nkeys/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
//! # nkeys
//!
//! The `nkeys` is a Rust port of the official NATS [Go](https://github.com/nats-io/nkeys) nkeys implementation.
//!
//! Nkeys provides library functions to create ed25519 keys using the special prefix encoding system used by
//! NATS 2.0+ security.
//!
//! # Examples
//! ```
//! use nkeys::KeyPair;
//!
//! // Create a user key pair
//! let user = KeyPair::new_user();
//!
//! // Sign some data with the user's full key pair
//! let msg = "this is super secret".as_bytes();
//! let sig = user.sign(&msg).unwrap();
//! let res = user.verify(msg, sig.as_slice());
//! assert!(res.is_ok());
//!
//! // Access the encoded seed (the information that needs to be kept safe/secret)
//! let seed = user.seed().unwrap();
//! // Access the public key, which can be safely shared
//! let pk = user.public_key();
//!
//! // Create a full User who can sign and verify from a private seed.
//! let user = KeyPair::from_seed(&seed);
//!
//! // Create a user that can only verify and not sign
//! let user = KeyPair::from_public_key(&pk).unwrap();
//! assert!(user.seed().is_err());
//! ```
//!
//! # Notes
//! The following is a list of the valid prefixes / key pair types available. Note that there are more
//! key pair types available in this crate than there are in the original Go implementation for NATS.
//! * **N** - Server
//! * **C** - Cluster
//! * **O** - Operator
//! * **A** - Account
//! * **U** - User
//! * **M** - Module
//! * **V** - Service / Service Provider
//! * **P** - Private Key
//! * **X** - Curve Key (X25519)

#![allow(dead_code)]

use std::fmt::{self, Debug};

use crc::{extract_crc, push_crc, valid_checksum};
use ed25519_dalek::{SecretKey, Signer, SigningKey, Verifier, VerifyingKey};
use rand::prelude::*;

#[cfg(feature = "xkeys")]
mod xkeys;

#[cfg(feature = "xkeys")]
pub use xkeys::XKey;

const ENCODED_SEED_LENGTH: usize = 58;
const ENCODED_PUBKEY_LENGTH: usize = 56;

const PREFIX_BYTE_SEED: u8 = 18 << 3;
const PREFIX_BYTE_PRIVATE: u8 = 15 << 3;
const PREFIX_BYTE_SERVER: u8 = 13 << 3;
const PREFIX_BYTE_CLUSTER: u8 = 2 << 3;
const PREFIX_BYTE_OPERATOR: u8 = 14 << 3;
const PREFIX_BYTE_MODULE: u8 = 12 << 3;
const PREFIX_BYTE_ACCOUNT: u8 = 0;
const PREFIX_BYTE_USER: u8 = 20 << 3;
const PREFIX_BYTE_SERVICE: u8 = 21 << 3;
const PREFIX_BYTE_CURVE: u8 = 23 << 3;
const PREFIX_BYTE_UNKNOWN: u8 = 25 << 3;

const PUBLIC_KEY_PREFIXES: [u8; 8] = [
    PREFIX_BYTE_ACCOUNT,
    PREFIX_BYTE_CLUSTER,
    PREFIX_BYTE_OPERATOR,
    PREFIX_BYTE_SERVER,
    PREFIX_BYTE_USER,
    PREFIX_BYTE_MODULE,
    PREFIX_BYTE_SERVICE,
    PREFIX_BYTE_CURVE,
];

type Result<T> = std::result::Result<T, crate::error::Error>;

/// The main interface used for reading and writing _nkey-encoded_ key pairs, including
/// seeds and public keys.
#[derive(Clone)]
pub struct KeyPair {
    kp_type: KeyPairType,
    sk: Option<SecretKey>, //rawkey_kind: RawKeyKind,
    signing_key: Option<SigningKey>,
    pk: VerifyingKey,
}

impl Debug for KeyPair {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "KeyPair ({:?})", self.kp_type)
    }
}

