80];
        let result = decode_s64(input);
        assert_eq!(result, None);

        // If the highest valid bit is set, it should be sign extended. (final byte should be 0x78)
        let input = [0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x08];
        let result = decode_s64(input);
        assert_eq!(result, None);

        // If the highest valid bit is set, it should be sign extended. (final byte should be 0x78)
        let input = [0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x28];
        let result = decode_s64(input);
        assert_eq!(result, None);
    }
}