opentelemetry_sdk/metrics/
aggregation.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
use std::fmt;

use crate::metrics::internal::{EXPO_MAX_SCALE, EXPO_MIN_SCALE};
use crate::metrics::{MetricError, MetricResult};

/// The way recorded measurements are summarized.
#[derive(Clone, Debug, PartialEq)]
#[non_exhaustive]
pub enum Aggregation {
    /// An aggregation that drops all recorded data.
    Drop,

    /// An aggregation that uses the default instrument kind selection mapping to
    /// select another aggregation.
    ///
    /// A metric reader can be configured to make an aggregation selection based on
    /// instrument kind that differs from the default. This aggregation ensures the
    /// default is used.
    ///
    /// See the [the spec] for information about the default
    /// instrument kind selection mapping.
    ///
    /// [the spec]: https://github.com/open-telemetry/opentelemetry-specification/blob/v1.19.0/specification/metrics/sdk.md#default-aggregation
    Default,

    /// An aggregation that summarizes a set of measurements as their arithmetic
    /// sum.
    Sum,

    /// An aggregation that summarizes a set of measurements as the last one made.
    LastValue,

    /// An aggregation that summarizes a set of measurements as a histogram with
    /// explicitly defined buckets.
    ExplicitBucketHistogram {
        /// The increasing bucket boundary values.
        ///
        /// Boundary values define bucket upper bounds. Buckets are exclusive of their
        /// lower boundary and inclusive of their upper bound (except at positive
        /// infinity). A measurement is defined to fall into the greatest-numbered
        /// bucket with a boundary that is greater than or equal to the measurement. As
        /// an example, boundaries defined as:
        ///
        /// vec![0.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0, 500.0, 750.0,
        /// 1000.0, 2500.0, 5000.0, 7500.0, 10000.0];
        ///
        /// Will define these buckets:
        ///
        /// (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, 25.0], (25.0, 50.0], (50.0,
        ///  75.0], (75.0, 100.0], (100.0, 250.0], (250.0, 500.0], (500.0,
        ///  750.0], (750.0, 1000.0], (1000.0, 2500.0], (2500.0, 5000.0],
        ///  (5000.0, 7500.0], (7500.0, 10000.0], (10000.0, +∞)
        boundaries: Vec<f64>,

        /// Indicates whether to not record the min and max of the distribution.
        ///
        /// By default, these values are recorded.
        ///
        /// Recording these values for cumulative data is expected to have little
        /// value, they will represent the entire life of the instrument instead of
        /// just the current collection cycle. It is recommended to set this to
        /// `false` for that type of data to avoid computing the low-value
        /// instances.
        record_min_max: bool,
    },

    /// An aggregation that summarizes a set of measurements as a histogram with
    /// bucket widths that grow exponentially.
    Base2ExponentialHistogram {
        /// The maximum number of buckets to use for the histogram.
        max_size: u32,

        /// The maximum resolution scale to use for the histogram.
        ///
        /// The maximum value is `20`, in which case the maximum number of buckets
        /// that can fit within the range of a signed 32-bit integer index could be
        /// used.
        ///
        /// The minimum value is `-10` in which case only two buckets will be used.
        max_scale: i8,

        /// Indicates whether to not record the min and max of the distribution.
        ///
        /// By default, these values are recorded.
        ///
        /// It is generally not valuable to record min and max for cumulative data
        /// as they will represent the entire life of the instrument instead of just
        /// the current collection cycle, you can opt out by setting this value to
        /// `false`
        record_min_max: bool,
    },
}

impl fmt::Display for Aggregation {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // used for stream id comparisons
        let name = match self {
            Aggregation::Drop => "Drop",
            Aggregation::Default => "Default",
            Aggregation::Sum => "Sum",
            Aggregation::LastValue => "LastValue",
            Aggregation::ExplicitBucketHistogram { .. } => "ExplicitBucketHistogram",
            Aggregation::Base2ExponentialHistogram { .. } => "Base2ExponentialHistogram",
        };

