1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
// Copyright 2018 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
#[cfg(not(feature = "std"))] use core;
#[cfg(feature = "std")] use std as core;
use self::core::fmt;
use crate::guts::ChaCha;
use rand_core::block::{BlockRng, BlockRngCore};
use rand_core::{CryptoRng, Error, RngCore, SeedableRng};
#[cfg(feature = "serde1")] use serde::{Serialize, Deserialize, Serializer, Deserializer};
// NB. this must remain consistent with some currently hard-coded numbers in this module
const BUF_BLOCKS: u8 = 4;
// number of 32-bit words per ChaCha block (fixed by algorithm definition)
const BLOCK_WORDS: u8 = 16;
#[repr(transparent)]
pub struct Array64<T>([T; 64]);
impl<T> Default for Array64<T>
where T: Default
{
#[rustfmt::skip]
fn default() -> Self {
Self([
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(), T::default(),
])
}
}
impl<T> AsRef<[T]> for Array64<T> {
fn as_ref(&self) -> &[T] {
&self.0
}
}
impl<T> AsMut<[T]> for Array64<T> {
fn as_mut(&mut self) -> &mut [T] {
&mut self.0
}
}
impl<T> Clone for Array64<T>
where T: Copy + Default
{
fn clone(&self) -> Self {
let mut new = Self::default();
new.0.copy_from_slice(&self.0);
new
}
}
impl<T> fmt::Debug for Array64<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Array64 {{}}")
}
}
macro_rules! chacha_impl {
($ChaChaXCore:ident, $ChaChaXRng:ident, $rounds:expr, $doc:expr, $abst:ident) => {
#[doc=$doc]
#[derive(Clone, PartialEq, Eq)]
pub struct $ChaChaXCore {
state: ChaCha,
}
// Custom Debug implementation that does not expose the internal state
impl fmt::Debug for $ChaChaXCore {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ChaChaXCore {{}}")
}
}
impl BlockRngCore for $ChaChaXCore {
type Item = u32;
type Results = Array64<u32>;
#[inline]
fn generate(&mut self, r: &mut Self::Results) {
// Fill slice of words by writing to equivalent slice of bytes, then fixing endianness.
self.state.refill4($rounds, unsafe {
&mut *(&mut *r as *mut Array64<u32> as *mut [u8; 256])
});
for x in r.as_mut() {
*x = x.to_le();
}
}
}
impl SeedableRng for $ChaChaXCore {
type Seed = [u8; 32];
#[inline]
fn from_seed(seed: Self::Seed) -> Self {
$ChaChaXCore { state: ChaCha::new(&seed, &[0u8; 8]) }
}
}
impl CryptoRng for $ChaChaXCore {}
/// A cryptographically secure random number generator that uses the ChaCha algorithm.
///
/// ChaCha is a stream cipher designed by Daniel J. Bernstein[^1], that we use as an RNG. It is
/// an improved variant of the Salsa20 cipher family, which was selected as one of the "stream
/// ciphers suitable for widespread adoption" by eSTREAM[^2].
///
/// ChaCha uses add-rotate-xor (ARX) operations as its basis. These are safe against timing
/// attacks, although that is mostly a concern for ciphers and not for RNGs. We provide a SIMD
/// implementation to support high throughput on a variety of common hardware platforms.
///
/// With the ChaCha algorithm it is possible to choose the number of rounds the core algorithm
/// should run. The number of rounds is a tradeoff between performance and security, where 8
/// rounds is the minimum potentially secure configuration, and 20 rounds is widely used as a
/// conservative choice.
///
/// We use a 64-bit counter and 64-bit stream identifier as in Bernstein's implementation[^1]
/// except that we use a stream identifier in place of a nonce. A 64-bit counter over 64-byte
/// (16 word) blocks allows 1 ZiB of output before cycling, and the stream identifier allows
/// 2<sup>64</sup> unique streams of output per seed. Both counter and stream are initialized
/// to zero but may be set via the `set_word_pos` and `set_stream` methods.
///
/// The word layout is:
///
/// ```text
/// constant constant constant constant
/// seed seed seed seed
/// seed seed seed seed
/// counter counter stream_id stream_id
/// ```
///
/// This implementation uses an output buffer of sixteen `u32` words, and uses
/// [`BlockRng`] to implement the [`RngCore`] methods.
