regalloc2/checker.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/*
* The following code is derived from `lib/src/checker.rs` in the
* regalloc.rs project
* (https://github.com/bytecodealliance/regalloc.rs). regalloc.rs is
* also licensed under Apache-2.0 with the LLVM exception, as the rest
* of regalloc2 is.
*/
//! Checker: verifies that spills/reloads/moves retain equivalent
//! dataflow to original, VReg-based code.
//!
//! The basic idea is that we track symbolic values as they flow
//! through spills and reloads. The symbolic values represent
//! particular virtual registers in the original function body
//! presented to the register allocator. Any instruction in the
//! original function body (i.e., not added by the allocator)
//! conceptually generates a symbolic value "Vn" when storing to (or
//! modifying) a virtual register.
//!
//! A symbolic value is logically a *set of virtual registers*,
//! representing all virtual registers equal to the value in the given
//! storage slot at a given program point. This representation (as
//! opposed to tracking just one virtual register) is necessary
//! because the regalloc may implement moves in the source program
//! (via move instructions or blockparam assignments on edges) in
//! "intelligent" ways, taking advantage of values that are already in
//! the right place, so we need to know *all* names for a value.
//!
//! These symbolic values are precise but partial: in other words, if
//! a physical register is described as containing a virtual register
//! at a program point, it must actually contain the value of this
//! register (modulo any analysis bugs); but it may describe fewer
//! virtual registers even in cases where one *could* statically prove
//! that it contains a certain register, because the analysis is not
//! perfectly path-sensitive or value-sensitive. However, all
//! assignments *produced by our register allocator* should be
//! analyzed fully precisely. (This last point is important and bears
//! repeating: we only need to verify the programs that we produce,
//! not arbitrary programs.)
//!
//! Operand constraints (fixed register, register, any) are also checked
//! at each operand.
//!
//! ## Formal Definition
//!
//! The analysis lattice consists of the elements of 𝒫(V), the
//! powerset (set of all subsets) of V (the set of all virtual
//! registers). The ⊤ (top) value in the lattice is V itself, and the
//! ⊥ (bottom) value in the lattice is ∅ (the empty set). The lattice
//! ordering relation is the subset relation: S ≤ U iff S ⊆ U. These
//! definitions imply that the lattice meet-function (greatest lower
//! bound) is set-intersection.
//!
//! (For efficiency, we represent ⊤ not by actually listing out all
//! virtual registers, but by representing a special "top" value, but
//! the semantics are the same.)
//!
//! The dataflow analysis state at each program point (each point
//! before or after an instruction) is:
//!
//! - map of: Allocation -> lattice value
//!
//! And the transfer functions for instructions are (where `A` is the
//! above map from allocated physical registers to lattice values):
//!
//! - `Edit::Move` inserted by RA: [ alloc_d := alloc_s ]
//!
//! A' = A[alloc_d → A[alloc_s]]
//!
//! - statement in pre-regalloc function [ V_i := op V_j, V_k, ... ]
//! with allocated form [ A_i := op A_j, A_k, ... ]
//!
//! A' = { A_k → A[A_k] \ { V_i } for k ≠ i } ∪
//! { A_i -> { V_i } }
//!
//! In other words, a statement, even after allocation, generates
//! a symbol that corresponds to its original virtual-register
//! def. Simultaneously, that same virtual register symbol is removed
//! from all other allocs: they no longer carry the current value.
//!
//! - Parallel moves or blockparam-assignments in original program
//! [ V_d1 := V_s1, V_d2 := V_s2, ... ]
//!
//! A' = { A_k → subst(A[A_k]) for all k }
//! where subst(S) removes symbols for overwritten virtual
//! registers (V_d1 .. V_dn) and then adds V_di whenever
//! V_si appeared prior to the removals.
//!
//! To check correctness, we first find the dataflow fixpoint with the
//! above lattice and transfer/meet functions. Then, at each op, we
//! examine the dataflow solution at the preceding program point, and
//! check that the allocation for each op arg (input/use) contains the
//! symbol corresponding to the original virtual register specified
//! for this arg.