/// The authoritative list of valid key pair types that are used for cryptographically secure
/// identities
#[derive(Debug, Clone, PartialEq)]
pub enum KeyPairType {
    /// A server identity
    Server,
    /// A cluster (group of servers) identity
    Cluster,
    /// An operator (vouches for accounts) identity
    Operator,
    /// An account (vouches for users) identity
    Account,
    /// A user identity
    User,
    /// A module identity - can represent an opaque component, etc.
    Module,
    /// A service / service provider identity
    Service,
    /// CurveKeys (X25519)
    Curve,
}

impl std::str::FromStr for KeyPairType {
    type Err = crate::error::Error;

    fn from_str(s: &str) -> ::std::result::Result<Self, Self::Err> {
        let tgt = s.to_uppercase();

        match tgt.as_ref() {
            "SERVER" => Ok(KeyPairType::Server),
            "CLUSTER" => Ok(KeyPairType::Cluster),
            "OPERATOR" => Ok(KeyPairType::Operator),
            "ACCOUNT" => Ok(KeyPairType::Account),
            "USER" => Ok(KeyPairType::User),
            "SERVICE" => Ok(KeyPairType::Service),
            "MODULE" => Ok(KeyPairType::Module),
            "CURVE" => Ok(KeyPairType::Curve),
            _ => Ok(KeyPairType::Module), // Do not crash the app if user input was wrong
        }
    }
}

impl From<u8> for KeyPairType {
    fn from(prefix_byte: u8) -> KeyPairType {
        match prefix_byte {
            PREFIX_BYTE_SERVER => KeyPairType::Server,
            PREFIX_BYTE_CLUSTER => KeyPairType::Cluster,
            PREFIX_BYTE_OPERATOR => KeyPairType::Operator,
            PREFIX_BYTE_ACCOUNT => KeyPairType::Account,
            PREFIX_BYTE_USER => KeyPairType::User,
            PREFIX_BYTE_MODULE => KeyPairType::Module,
            PREFIX_BYTE_SERVICE => KeyPairType::Service,
            PREFIX_BYTE_CURVE => KeyPairType::Curve,
            _ => KeyPairType::Operator,
        }
    }
}

impl KeyPair {
    /// Creates a new key pair of the given type.
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new(kp_type: KeyPairType) -> KeyPair {
        // If this unwrap fails, then the library is invalid, so the unwrap is OK here
        Self::new_from_raw(kp_type, generate_seed_rand()).unwrap()
    }

    /// Create a new keypair using a pre-existing set of random bytes.
    ///
    /// Returns an error if there is an issue using the bytes to generate the key
    /// NOTE: These bytes should be generated from a cryptographically secure random source.
    pub fn new_from_raw(kp_type: KeyPairType, random_bytes: [u8; 32]) -> Result<KeyPair> {
        let signing_key = SigningKey::from_bytes(&random_bytes);
        Ok(KeyPair {
            kp_type,
            pk: signing_key.verifying_key(),
            signing_key: Some(signing_key),
            sk: Some(random_bytes),
        })
    }

    /// Creates a new user key pair with a seed that has a **U** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_user() -> KeyPair {
        Self::new(KeyPairType::User)
    }

    /// Creates a new account key pair with a seed that has an **A** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_account() -> KeyPair {
        Self::new(KeyPairType::Account)
    }

    /// Creates a new operator key pair with a seed that has an **O** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_operator() -> KeyPair {
        Self::new(KeyPairType::Operator)
    }

    /// Creates a new cluster key pair with a seed that has the **C** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_cluster() -> KeyPair {
        Self::new(KeyPairType::Cluster)
    }

    /// Creates a new server key pair with a seed that has the **N** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_server() -> KeyPair {
        Self::new(KeyPairType::Server)
    }

    /// Creates a new module (e.g. WebAssembly) key pair with a seed that has the **M** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_module() -> KeyPair {
        Self::new(KeyPairType::Module)
    }

    /// Creates a new service / service provider key pair with a seed that has the **V** prefix
    ///
    /// NOTE: This is not available if using on a wasm32-unknown-unknown target due to the lack of
    /// rand support. Use [`new_from_raw`](KeyPair::new_from_raw) instead
    #[cfg(not(target_arch = "wasm32"))]
    pub fn new_service() -> KeyPair {
        Self::new(KeyPairType::Service)
    }

    /// Returns the encoded, human-readable public key of this key pair
    pub fn public_key(&self) -> String {
        encode(&self.kp_type, self.pk.as_bytes())
    }

    /// Attempts to sign the given input with the key pair's seed
    pub fn sign(&self, input: &[u8]) -> Result<Vec<u8>> {
        if let Some(ref seed) = self.signing_key {
            let sig = seed.sign(input);
            Ok(sig.to_bytes().to_vec())
        } else {
            Err(err!(SignatureError, "Cannot sign without a seed key"))
        }
    }