///
/// [^1]: D. J. Bernstein, [*ChaCha, a variant of Salsa20*](
/// https://cr.yp.to/chacha.html)
///
/// [^2]: [eSTREAM: the ECRYPT Stream Cipher Project](
/// http://www.ecrypt.eu.org/stream/)
#[derive(Clone, Debug)]
pub struct $ChaChaXRng {
rng: BlockRng<$ChaChaXCore>,
}
impl SeedableRng for $ChaChaXRng {
type Seed = [u8; 32];
#[inline]
fn from_seed(seed: Self::Seed) -> Self {
let core = $ChaChaXCore::from_seed(seed);
Self {
rng: BlockRng::new(core),
}
}
}
impl RngCore for $ChaChaXRng {
#[inline]
fn next_u32(&mut self) -> u32 {
self.rng.next_u32()
}
#[inline]
fn next_u64(&mut self) -> u64 {
self.rng.next_u64()
}
#[inline]
fn fill_bytes(&mut self, bytes: &mut [u8]) {
self.rng.fill_bytes(bytes)
}
#[inline]
fn try_fill_bytes(&mut self, bytes: &mut [u8]) -> Result<(), Error> {
self.rng.try_fill_bytes(bytes)
}
}
impl $ChaChaXRng {
// The buffer is a 4-block window, i.e. it is always at a block-aligned position in the
// stream but if the stream has been seeked it may not be self-aligned.
/// Get the offset from the start of the stream, in 32-bit words.
///
/// Since the generated blocks are 16 words (2<sup>4</sup>) long and the
/// counter is 64-bits, the offset is a 68-bit number. Sub-word offsets are
/// not supported, hence the result can simply be multiplied by 4 to get a
/// byte-offset.
#[inline]
pub fn get_word_pos(&self) -> u128 {
let buf_start_block = {
let buf_end_block = self.rng.core.state.get_block_pos();
u64::wrapping_sub(buf_end_block, BUF_BLOCKS.into())
};
let (buf_offset_blocks, block_offset_words) = {
let buf_offset_words = self.rng.index() as u64;
let blocks_part = buf_offset_words / u64::from(BLOCK_WORDS);
let words_part = buf_offset_words % u64::from(BLOCK_WORDS);
(blocks_part, words_part)
};
let pos_block = u64::wrapping_add(buf_start_block, buf_offset_blocks);
let pos_block_words = u128::from(pos_block) * u128::from(BLOCK_WORDS);
pos_block_words + u128::from(block_offset_words)
}
/// Set the offset from the start of the stream, in 32-bit words.
///
/// As with `get_word_pos`, we use a 68-bit number. Since the generator
/// simply cycles at the end of its period (1 ZiB), we ignore the upper
/// 60 bits.
#[inline]
pub fn set_word_pos(&mut self, word_offset: u128) {
let block = (word_offset / u128::from(BLOCK_WORDS)) as u64;
self.rng
.core
.state
.set_block_pos(block);
self.rng.generate_and_set((word_offset % u128::from(BLOCK_WORDS)) as usize);
}
/// Set the stream number.
///
/// This is initialized to zero; 2<sup>64</sup> unique streams of output
/// are available per seed/key.
///
/// Note that in order to reproduce ChaCha output with a specific 64-bit
/// nonce, one can convert that nonce to a `u64` in little-endian fashion
/// and pass to this function. In theory a 96-bit nonce can be used by
/// passing the last 64-bits to this function and using the first 32-bits as
/// the most significant half of the 64-bit counter (which may be set
/// indirectly via `set_word_pos`), but this is not directly supported.
#[inline]
pub fn set_stream(&mut self, stream: u64) {
self.rng
.core
.state
.set_nonce(stream);
if self.rng.index() != 64 {
let wp = self.get_word_pos();
self.set_word_pos(wp);
}
}
/// Get the stream number.
#[inline]
pub fn get_stream(&self) -> u64 {
self.rng
.core
.state
.get_nonce()
}
/// Get the seed.