#![allow(dead_code)]
use crate::{
Allocation, AllocationKind, Block, Edit, Function, FxHashMap, FxHashSet, Inst, InstOrEdit,
InstPosition, MachineEnv, Operand, OperandConstraint, OperandKind, OperandPos, Output, PReg,
PRegSet, VReg,
};
use alloc::vec::Vec;
use alloc::{format, vec};
use core::default::Default;
use core::hash::Hash;
use core::result::Result;
use smallvec::{smallvec, SmallVec};
/// A set of errors detected by the regalloc checker.
#[derive(Clone, Debug)]
pub struct CheckerErrors {
errors: Vec<CheckerError>,
}
/// A single error detected by the regalloc checker.
#[derive(Clone, Debug)]
pub enum CheckerError {
MissingAllocation {
inst: Inst,
op: Operand,
},
UnknownValueInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
},
ConflictedValueInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
},
IncorrectValuesInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
actual: FxHashSet<VReg>,
},
ConstraintViolated {
inst: Inst,
op: Operand,
alloc: Allocation,
},
AllocationIsNotReg {
inst: Inst,
op: Operand,
alloc: Allocation,
},
AllocationIsNotFixedReg {
inst: Inst,
op: Operand,
alloc: Allocation,
},
AllocationIsNotReuse {
inst: Inst,
op: Operand,
alloc: Allocation,
expected_alloc: Allocation,
},
AllocationIsNotStack {
inst: Inst,
op: Operand,
alloc: Allocation,
},
ConflictedValueInStackmap {
inst: Inst,
alloc: Allocation,
},
NonRefValuesInStackmap {
inst: Inst,
alloc: Allocation,
vregs: FxHashSet<VReg>,
},
StackToStackMove {
into: Allocation,
from: Allocation,
},
}
/// Abstract state for an allocation.
///
/// Equivalent to a set of virtual register names, with the
/// universe-set as top and empty set as bottom lattice element. The
/// meet-function is thus set intersection.
#[derive(Clone, Debug, PartialEq, Eq)]
enum CheckerValue {
/// The lattice top-value: this value could be equivalent to any
/// vreg (i.e., the universe set).
Universe,
/// The set of VRegs that this value is equal to.
VRegs(FxHashSet<VReg>),
}
impl CheckerValue {
fn vregs(&self) -> Option<&FxHashSet<VReg>> {
match self {
CheckerValue::Universe => None,
CheckerValue::VRegs(vregs) => Some(vregs),
}
}
fn vregs_mut(&mut self) -> Option<&mut FxHashSet<VReg>> {
match self {
CheckerValue::Universe => None,
CheckerValue::VRegs(vregs) => Some(vregs),
}
}
}
impl Default for CheckerValue {
fn default() -> CheckerValue {
CheckerValue::Universe
}
}
impl CheckerValue {
/// Meet function of the abstract-interpretation value
/// lattice. Returns a boolean value indicating whether `self` was
/// changed.
fn meet_with(&mut self, other: &CheckerValue) {
match (self, other) {
(_, CheckerValue::Universe) => {
// Nothing.
}
(this @ CheckerValue::Universe, _) => {
*this = other.clone();
}
(CheckerValue::VRegs(my_vregs), CheckerValue::VRegs(other_vregs)) => {
my_vregs.retain(|vreg| other_vregs.contains(vreg));
}
}
}
fn from_reg(reg: VReg) -> CheckerValue {
CheckerValue::VRegs(core::iter::once(reg).collect())
}
fn remove_vreg(&mut self, reg: VReg) {
match self {
CheckerValue::Universe => {
panic!("Cannot remove VReg from Universe set (we do not have the full list of vregs available");
}
CheckerValue::VRegs(vregs) => {
vregs.remove(®);
}
}
}
fn copy_vreg(&mut self, src: VReg, dst: VReg) {
match self {
CheckerValue::Universe => {
// Nothing.
