regalloc2/fastalloc/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
use crate::moves::{MoveAndScratchResolver, ParallelMoves};
use crate::{cfg::CFGInfo, ion::Stats, Allocation, RegAllocError};
use crate::{ssa::validate_ssa, Edit, Function, MachineEnv, Output, ProgPoint};
use crate::{
    AllocationKind, Block, FxHashMap, Inst, InstPosition, Operand, OperandConstraint, OperandKind,
    OperandPos, PReg, PRegSet, RegClass, SpillSlot, VReg,
};
use alloc::vec::Vec;
use core::convert::TryInto;
use core::iter::FromIterator;
use core::ops::{Index, IndexMut};

mod iter;
mod lru;
mod vregset;
use iter::*;
use lru::*;
use vregset::VRegSet;

#[cfg(test)]
mod tests;

#[derive(Debug)]
struct Allocs {
    allocs: Vec<Allocation>,
    /// `inst_alloc_offsets[i]` is the offset into `allocs` for the allocations of
    /// instruction `i`'s operands.
    inst_alloc_offsets: Vec<u32>,
}

impl Allocs {
    fn new<F: Function>(func: &F) -> (Self, u32) {
        let mut allocs = Vec::new();
        let mut inst_alloc_offsets = Vec::with_capacity(func.num_insts());
        let mut max_operand_len = 0;
        let mut no_of_operands = 0;
        for inst in 0..func.num_insts() {
            let operands_len = func.inst_operands(Inst::new(inst)).len() as u32;
            max_operand_len = max_operand_len.max(operands_len);
            inst_alloc_offsets.push(no_of_operands as u32);
            no_of_operands += operands_len;
        }
        allocs.resize(no_of_operands as usize, Allocation::none());
        (
            Self {
                allocs,
                inst_alloc_offsets,
            },
            max_operand_len,
        )
    }
}

impl Index<(usize, usize)> for Allocs {
    type Output = Allocation;

    /// Retrieve the allocation for operand `idx.1` at instruction `idx.0`
    fn index(&self, idx: (usize, usize)) -> &Allocation {
        &self.allocs[self.inst_alloc_offsets[idx.0] as usize + idx.1]
    }
}

impl IndexMut<(usize, usize)> for Allocs {
    fn index_mut(&mut self, idx: (usize, usize)) -> &mut Allocation {
        &mut self.allocs[self.inst_alloc_offsets[idx.0] as usize + idx.1]
    }
}

#[derive(Debug)]
struct Stack<'a, F: Function> {
    num_spillslots: u32,
    func: &'a F,
}

impl<'a, F: Function> Stack<'a, F> {
    fn new(func: &'a F) -> Self {
        Self {
            num_spillslots: 0,
            func,
        }
    }

    /// Allocates a spill slot on the stack for `vreg`
    fn allocstack(&mut self, class: RegClass) -> SpillSlot {
        trace!("Allocating a spillslot for class {class:?}");
        let size: u32 = self.func.spillslot_size(class).try_into().unwrap();
        // Rest of this function was copied verbatim
        // from `Env::allocate_spillslot` in src/ion/spill.rs.
        let mut offset = self.num_spillslots;
        // Align up to `size`.
        debug_assert!(size.is_power_of_two());
        offset = (offset + size - 1) & !(size - 1);
        let slot = if self.func.multi_spillslot_named_by_last_slot() {
            offset + size - 1
        } else {
            offset
        };
        offset += size;
        self.num_spillslots = offset;
        trace!("Allocated slot: {slot}");
        SpillSlot::new(slot as usize)
    }
}