#[inline]
pub fn get_seed(&self) -> [u8; 32] {
self.rng
.core
.state
.get_seed()
}
}
impl CryptoRng for $ChaChaXRng {}
impl From<$ChaChaXCore> for $ChaChaXRng {
fn from(core: $ChaChaXCore) -> Self {
$ChaChaXRng {
rng: BlockRng::new(core),
}
}
}
impl PartialEq<$ChaChaXRng> for $ChaChaXRng {
fn eq(&self, rhs: &$ChaChaXRng) -> bool {
let a: $abst::$ChaChaXRng = self.into();
let b: $abst::$ChaChaXRng = rhs.into();
a == b
}
}
impl Eq for $ChaChaXRng {}
#[cfg(feature = "serde1")]
impl Serialize for $ChaChaXRng {
fn serialize<S>(&self, s: S) -> Result<S::Ok, S::Error>
where S: Serializer {
$abst::$ChaChaXRng::from(self).serialize(s)
}
}
#[cfg(feature = "serde1")]
impl<'de> Deserialize<'de> for $ChaChaXRng {
fn deserialize<D>(d: D) -> Result<Self, D::Error> where D: Deserializer<'de> {
$abst::$ChaChaXRng::deserialize(d).map(|x| Self::from(&x))
}
}
mod $abst {
#[cfg(feature = "serde1")] use serde::{Serialize, Deserialize};
// The abstract state of a ChaCha stream, independent of implementation choices. The
// comparison and serialization of this object is considered a semver-covered part of
// the API.
#[derive(Debug, PartialEq, Eq)]
#[cfg_attr(
feature = "serde1",
derive(Serialize, Deserialize),
)]
pub(crate) struct $ChaChaXRng {
seed: [u8; 32],
stream: u64,
word_pos: u128,
}
impl From<&super::$ChaChaXRng> for $ChaChaXRng {
// Forget all information about the input except what is necessary to determine the
// outputs of any sequence of pub API calls.
fn from(r: &super::$ChaChaXRng) -> Self {
Self {
seed: r.get_seed(),
stream: r.get_stream(),
word_pos: r.get_word_pos(),
}
}
}
impl From<&$ChaChaXRng> for super::$ChaChaXRng {
// Construct one of the possible concrete RNGs realizing an abstract state.
fn from(a: &$ChaChaXRng) -> Self {
use rand_core::SeedableRng;
let mut r = Self::from_seed(a.seed);
r.set_stream(a.stream);
r.set_word_pos(a.word_pos);
r
}
}
}
}
}
chacha_impl!(ChaCha20Core, ChaCha20Rng, 10, "ChaCha with 20 rounds", abstract20);
chacha_impl!(ChaCha12Core, ChaCha12Rng, 6, "ChaCha with 12 rounds", abstract12);
chacha_impl!(ChaCha8Core, ChaCha8Rng, 4, "ChaCha with 8 rounds", abstract8);
#[cfg(test)]
mod test {
use rand_core::{RngCore, SeedableRng};
#[cfg(feature = "serde1")] use super::{ChaCha20Rng, ChaCha12Rng, ChaCha8Rng};
type ChaChaRng = super::ChaCha20Rng;
#[cfg(feature = "serde1")]
#[test]
fn test_chacha_serde_roundtrip() {
let seed = [
1, 0, 52, 0, 0, 0, 0, 0, 1, 0, 10, 0, 22, 32, 0, 0, 2, 0, 55, 49, 0, 11, 0, 0, 3, 0, 0, 0, 0,
0, 2, 92,
];
let mut rng1 = ChaCha20Rng::from_seed(seed);
let mut rng2 = ChaCha12Rng::from_seed(seed);
let mut rng3 = ChaCha8Rng::from_seed(seed);
let encoded1 = serde_json::to_string(&rng1).unwrap();
let encoded2 = serde_json::to_string(&rng2).unwrap();
let encoded3 = serde_json::to_string(&rng3).unwrap();
let mut decoded1: ChaCha20Rng = serde_json::from_str(&encoded1).unwrap();
let mut decoded2: ChaCha12Rng = serde_json::from_str(&encoded2).unwrap();
let mut decoded3: ChaCha8Rng = serde_json::from_str(&encoded3).unwrap();
assert_eq!(rng1, decoded1);
assert_eq!(rng2, decoded2);
assert_eq!(rng3, decoded3);
assert_eq!(rng1.next_u32(), decoded1.next_u32());
assert_eq!(rng2.next_u32(), decoded2.next_u32());
assert_eq!(rng3.next_u32(), decoded3.next_u32());
}
// This test validates that:
// 1. a hard-coded serialization demonstrating the format at time of initial release can still
// be deserialized to a ChaChaRng
// 2. re-serializing the resultant object produces exactly the original string
//
// Condition 2 is stronger than necessary: an equivalent serialization (e.g. with field order
// permuted, or whitespace differences) would also be admissible, but would fail this test.