}
CheckerValue::VRegs(vregs) => {
if vregs.contains(&src) {
vregs.insert(dst);
}
}
}
}
fn empty() -> CheckerValue {
CheckerValue::VRegs(FxHashSet::default())
}
}
fn visit_all_vregs<F: Function, V: FnMut(VReg)>(f: &F, mut v: V) {
for block in 0..f.num_blocks() {
let block = Block::new(block);
for inst in f.block_insns(block).iter() {
for op in f.inst_operands(inst) {
v(op.vreg());
}
if f.is_branch(inst) {
for succ_idx in 0..f.block_succs(block).len() {
for ¶m in f.branch_blockparams(block, inst, succ_idx) {
v(param);
}
}
}
}
for &vreg in f.block_params(block) {
v(vreg);
}
}
}
/// State that steps through program points as we scan over the instruction stream.
#[derive(Clone, Debug, PartialEq, Eq)]
enum CheckerState {
Top,
Allocations(FxHashMap<Allocation, CheckerValue>),
}
impl CheckerState {
fn get_value(&self, alloc: &Allocation) -> Option<&CheckerValue> {
match self {
CheckerState::Top => None,
CheckerState::Allocations(allocs) => allocs.get(alloc),
}
}
fn get_values_mut(&mut self) -> impl Iterator<Item = &mut CheckerValue> {
match self {
CheckerState::Top => panic!("Cannot get mutable values iterator on Top state"),
CheckerState::Allocations(allocs) => allocs.values_mut(),
}
}
fn get_mappings(&self) -> impl Iterator<Item = (&Allocation, &CheckerValue)> {
match self {
CheckerState::Top => panic!("Cannot get mappings iterator on Top state"),
CheckerState::Allocations(allocs) => allocs.iter(),
}
}
fn get_mappings_mut(&mut self) -> impl Iterator<Item = (&Allocation, &mut CheckerValue)> {
match self {
CheckerState::Top => panic!("Cannot get mutable mappings iterator on Top state"),
CheckerState::Allocations(allocs) => allocs.iter_mut(),
}
}
/// Transition from a "top" (undefined/unanalyzed) state to an empty set of allocations.
fn become_defined(&mut self) {
match self {
CheckerState::Top => *self = CheckerState::Allocations(FxHashMap::default()),
_ => {}
}
}
fn set_value(&mut self, alloc: Allocation, value: CheckerValue) {
match self {
CheckerState::Top => {
panic!("Cannot set value on Top state");
}
CheckerState::Allocations(allocs) => {
allocs.insert(alloc, value);
}
}
}
fn copy_vreg(&mut self, src: VReg, dst: VReg) {
match self {
CheckerState::Top => {
// Nothing.
}
CheckerState::Allocations(allocs) => {
for value in allocs.values_mut() {
value.copy_vreg(src, dst);
}
}
}
}
fn remove_value(&mut self, alloc: &Allocation) {
match self {
CheckerState::Top => {
panic!("Cannot remove value on Top state");
}
CheckerState::Allocations(allocs) => {
allocs.remove(alloc);
}
}
}
fn initial() -> Self {
CheckerState::Allocations(FxHashMap::default())
}
}
impl Default for CheckerState {
fn default() -> CheckerState {
CheckerState::Top
}
}
impl core::fmt::Display for CheckerValue {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
CheckerValue::Universe => {
write!(f, "top")
}
CheckerValue::VRegs(vregs) => {
write!(f, "{{ ")?;
for vreg in vregs {
write!(f, "{} ", vreg)?;
}
write!(f, "}}")?;
Ok(())
}
}
}
}
/// Meet function for analysis value: meet individual values at
/// matching allocations, and intersect keys (remove key-value pairs
/// only on one side). Returns boolean flag indicating whether `into`
/// changed.
fn merge_map<K: Copy + Clone + PartialEq + Eq + Hash>(
into: &mut FxHashMap<K, CheckerValue>,
from: &FxHashMap<K, CheckerValue>,
) {
into.retain(|k, _| from.contains_key(k));
for (k, into_v) in into.iter_mut() {
let from_v = from.get(k).unwrap();
into_v.meet_with(from_v);
}
}
impl CheckerState {
/// Create a new checker state.
fn new() -> CheckerState {
Default::default()
}
/// Merge this checker state with another at a CFG join-point.
fn meet_with(&mut self, other: &CheckerState) {
match (self, other) {
(_, CheckerState::Top) => {
// Nothing.