    /// Attempts to verify that the given signature is valid for the given input
    pub fn verify(&self, input: &[u8], sig: &[u8]) -> Result<()> {
        if sig.len() != ed25519::Signature::BYTE_SIZE {
            return Err(err!(
                InvalidSignatureLength,
                "Signature did not match expected length"
            ));
        }

        let mut fixedsig = [0; ed25519::Signature::BYTE_SIZE];
        fixedsig.copy_from_slice(sig);
        let insig = ed25519::Signature::from_bytes(&fixedsig);

        match self.pk.verify(input, &insig) {
            Ok(()) => Ok(()),
            Err(e) => Err(e.into()),
        }
    }

    /// Attempts to return the encoded, human-readable string for this key pair's seed.
    /// Remember that this value should be treated as a secret. Do not store it for
    /// any longer than necessary
    pub fn seed(&self) -> Result<String> {
        if let Some(ref seed) = self.sk {
            Ok(encode_seed(&self.kp_type, seed))
        } else {
            Err(err!(IncorrectKeyType, "This keypair has no seed"))
        }
    }

    /// Attempts to produce a public-only key pair from the given encoded public key string
    pub fn from_public_key(source: &str) -> Result<KeyPair> {
        let (prefix, bytes) = from_public_key(source)?;

        let pk = VerifyingKey::from_bytes(&bytes)
            .map_err(|_| err!(VerifyError, "Could not read public key"))?;

        Ok(KeyPair {
            kp_type: KeyPairType::from(prefix),
            pk,
            sk: None,
            signing_key: None,
        })
    }

    /// Attempts to produce a full key pair from the given encoded seed string
    pub fn from_seed(source: &str) -> Result<KeyPair> {
        let (ty, seed) = decode_seed(source)?;

        let signing_key = SigningKey::from_bytes(&seed);

        Ok(KeyPair {
            kp_type: KeyPairType::from(ty),
            pk: signing_key.verifying_key(),
            sk: Some(seed),
            signing_key: Some(signing_key),
        })
    }

    /// Returns the type of this key pair.
    pub fn key_pair_type(&self) -> KeyPairType {
        self.kp_type.clone()
    }
}

fn decode_raw(raw: &[u8]) -> Result<Vec<u8>> {
    let mut b32_decoded = data_encoding::BASE32_NOPAD.decode(raw)?;

    let checksum = extract_crc(&mut b32_decoded)?;
    let v_checksum = valid_checksum(&b32_decoded, checksum);
    if !v_checksum {
        Err(err!(ChecksumFailure, "Checksum mismatch"))
    } else {
        Ok(b32_decoded)
    }
}

/// Returns the prefix byte and the underlying public key bytes
/// NOTE: This is considered an advanced use case, it's generally recommended to stick with [`KeyPair::from_public_key`] instead.
pub fn from_public_key(source: &str) -> Result<(u8, [u8; 32])> {
    if source.len() != ENCODED_PUBKEY_LENGTH {
        let l = source.len();
        return Err(err!(InvalidKeyLength, "Bad key length: {}", l));
    }

    let source_bytes = source.as_bytes();
    let mut raw = decode_raw(source_bytes)?;

    let prefix = raw[0];
    if !valid_public_key_prefix(prefix) {
        return Err(err!(
            InvalidPrefix,
            "Not a valid public key prefix: {}",
            raw[0]
        ));
    }
    raw.remove(0);

    let mut public_key = [0u8; 32];
    public_key.copy_from_slice(&raw[..]);

    Ok((prefix, public_key))
}

/// Attempts to decode the provided base32 encoded string into a valid prefix byte and the private key seed bytes.
/// NOTE: This is considered an advanced use case, it's generally recommended to stick with [`KeyPair::from_seed`] instead.
pub fn decode_seed(source: &str) -> Result<(u8, [u8; 32])> {
    if source.len() != ENCODED_SEED_LENGTH {
        let l = source.len();
        return Err(err!(InvalidKeyLength, "Bad seed length: {}", l));
    }

    let source_bytes = source.as_bytes();
    let raw = decode_raw(source_bytes)?;

    let b1 = raw[0] & 248;
    if b1 != PREFIX_BYTE_SEED {
        return Err(err!(
            InvalidPrefix,
            "Incorrect byte prefix: {}",
            source.chars().next().unwrap()
        ));
    }

    let b2 = (raw[0] & 7) << 5 | ((raw[1] & 248) >> 3);

    let mut seed = [0u8; 32];
    seed.copy_from_slice(&raw[2..]);

