opentelemetry_sdk/metrics/aggregation.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
use std::fmt;
use crate::metrics::internal::{EXPO_MAX_SCALE, EXPO_MIN_SCALE};
use crate::metrics::{MetricError, MetricResult};
/// The way recorded measurements are summarized.
#[derive(Clone, Debug, PartialEq)]
#[non_exhaustive]
pub enum Aggregation {
/// An aggregation that drops all recorded data.
Drop,
/// An aggregation that uses the default instrument kind selection mapping to
/// select another aggregation.
///
/// A metric reader can be configured to make an aggregation selection based on
/// instrument kind that differs from the default. This aggregation ensures the
/// default is used.
///
/// See the [the spec] for information about the default
/// instrument kind selection mapping.
///
/// [the spec]: https://github.com/open-telemetry/opentelemetry-specification/blob/v1.19.0/specification/metrics/sdk.md#default-aggregation
Default,
/// An aggregation that summarizes a set of measurements as their arithmetic
/// sum.
Sum,
/// An aggregation that summarizes a set of measurements as the last one made.
LastValue,
/// An aggregation that summarizes a set of measurements as a histogram with
/// explicitly defined buckets.
ExplicitBucketHistogram {
/// The increasing bucket boundary values.
///
/// Boundary values define bucket upper bounds. Buckets are exclusive of their
/// lower boundary and inclusive of their upper bound (except at positive
/// infinity). A measurement is defined to fall into the greatest-numbered
/// bucket with a boundary that is greater than or equal to the measurement. As
/// an example, boundaries defined as:
///
/// vec![0.0, 5.0, 10.0, 25.0, 50.0, 75.0, 100.0, 250.0, 500.0, 750.0,
/// 1000.0, 2500.0, 5000.0, 7500.0, 10000.0];
///
/// Will define these buckets:
///
/// (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, 25.0], (25.0, 50.0], (50.0,
/// 75.0], (75.0, 100.0], (100.0, 250.0], (250.0, 500.0], (500.0,
/// 750.0], (750.0, 1000.0], (1000.0, 2500.0], (2500.0, 5000.0],
/// (5000.0, 7500.0], (7500.0, 10000.0], (10000.0, +∞)
boundaries: Vec<f64>,
/// Indicates whether to not record the min and max of the distribution.
///
/// By default, these values are recorded.
///
/// Recording these values for cumulative data is expected to have little
/// value, they will represent the entire life of the instrument instead of
/// just the current collection cycle. It is recommended to set this to
/// `false` for that type of data to avoid computing the low-value
/// instances.
record_min_max: bool,
},
/// An aggregation that summarizes a set of measurements as a histogram with
/// bucket widths that grow exponentially.
Base2ExponentialHistogram {
/// The maximum number of buckets to use for the histogram.
max_size: u32,
/// The maximum resolution scale to use for the histogram.
///
/// The maximum value is `20`, in which case the maximum number of buckets
/// that can fit within the range of a signed 32-bit integer index could be
/// used.
///
/// The minimum value is `-10` in which case only two buckets will be used.
max_scale: i8,
/// Indicates whether to not record the min and max of the distribution.
///
/// By default, these values are recorded.
///
/// It is generally not valuable to record min and max for cumulative data
/// as they will represent the entire life of the instrument instead of just
/// the current collection cycle, you can opt out by setting this value to
/// `false`
record_min_max: bool,
},
}
impl fmt::Display for Aggregation {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// used for stream id comparisons
let name = match self {
Aggregation::Drop => "Drop",
Aggregation::Default => "Default",
Aggregation::Sum => "Sum",
Aggregation::LastValue => "LastValue",
Aggregation::ExplicitBucketHistogram { .. } => "ExplicitBucketHistogram",
Aggregation::Base2ExponentialHistogram { .. } => "Base2ExponentialHistogram",
};
f.write_str(name)
}
}
impl Aggregation {
/// Validate that this aggregation has correct configuration
pub fn validate(&self) -> MetricResult<()> {
match self {
Aggregation::Drop => Ok(()),
Aggregation::Default => Ok(()),
Aggregation::Sum => Ok(()),
Aggregation::LastValue => Ok(()),
Aggregation::ExplicitBucketHistogram { boundaries, .. } => {
for x in boundaries.windows(2) {
if x[0] >= x[1] {
return Err(MetricError::Config(format!(
"aggregation: explicit bucket histogram: non-monotonic boundaries: {:?}",
boundaries,
)));
}
}
Ok(())
}
Aggregation::Base2ExponentialHistogram { max_scale, .. } => {
if *max_scale > EXPO_MAX_SCALE {
return Err(MetricError::Config(format!(
"aggregation: exponential histogram: max scale ({}) is greater than 20",
max_scale,
)));
}
if *max_scale < EXPO_MIN_SCALE {
return Err(MetricError::Config(format!(
"aggregation: exponential histogram: max scale ({}) is less than -10",
max_scale,
)));
}
Ok(())
}
}
}
}
#[cfg(test)]
mod tests {
use crate::metrics::{
internal::{EXPO_MAX_SCALE, EXPO_MIN_SCALE},
Aggregation,
};
use crate::metrics::{MetricError, MetricResult};
#[test]
fn validate_aggregation() {
struct TestCase {
name: &'static str,
input: Aggregation,
check: Box<dyn Fn(MetricResult<()>) -> bool>,
}
let ok = Box::new(|result: MetricResult<()>| result.is_ok());
let config_error = Box::new(|result| matches!(result, Err(MetricError::Config(_))));
let test_cases: Vec<TestCase> = vec![
TestCase {
name: "base2 histogram with maximum max_scale",
input: Aggregation::Base2ExponentialHistogram {
max_size: 160,
max_scale: EXPO_MAX_SCALE,
record_min_max: true,
},
check: ok.clone(),
},
TestCase {
name: "base2 histogram with minimum max_scale",
input: Aggregation::Base2ExponentialHistogram {
max_size: 160,
max_scale: EXPO_MIN_SCALE,
record_min_max: true,
},
check: ok.clone(),
},
TestCase {
name: "base2 histogram with max_scale too small",
input: Aggregation::Base2ExponentialHistogram {
max_size: 160,
max_scale: EXPO_MIN_SCALE - 1,
record_min_max: true,
},
check: config_error.clone(),
},
TestCase {
name: "base2 histogram with max_scale too big",
input: Aggregation::Base2ExponentialHistogram {
max_size: 160,
max_scale: EXPO_MAX_SCALE + 1,
record_min_max: true,
},
check: config_error.clone(),
},
TestCase {
name: "explicit histogram with one boundary",
input: Aggregation::ExplicitBucketHistogram {
boundaries: vec![0.0],
record_min_max: true,
},
check: ok.clone(),
},
TestCase {
name: "explicit histogram with monotonic boundaries",
input: Aggregation::ExplicitBucketHistogram {
boundaries: vec![0.0, 2.0, 4.0, 8.0],
record_min_max: true,
},
check: ok.clone(),
},
TestCase {
name: "explicit histogram with non-monotonic boundaries",
input: Aggregation::ExplicitBucketHistogram {
boundaries: vec![2.0, 0.0, 4.0, 8.0],
record_min_max: true,
},
check: config_error.clone(),
},
];
for test in test_cases {
assert!((test.check)(test.input.validate()), "{}", test.name)
}
}
}