}
(this @ CheckerState::Top, _) => {
*this = other.clone();
}
(
CheckerState::Allocations(my_allocations),
CheckerState::Allocations(other_allocations),
) => {
merge_map(my_allocations, other_allocations);
}
}
}
fn check_val<'a, F: Function>(
&self,
inst: Inst,
op: Operand,
alloc: Allocation,
val: &CheckerValue,
allocs: &[Allocation],
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
if alloc == Allocation::none() {
return Err(CheckerError::MissingAllocation { inst, op });
}
if op.kind() == OperandKind::Use && op.as_fixed_nonallocatable().is_none() {
match val {
CheckerValue::Universe => {
return Err(CheckerError::UnknownValueInAllocation { inst, op, alloc });
}
CheckerValue::VRegs(vregs) if !vregs.contains(&op.vreg()) => {
return Err(CheckerError::IncorrectValuesInAllocation {
inst,
op,
alloc,
actual: vregs.clone(),
});
}
_ => {}
}
}
self.check_constraint(inst, op, alloc, allocs, checker)?;
Ok(())
}
/// Check an instruction against this state. This must be called
/// twice: once with `InstPosition::Before`, and once with
/// `InstPosition::After` (after updating state with defs).
fn check<'a, F: Function>(
&self,
pos: InstPosition,
checkinst: &CheckerInst,
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
let default_val = Default::default();
match checkinst {
&CheckerInst::Op {
inst,
ref operands,
ref allocs,
..
} => {
// Skip Use-checks at the After point if there are any
// reused inputs: the Def which reuses the input
// happens early.
let has_reused_input = operands
.iter()
.any(|op| matches!(op.constraint(), OperandConstraint::Reuse(_)));
if has_reused_input && pos == InstPosition::After {
return Ok(());
}
// For each operand, check (i) that the allocation
// contains the expected vreg, and (ii) that it meets
// the requirements of the OperandConstraint.
for (op, alloc) in operands.iter().zip(allocs.iter()) {
let is_here = match (op.pos(), pos) {
(OperandPos::Early, InstPosition::Before) => true,
(OperandPos::Late, InstPosition::After) => true,
_ => false,
};
if !is_here {
continue;
}
let val = self.get_value(alloc).unwrap_or(&default_val);
trace!(
"checker: checkinst {:?}: op {:?}, alloc {:?}, checker value {:?}",
checkinst,
op,
alloc,
val
);
self.check_val(inst, *op, *alloc, val, allocs, checker)?;
}
}
&CheckerInst::Move { into, from } => {
// Ensure that the allocator never returns stack-to-stack moves.
let is_stack = |alloc: Allocation| {
if let Some(reg) = alloc.as_reg() {
checker.stack_pregs.contains(reg)
} else {
alloc.is_stack()
}
};
if is_stack(into) && is_stack(from) {
return Err(CheckerError::StackToStackMove { into, from });
}
}
&CheckerInst::ParallelMove { .. } => {
// This doesn't need verification; we just update
// according to the move semantics in the step
// function below.
}
}
Ok(())
}
/// Update according to instruction.
fn update(&mut self, checkinst: &CheckerInst) {
self.become_defined();
match checkinst {
&CheckerInst::Move { into, from } => {
// Value may not be present if this move is part of
// the parallel move resolver's fallback sequence that
// saves a victim register elsewhere. (In other words,
// that sequence saves an undefined value and restores
// it, so has no effect.) The checker needs to avoid
// putting Universe lattice values into the map.
if let Some(val) = self.get_value(&from).cloned() {
trace!(
"checker: checkinst {:?} updating: move {:?} -> {:?} val {:?}",
checkinst,
from,
into,
val
);
self.set_value(into, val);
}
}
&CheckerInst::ParallelMove { ref moves } => {
// First, build map of actions for each vreg in an
// alloc. If an alloc has a reg V_i before a parallel
// move, then for each use of V_i as a source (V_i ->
// V_j), we might add a new V_j wherever V_i appears;
// and if V_i is used as a dest (at most once), then
// it must be removed first from allocs' vreg sets.