// However testing for equivalence of serialized data is difficult, and there shouldn't be any
// reason we need to violate the stronger-than-needed condition, e.g. by changing the field
// definition order.
#[cfg(feature = "serde1")]
#[test]
fn test_chacha_serde_format_stability() {
let j = r#"{"seed":[4,8,15,16,23,42,4,8,15,16,23,42,4,8,15,16,23,42,4,8,15,16,23,42,4,8,15,16,23,42,4,8],"stream":27182818284,"word_pos":314159265359}"#;
let r: ChaChaRng = serde_json::from_str(&j).unwrap();
let j1 = serde_json::to_string(&r).unwrap();
assert_eq!(j, j1);
}
#[test]
fn test_chacha_construction() {
let seed = [
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0,
0, 0, 0,
];
let mut rng1 = ChaChaRng::from_seed(seed);
assert_eq!(rng1.next_u32(), 137206642);
let mut rng2 = ChaChaRng::from_rng(rng1).unwrap();
assert_eq!(rng2.next_u32(), 1325750369);
}
#[test]
fn test_chacha_true_values_a() {
// Test vectors 1 and 2 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0xade0b876, 0x903df1a0, 0xe56a5d40, 0x28bd8653, 0xb819d2bd, 0x1aed8da0, 0xccef36a8,
0xc70d778b, 0x7c5941da, 0x8d485751, 0x3fe02477, 0x374ad8b8, 0xf4b8436a, 0x1ca11815,
0x69b687c3, 0x8665eeb2,
];
assert_eq!(results, expected);
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0xbee7079f, 0x7a385155, 0x7c97ba98, 0x0d082d73, 0xa0290fcb, 0x6965e348, 0x3e53c612,
0xed7aee32, 0x7621b729, 0x434ee69c, 0xb03371d5, 0xd539d874, 0x281fed31, 0x45fb0a51,
0x1f0ae1ac, 0x6f4d794b,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_values_b() {
// Test vector 3 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1,
];
let mut rng = ChaChaRng::from_seed(seed);
// Skip block 0
for _ in 0..16 {
rng.next_u32();
}
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0x2452eb3a, 0x9249f8ec, 0x8d829d9b, 0xddd4ceb1, 0xe8252083, 0x60818b01, 0xf38422b8,
0x5aaa49c9, 0xbb00ca8e, 0xda3ba7b4, 0xc4b592d1, 0xfdf2732f, 0x4436274e, 0x2561b3c8,
0xebdd4aa6, 0xa0136c00,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_values_c() {
// Test vector 4 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
let seed = [
0, 0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0,
];
let expected = [
0xfb4dd572, 0x4bc42ef1, 0xdf922636, 0x327f1394, 0xa78dea8f, 0x5e269039, 0xa1bebbc1,
0xcaf09aae, 0xa25ab213, 0x48a6b46c, 0x1b9d9bcb, 0x092c5be6, 0x546ca624, 0x1bec45d5,
0x87f47473, 0x96f0992e,
];
let expected_end = 3 * 16;
let mut results = [0u32; 16];
// Test block 2 by skipping block 0 and 1
let mut rng1 = ChaChaRng::from_seed(seed);
for _ in 0..32 {
rng1.next_u32();
}
for i in results.iter_mut() {
*i = rng1.next_u32();
}
assert_eq!(results, expected);
assert_eq!(rng1.get_word_pos(), expected_end);
// Test block 2 by using `set_word_pos`
let mut rng2 = ChaChaRng::from_seed(seed);
rng2.set_word_pos(2 * 16);
for i in results.iter_mut() {
*i = rng2.next_u32();
}
assert_eq!(results, expected);
assert_eq!(rng2.get_word_pos(), expected_end);
// Test skipping behaviour with other types
let mut buf = [0u8; 32];
rng2.fill_bytes(&mut buf[..]);
assert_eq!(rng2.get_word_pos(), expected_end + 8);
rng2.fill_bytes(&mut buf[0..25]);
assert_eq!(rng2.get_word_pos(), expected_end + 15);
rng2.next_u64();
assert_eq!(rng2.get_word_pos(), expected_end + 17);