    Ok((b2, seed))
}

fn generate_seed_rand() -> [u8; 32] {
    let mut rng = rand::thread_rng();
    rng.gen::<[u8; 32]>()
}

fn get_prefix_byte(kp_type: &KeyPairType) -> u8 {
    match kp_type {
        KeyPairType::Server => PREFIX_BYTE_SERVER,
        KeyPairType::Account => PREFIX_BYTE_ACCOUNT,
        KeyPairType::Cluster => PREFIX_BYTE_CLUSTER,
        KeyPairType::Operator => PREFIX_BYTE_OPERATOR,
        KeyPairType::User => PREFIX_BYTE_USER,
        KeyPairType::Module => PREFIX_BYTE_MODULE,
        KeyPairType::Service => PREFIX_BYTE_SERVICE,
        KeyPairType::Curve => PREFIX_BYTE_CURVE,
    }
}

fn valid_public_key_prefix(prefix: u8) -> bool {
    PUBLIC_KEY_PREFIXES.to_vec().contains(&prefix)
}

fn encode_seed(ty: &KeyPairType, seed: &[u8]) -> String {
    let prefix_byte = get_prefix_byte(ty);

    let b1 = PREFIX_BYTE_SEED | prefix_byte >> 5;
    let b2 = (prefix_byte & 31) << 3;

    encode_prefix(&[b1, b2], seed)
}

fn encode(ty: &KeyPairType, key: &[u8]) -> String {
    let prefix_byte = get_prefix_byte(ty);
    encode_prefix(&[prefix_byte], key)
}

fn encode_prefix(prefix: &[u8], key: &[u8]) -> String {
    let mut raw = Vec::with_capacity(prefix.len() + key.len() + 2);
    raw.extend_from_slice(prefix);
    raw.extend_from_slice(key);
    push_crc(&mut raw);

    data_encoding::BASE32_NOPAD.encode(&raw[..])
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::error::ErrorKind;

    #[test]
    fn validate_decode_seed() {
        let input_bytes = generate_seed_rand();
        let seed = encode_seed(&KeyPairType::User, input_bytes.as_slice());

        let (prefix, decoded_bytes) = decode_seed(&seed).unwrap();

        assert_eq!(prefix, PREFIX_BYTE_USER);
        assert_eq!(decoded_bytes, input_bytes);
    }

    #[test]
    fn validate_from_public_key() {
        let input_bytes = generate_seed_rand();
        let public_key = encode(&KeyPairType::User, input_bytes.as_slice());

        let (prefix, decoded_bytes) = from_public_key(&public_key).unwrap();

        assert_eq!(prefix, PREFIX_BYTE_USER);
        assert_eq!(decoded_bytes, input_bytes);
    }

    #[test]
    fn seed_encode_decode_round_trip() {
        let pair = KeyPair::new_user();
        let s = pair.seed().unwrap();
        let p = pair.public_key();

        let pair2 = KeyPair::from_seed(s.as_str()).unwrap();
        let s2 = pair2.seed().unwrap();

        assert_eq!(s, s2);
        assert_eq!(p, pair2.public_key());
    }

    #[test]
    fn roundtrip_encoding_go_compat() {
        // Seed and Public Key pair generated by Go nkeys library
        let seed = "SAAPN4W3EG6KCJGUQTKTJ5GSB5NHK5CHAJL4DBGFUM3HHROI4XUEP4OBK4";
        let pk = "ACODERUVFFAWZQDSS6SBIACUA5O6SXF7HJ3YTYXBALHZP3P7R4BUO4J2";

        let pair = KeyPair::from_seed(seed).unwrap();

        assert_eq!(pair.seed().unwrap(), seed);
        assert_eq!(pair.public_key(), pk);
    }

    #[test]
    fn from_seed_rejects_bad_prefix() {
        let seed = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
        let pair = KeyPair::from_seed(seed);
        assert!(pair.is_err());
        if let Err(e) = pair {
            assert_eq!(e.kind(), ErrorKind::InvalidPrefix);
        }
    }

    #[test]
    fn from_seed_rejects_bad_checksum() {
        let seed = "FAAPN4W3EG6KCJGUQTKTJ5GSB5NHK5CHAJL4DBGFUM3HHROI4XUEP4OBK4";
        let pair = KeyPair::from_seed(seed);
        assert!(pair.is_err());
        if let Err(e) = pair {
            assert_eq!(e.kind(), ErrorKind::ChecksumFailure);
        }
    }