let mut additions: FxHashMap<VReg, SmallVec<[VReg; 2]>> = FxHashMap::default();
let mut deletions: FxHashSet<VReg> = FxHashSet::default();
for &(dest, src) in moves {
deletions.insert(dest);
additions
.entry(src)
.or_insert_with(|| smallvec![])
.push(dest);
}
// Now process each allocation's set of vreg labels,
// first deleting those labels that were updated by
// this parallel move, then adding back labels
// redefined by the move.
for value in self.get_values_mut() {
if let Some(vregs) = value.vregs_mut() {
let mut insertions: SmallVec<[VReg; 2]> = smallvec![];
for &vreg in vregs.iter() {
if let Some(additions) = additions.get(&vreg) {
insertions.extend(additions.iter().cloned());
}
}
for &d in &deletions {
vregs.remove(&d);
}
vregs.extend(insertions);
}
}
}
&CheckerInst::Op {
ref operands,
ref allocs,
ref clobbers,
..
} => {
// For each def, (i) update alloc to reflect defined
// vreg (and only that vreg), and (ii) update all
// other allocs in the checker state by removing this
// vreg, if defined (other defs are now stale).
for (op, alloc) in operands.iter().zip(allocs.iter()) {
if op.kind() != OperandKind::Def {
continue;
}
self.remove_vreg(op.vreg());
self.set_value(*alloc, CheckerValue::from_reg(op.vreg()));
}
for clobber in clobbers {
self.remove_value(&Allocation::reg(*clobber));
}
}
}
}
fn remove_vreg(&mut self, vreg: VReg) {
for (_, value) in self.get_mappings_mut() {
value.remove_vreg(vreg);
}
}
fn check_constraint<'a, F: Function>(
&self,
inst: Inst,
op: Operand,
alloc: Allocation,
allocs: &[Allocation],
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
match op.constraint() {
OperandConstraint::Any => {}
OperandConstraint::Reg => {
if let Some(preg) = alloc.as_reg() {
// Reject pregs that represent a fixed stack slot.
if !checker.machine_env.fixed_stack_slots.contains(&preg) {
return Ok(());
}
}
return Err(CheckerError::AllocationIsNotReg { inst, op, alloc });
}
OperandConstraint::FixedReg(preg) => {
if alloc != Allocation::reg(preg) {
return Err(CheckerError::AllocationIsNotFixedReg { inst, op, alloc });
}
}
OperandConstraint::Reuse(idx) => {
if alloc.kind() != AllocationKind::Reg {
return Err(CheckerError::AllocationIsNotReg { inst, op, alloc });
}
if alloc != allocs[idx] {
return Err(CheckerError::AllocationIsNotReuse {
inst,
op,
alloc,
expected_alloc: allocs[idx],
});
}
}
}
Ok(())
}
}
/// An instruction representation in the checker's BB summary.
#[derive(Clone, Debug)]
pub(crate) enum CheckerInst {
/// A move between allocations (these could be registers or
/// spillslots).
Move { into: Allocation, from: Allocation },
/// A parallel move in the original program. Simultaneously moves
/// from all source vregs to all corresponding dest vregs,
/// permitting overlap in the src and dest sets and doing all
/// reads before any writes.
ParallelMove {
/// Vector of (dest, src) moves.
moves: Vec<(VReg, VReg)>,
},
/// A regular instruction with fixed use and def slots. Contains
/// both the original operands (as given to the regalloc) and the
/// allocation results.