rng2.next_u32();
rng2.next_u64();
assert_eq!(rng2.get_word_pos(), expected_end + 20);
rng2.fill_bytes(&mut buf[0..1]);
assert_eq!(rng2.get_word_pos(), expected_end + 21);
}
#[test]
fn test_chacha_multiple_blocks() {
let seed = [
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0,
];
let mut rng = ChaChaRng::from_seed(seed);
// Store the 17*i-th 32-bit word,
// i.e., the i-th word of the i-th 16-word block
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
for _ in 0..16 {
rng.next_u32();
}
}
let expected = [
0xf225c81a, 0x6ab1be57, 0x04d42951, 0x70858036, 0x49884684, 0x64efec72, 0x4be2d186,
0x3615b384, 0x11cfa18e, 0xd3c50049, 0x75c775f6, 0x434c6530, 0x2c5bad8f, 0x898881dc,
0x5f1c86d9, 0xc1f8e7f4,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_true_bytes() {
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
let mut results = [0u8; 32];
rng.fill_bytes(&mut results);
let expected = [
118, 184, 224, 173, 160, 241, 61, 144, 64, 93, 106, 229, 83, 134, 189, 40, 189, 210,
25, 184, 160, 141, 237, 26, 168, 54, 239, 204, 139, 119, 13, 199,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_nonce() {
// Test vector 5 from
// https://tools.ietf.org/html/draft-nir-cfrg-chacha20-poly1305-04
// Although we do not support setting a nonce, we try it here anyway so
// we can use this test vector.
let seed = [0u8; 32];
let mut rng = ChaChaRng::from_seed(seed);
// 96-bit nonce in LE order is: 0,0,0,0, 0,0,0,0, 0,0,0,2
rng.set_stream(2u64 << (24 + 32));
let mut results = [0u32; 16];
for i in results.iter_mut() {
*i = rng.next_u32();
}
let expected = [
0x374dc6c2, 0x3736d58c, 0xb904e24a, 0xcd3f93ef, 0x88228b1a, 0x96a4dfb3, 0x5b76ab72,
0xc727ee54, 0x0e0e978a, 0xf3145c95, 0x1b748ea8, 0xf786c297, 0x99c28f5f, 0x628314e8,
0x398a19fa, 0x6ded1b53,
];
assert_eq!(results, expected);
}
#[test]
fn test_chacha_clone_streams() {
let seed = [
0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 4, 0, 0, 0, 5, 0, 0, 0, 6, 0, 0, 0, 7,
0, 0, 0,
];
let mut rng = ChaChaRng::from_seed(seed);
let mut clone = rng.clone();
for _ in 0..16 {
assert_eq!(rng.next_u64(), clone.next_u64());
}
rng.set_stream(51);
for _ in 0..7 {
assert!(rng.next_u32() != clone.next_u32());
}
clone.set_stream(51); // switch part way through block
for _ in 7..16 {
assert_eq!(rng.next_u32(), clone.next_u32());
}
}
#[test]
fn test_chacha_word_pos_wrap_exact() {
use super::{BUF_BLOCKS, BLOCK_WORDS};
let mut rng = ChaChaRng::from_seed(Default::default());
// refilling the buffer in set_word_pos will wrap the block counter to 0
let last_block = (1 << 68) - u128::from(BUF_BLOCKS * BLOCK_WORDS);
rng.set_word_pos(last_block);
assert_eq!(rng.get_word_pos(), last_block);
}
#[test]
fn test_chacha_word_pos_wrap_excess() {
use super::BLOCK_WORDS;
let mut rng = ChaChaRng::from_seed(Default::default());
// refilling the buffer in set_word_pos will wrap the block counter past 0
let last_block = (1 << 68) - u128::from(BLOCK_WORDS);
rng.set_word_pos(last_block);
assert_eq!(rng.get_word_pos(), last_block);
}
#[test]
fn test_chacha_word_pos_zero() {
let mut rng = ChaChaRng::from_seed(Default::default());
assert_eq!(rng.get_word_pos(), 0);
rng.set_word_pos(0);
assert_eq!(rng.get_word_pos(), 0);
}
}