    #[test]
    fn from_seed_rejects_bad_length() {
        let seed = "SAAPN4W3EG6KCJGUQTKTJ5GSB5NHK5CHAJL4DBGFUM3SAAPN4W3EG6KCJGUQTKTJ5GSB5NHK5";
        let pair = KeyPair::from_seed(seed);
        assert!(pair.is_err());
        if let Err(e) = pair {
            assert_eq!(e.kind(), ErrorKind::InvalidKeyLength);
        }
    }

    #[test]
    fn from_seed_rejects_invalid_encoding() {
        let badseed = "SAAPN4W3EG6KCJGUQTKTJ5!#B5NHK5CHAJL4DBGFUM3HHROI4XUEP4OBK4";
        let pair = KeyPair::from_seed(badseed);
        assert!(pair.is_err());
        if let Err(e) = pair {
            assert_eq!(e.kind(), ErrorKind::CodecFailure);
        }
    }

    #[test]
    fn sign_and_verify() {
        let user = KeyPair::new_user();
        let msg = b"this is super secret";

        let sig = user.sign(msg).unwrap();

        let res = user.verify(msg, sig.as_slice());
        assert!(res.is_ok());
    }

    #[test]
    fn sign_and_verify_rejects_mismatched_sig() {
        let user = KeyPair::new_user();
        let msg = b"this is super secret";

        let sig = user.sign(msg).unwrap();
        let res = user.verify(b"this doesn't match the message", sig.as_slice());
        assert!(res.is_err());
    }

    #[test]
    fn sign_and_verify_rejects_invalid_signature_length() {
        let kp = KeyPair::new_user();
        let res = kp.verify(&[], &[]);
        assert!(res.is_err());
        if let Err(e) = res {
            assert_eq!(e.kind(), ErrorKind::InvalidSignatureLength);
        }
    }

    #[test]
    fn from_public_key_rejects_bad_length() {
        let public_key = "ACARVGW77LDNWYXBAH62YKKQRVHYOTKKDDVVJVOISOU75WQPXOO7N3";
        let pair = KeyPair::from_public_key(public_key);
        assert!(pair.is_err());
        if let Err(e) = pair {
            assert_eq!(e.kind(), ErrorKind::InvalidKeyLength);
        }
    }

    #[test]
    fn from_public_key_rejects_bad_prefix() {
        let public_key = "ZCO4XYNKEN7ZFQ42BHYCBYI3K7USOGG43C2DIJZYWSQ2YEMBOZWN6PYH";
        let pair = KeyPair::from_public_key(public_key);
        assert!(pair.is_err());
        if let Err(e) = pair {
            assert_eq!(e.kind(), ErrorKind::InvalidPrefix);
        }
    }

    #[test]
    fn public_key_round_trip() {
        let account =
            KeyPair::from_public_key("ACODERUVFFAWZQDSS6SBIACUA5O6SXF7HJ3YTYXBALHZP3P7R4BUO4J2")
                .unwrap();
        let pk = account.public_key();
        assert_eq!(
            pk,
            "ACODERUVFFAWZQDSS6SBIACUA5O6SXF7HJ3YTYXBALHZP3P7R4BUO4J2"
        );
    }

    #[test]
    fn module_has_proper_prefix() {
        let module = KeyPair::new_module();
        assert!(module.seed().unwrap().starts_with("SM"));
        assert!(module.public_key().starts_with('M'));
    }

    #[test]
    fn service_has_proper_prefix() {
        let service = KeyPair::new_service();
        assert!(service.seed().unwrap().starts_with("SV"));
        assert!(service.public_key().starts_with('V'));
    }

    #[test]
    fn can_get_key_type() {
        let from_pub =
            KeyPair::from_public_key("UBCXCMGAZQZN55X5TTTWMB5CZNZIKJHEDZJOJ3TV63NKPJ6FRXSR2ZO4")
                .unwrap();
        let from_seed =
            KeyPair::from_seed("SCANU5JGFEPJ2XNFQ6YMDRHMNFAL6ZT3DCU3ZMMHHML7GLFE3YIH5TBM6E")
                .unwrap();

        assert!(
            matches!(from_pub.key_pair_type(), KeyPairType::User),
            "Expected the key type to be {:?}, found {:?}",
            KeyPairType::User,
            from_pub.key_pair_type()
        );
        assert!(
            matches!(from_seed.key_pair_type(), KeyPairType::Cluster),
            "Expected the key type to be {:?}, found {:?}",
            KeyPairType::Cluster,
            from_seed.key_pair_type()
        );
    }
}

mod crc;
pub mod error;