Op {
inst: Inst,
operands: Vec<Operand>,
allocs: Vec<Allocation>,
clobbers: Vec<PReg>,
},
}
#[derive(Debug)]
pub struct Checker<'a, F: Function> {
f: &'a F,
bb_in: FxHashMap<Block, CheckerState>,
bb_insts: FxHashMap<Block, Vec<CheckerInst>>,
edge_insts: FxHashMap<(Block, Block), Vec<CheckerInst>>,
machine_env: &'a MachineEnv,
stack_pregs: PRegSet,
}
impl<'a, F: Function> Checker<'a, F> {
/// Create a new checker for the given function, initializing CFG
/// info immediately. The client should call the `add_*()`
/// methods to add abstract instructions to each BB before
/// invoking `run()` to check for errors.
pub fn new(f: &'a F, machine_env: &'a MachineEnv) -> Checker<'a, F> {
let mut bb_in = FxHashMap::default();
let mut bb_insts = FxHashMap::default();
let mut edge_insts = FxHashMap::default();
for block in 0..f.num_blocks() {
let block = Block::new(block);
bb_in.insert(block, Default::default());
bb_insts.insert(block, vec![]);
for &succ in f.block_succs(block) {
edge_insts.insert((block, succ), vec![]);
}
}
bb_in.insert(f.entry_block(), CheckerState::default());
let mut stack_pregs = PRegSet::empty();
for &preg in &machine_env.fixed_stack_slots {
stack_pregs.add(preg);
}
Checker {
f,
bb_in,
bb_insts,
edge_insts,
machine_env,
stack_pregs,
}
}
/// Build the list of checker instructions based on the given func
/// and allocation results.
pub fn prepare(&mut self, out: &Output) {
trace!("checker: out = {:?}", out);
let mut last_inst = None;
for block in 0..self.f.num_blocks() {
let block = Block::new(block);
for inst_or_edit in out.block_insts_and_edits(self.f, block) {
match inst_or_edit {
InstOrEdit::Inst(inst) => {
debug_assert!(last_inst.is_none() || inst > last_inst.unwrap());
last_inst = Some(inst);
self.handle_inst(block, inst, out);
}
InstOrEdit::Edit(edit) => self.handle_edit(block, edit),
}
}
}
}
/// For each original instruction, create an `Op`.
fn handle_inst(&mut self, block: Block, inst: Inst, out: &Output) {
// Skip normal checks if this is a branch: the blockparams do
// not exist in post-regalloc code, and the edge-moves have to
// be inserted before the branch rather than after.
if !self.f.is_branch(inst) {
let operands: Vec<_> = self.f.inst_operands(inst).iter().cloned().collect();
let allocs: Vec<_> = out.inst_allocs(inst).iter().cloned().collect();
let clobbers: Vec<_> = self.f.inst_clobbers(inst).into_iter().collect();
let checkinst = CheckerInst::Op {
inst,
operands,
allocs,
clobbers,
};
trace!("checker: adding inst {:?}", checkinst);
self.bb_insts.get_mut(&block).unwrap().push(checkinst);
}
// Instead, if this is a branch, emit a ParallelMove on each
// outgoing edge as necessary to handle blockparams.
else {
for (i, &succ) in self.f.block_succs(block).iter().enumerate() {
let args = self.f.branch_blockparams(block, inst, i);
let params = self.f.block_params(succ);
assert_eq!(
args.len(),
params.len(),
"block{} has succ block{}; gave {} args for {} params",
block.index(),
succ.index(),
args.len(),
params.len()
);
if args.len() > 0 {
let moves = params.iter().cloned().zip(args.iter().cloned()).collect();
self.edge_insts
.get_mut(&(block, succ))
.unwrap()
.push(CheckerInst::ParallelMove { moves });
}
}
}
}
fn handle_edit(&mut self, block: Block, edit: &Edit) {
trace!("checker: adding edit {:?}", edit);
match edit {
&Edit::Move { from, to } => {
self.bb_insts
.get_mut(&block)
.unwrap()
.push(CheckerInst::Move { into: to, from });
}
}
}
/// Perform the dataflow analysis to compute checker state at each BB entry.
fn analyze(&mut self) {
let mut queue = Vec::new();
let mut queue_set = FxHashSet::default();
// Put every block in the queue to start with, to ensure
// everything is visited even if the initial state remains
// `Top` after preds update it.