        f.write_str(name)
    }
}

impl Aggregation {
    /// Validate that this aggregation has correct configuration
    pub fn validate(&self) -> MetricResult<()> {
        match self {
            Aggregation::Drop => Ok(()),
            Aggregation::Default => Ok(()),
            Aggregation::Sum => Ok(()),
            Aggregation::LastValue => Ok(()),
            Aggregation::ExplicitBucketHistogram { boundaries, .. } => {
                for x in boundaries.windows(2) {
                    if x[0] >= x[1] {
                        return Err(MetricError::Config(format!(
                            "aggregation: explicit bucket histogram: non-monotonic boundaries: {:?}",
                            boundaries,
                        )));
                    }
                }

                Ok(())
            }
            Aggregation::Base2ExponentialHistogram { max_scale, .. } => {
                if *max_scale > EXPO_MAX_SCALE {
                    return Err(MetricError::Config(format!(
                        "aggregation: exponential histogram: max scale ({}) is greater than 20",
                        max_scale,
                    )));
                }
                if *max_scale < EXPO_MIN_SCALE {
                    return Err(MetricError::Config(format!(
                        "aggregation: exponential histogram: max scale ({}) is less than -10",
                        max_scale,
                    )));
                }

                Ok(())
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use crate::metrics::{
        internal::{EXPO_MAX_SCALE, EXPO_MIN_SCALE},
        Aggregation,
    };
    use crate::metrics::{MetricError, MetricResult};

    #[test]
    fn validate_aggregation() {
        struct TestCase {
            name: &'static str,
            input: Aggregation,
            check: Box<dyn Fn(MetricResult<()>) -> bool>,
        }
        let ok = Box::new(|result: MetricResult<()>| result.is_ok());
        let config_error = Box::new(|result| matches!(result, Err(MetricError::Config(_))));

        let test_cases: Vec<TestCase> = vec![
            TestCase {
                name: "base2 histogram with maximum max_scale",
                input: Aggregation::Base2ExponentialHistogram {
                    max_size: 160,
                    max_scale: EXPO_MAX_SCALE,
                    record_min_max: true,
                },
                check: ok.clone(),
            },
            TestCase {
                name: "base2 histogram with minimum max_scale",
                input: Aggregation::Base2ExponentialHistogram {
                    max_size: 160,
                    max_scale: EXPO_MIN_SCALE,
                    record_min_max: true,
                },
                check: ok.clone(),
            },
            TestCase {
                name: "base2 histogram with max_scale too small",
                input: Aggregation::Base2ExponentialHistogram {
                    max_size: 160,
                    max_scale: EXPO_MIN_SCALE - 1,
                    record_min_max: true,
                },
                check: config_error.clone(),
            },
            TestCase {
                name: "base2 histogram with max_scale too big",
                input: Aggregation::Base2ExponentialHistogram {
                    max_size: 160,
                    max_scale: EXPO_MAX_SCALE + 1,
                    record_min_max: true,
                },
                check: config_error.clone(),
            },
            TestCase {
                name: "explicit histogram with one boundary",
                input: Aggregation::ExplicitBucketHistogram {
                    boundaries: vec![0.0],
                    record_min_max: true,
                },
                check: ok.clone(),
            },
            TestCase {
                name: "explicit histogram with monotonic boundaries",
                input: Aggregation::ExplicitBucketHistogram {
                    boundaries: vec![0.0, 2.0, 4.0, 8.0],
                    record_min_max: true,
                },
                check: ok.clone(),
            },
            TestCase {
                name: "explicit histogram with non-monotonic boundaries",
                input: Aggregation::ExplicitBucketHistogram {
                    boundaries: vec![2.0, 0.0, 4.0, 8.0],
                    record_min_max: true,
                },
                check: config_error.clone(),
            },
        ];
        for test in test_cases {
            assert!((test.check)(test.input.validate()), "{}", test.name)
        }
    }
}