//
// We add blocks in reverse order so that when we process
// back-to-front below, we do our initial pass in input block
// order, which is (usually) RPO order or at least a
// reasonable visit order.
for block in (0..self.f.num_blocks()).rev() {
let block = Block::new(block);
queue.push(block);
queue_set.insert(block);
}
while let Some(block) = queue.pop() {
queue_set.remove(&block);
let mut state = self.bb_in.get(&block).cloned().unwrap();
trace!("analyze: block {} has state {:?}", block.index(), state);
for inst in self.bb_insts.get(&block).unwrap() {
state.update(inst);
trace!("analyze: inst {:?} -> state {:?}", inst, state);
}
for &succ in self.f.block_succs(block) {
let mut new_state = state.clone();
for edge_inst in self.edge_insts.get(&(block, succ)).unwrap() {
new_state.update(edge_inst);
trace!(
"analyze: succ {:?}: inst {:?} -> state {:?}",
succ,
edge_inst,
new_state
);
}
let cur_succ_in = self.bb_in.get(&succ).unwrap();
trace!(
"meeting state {:?} for block {} with state {:?} for block {}",
new_state,
block.index(),
cur_succ_in,
succ.index()
);
new_state.meet_with(cur_succ_in);
let changed = &new_state != cur_succ_in;
trace!(" -> {:?}, changed {}", new_state, changed);
if changed {
trace!(
"analyze: block {} state changed from {:?} to {:?}; pushing onto queue",
succ.index(),
cur_succ_in,
new_state
);
self.bb_in.insert(succ, new_state);
if queue_set.insert(succ) {
queue.push(succ);
}
}
}
}
}
/// Using BB-start state computed by `analyze()`, step the checker state
/// through each BB and check each instruction's register allocations
/// for errors.
fn find_errors(&self) -> Result<(), CheckerErrors> {
let mut errors = vec![];
for (block, input) in &self.bb_in {
let mut state = input.clone();
for inst in self.bb_insts.get(block).unwrap() {
if let Err(e) = state.check(InstPosition::Before, inst, self) {
trace!("Checker error: {:?}", e);
errors.push(e);
}
state.update(inst);
if let Err(e) = state.check(InstPosition::After, inst, self) {
trace!("Checker error: {:?}", e);
errors.push(e);
}
}
}
if errors.is_empty() {
Ok(())
} else {
Err(CheckerErrors { errors })
}
}
/// Find any errors, returning `Err(CheckerErrors)` with all errors found
/// or `Ok(())` otherwise.
pub fn run(mut self) -> Result<(), CheckerErrors> {
self.analyze();
let result = self.find_errors();
trace!("=== CHECKER RESULT ===");
fn print_state(state: &CheckerState) {
if !trace_enabled!() {
return;
}
if let CheckerState::Allocations(allocs) = state {
let mut s = vec![];
for (alloc, state) in allocs {
s.push(format!("{} := {}", alloc, state));
}
trace!(" {{ {} }}", s.join(", "))
}
}
for bb in 0..self.f.num_blocks() {
let bb = Block::new(bb);
trace!("block{}:", bb.index());
let insts = self.bb_insts.get(&bb).unwrap();
let mut state = self.bb_in.get(&bb).unwrap().clone();
print_state(&state);
for inst in insts {
match inst {
&CheckerInst::Op {
inst,
ref operands,
ref allocs,
ref clobbers,
} => {
trace!(
" inst{}: {:?} ({:?}) clobbers:{:?}",
inst.index(),
operands,
allocs,
clobbers
);
}
&CheckerInst::Move { from, into } => {
trace!(" {} -> {}", from, into);
}
&CheckerInst::ParallelMove { .. } => {
panic!("unexpected parallel_move in body (non-edge)")
}
}
state.update(inst);
print_state(&state);
}
for &succ in self.f.block_succs(bb) {
trace!(" succ {:?}:", succ);
let mut state = state.clone();
for edge_inst in self.edge_insts.get(&(bb, succ)).unwrap() {
match edge_inst {
&CheckerInst::ParallelMove { ref moves } => {
let moves = moves
.iter()
.map(|(dest, src)| format!("{} -> {}", src, dest))
.collect::<Vec<_>>();
trace!(" parallel_move {}", moves.join(", "));
}
_ => panic!("unexpected edge_inst: not a parallel move"),
}
state.update(edge_inst);
print_state(&state);
}
}
}
result
}
}