#[derive(Debug)]
struct Edits {
    /// The final output edits.
    edits: Vec<(ProgPoint, Edit)>,
    fixed_stack_slots: PRegSet,
    /// The scratch registers being used in the instruction being
    /// currently processed.
    scratch_regs: PartedByRegClass<Option<PReg>>,
    dedicated_scratch_regs: PartedByRegClass<Option<PReg>>,
}

impl Edits {
    fn new(
        fixed_stack_slots: PRegSet,
        num_insts: usize,
        dedicated_scratch_regs: PartedByRegClass<Option<PReg>>,
    ) -> Self {
        // This guess is based on the sightglass benchmarks:
        // The average number of edits per instruction is 1.
        let edits_len_guess = num_insts;
        Self {
            edits: Vec::with_capacity(edits_len_guess),
            fixed_stack_slots,
            scratch_regs: dedicated_scratch_regs.clone(),
            dedicated_scratch_regs,
        }
    }
}

impl Edits {
    fn is_stack(&self, alloc: Allocation) -> bool {
        alloc.is_stack()
            || (alloc.is_reg() && self.fixed_stack_slots.contains(alloc.as_reg().unwrap()))
    }

    fn add_move(
        &mut self,
        inst: Inst,
        from: Allocation,
        to: Allocation,
        class: RegClass,
        pos: InstPosition,
    ) {
        trace!(
            "Recording edit: {:?}",
            (ProgPoint::new(inst, pos), Edit::Move { from, to }, class)
        );
        if self.is_stack(from) && self.is_stack(to) {
            trace!("Edit is stack-to-stack. Generating two edits with a scratch register");
            let scratch_reg = self.scratch_regs[class].unwrap();
            let scratch_alloc = Allocation::reg(scratch_reg);
            trace!("Move 1: {scratch_alloc:?} to {to:?}");
            self.edits.push((
                ProgPoint::new(inst, pos),
                Edit::Move {
                    from: scratch_alloc,
                    to,
                },
            ));
            trace!("Move 2: {from:?} to {scratch_alloc:?}");
            self.edits.push((
                ProgPoint::new(inst, pos),
                Edit::Move {
                    from,
                    to: scratch_alloc,
                },
            ));
        } else {
            self.edits
                .push((ProgPoint::new(inst, pos), Edit::Move { from, to }));
        }
    }
}

#[derive(Debug, Clone)]
struct PartedByOperandPos<T> {
    items: [T; 2],
}

impl<T> Index<OperandPos> for PartedByOperandPos<T> {
    type Output = T;
    fn index(&self, index: OperandPos) -> &Self::Output {
        &self.items[index as usize]
    }
}

impl<T> IndexMut<OperandPos> for PartedByOperandPos<T> {
    fn index_mut(&mut self, index: OperandPos) -> &mut Self::Output {
        &mut self.items[index as usize]
    }
}

use core::fmt;

impl<T: fmt::Display> fmt::Display for PartedByOperandPos<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{{ early: {}, late: {} }}", self.items[0], self.items[1])
    }
}

#[derive(Debug)]
pub struct Env<'a, F: Function> {
    func: &'a F,

    /// The current allocations for all virtual registers.
    vreg_allocs: Vec<Allocation>,
    /// Spillslots for all virtual registers.
    /// `vreg_spillslots[i]` is the spillslot for virtual register `i`.
    vreg_spillslots: Vec<SpillSlot>,
    /// The virtual registers that are currently live.
    live_vregs: VRegSet,
    /// Least-recently-used caches for register classes Int, Float, and Vector, respectively.
    lrus: Lrus,
    /// `vreg_in_preg[i]` is the virtual register currently in the physical register
    /// with index `i`.
    vreg_in_preg: Vec<VReg>,
    /// `reused_input_to_reuse_op[i]` is the operand index of the reuse operand
    /// that uses the `i`th operand in the current instruction as its input.
    reused_input_to_reuse_op: Vec<usize>,
    /// The set of registers that can be used for allocation in the
    /// early and late phases of an instruction.
    /// Allocatable registers that contain no vregs, registers that can be
    /// evicted can be in the set, and fixed stack slots are in this set.
    available_pregs: PartedByOperandPos<PRegSet>,
    init_available_pregs: PRegSet,
    allocatable_regs: PRegSet,
    stack: Stack<'a, F>,
    preferred_victim: PartedByRegClass<PReg>,
    vreg_to_live_inst_range: Vec<(ProgPoint, ProgPoint, Allocation)>,

    fixed_stack_slots: PRegSet,

    // Output.
    allocs: Allocs,
    edits: Edits,
    stats: Stats,
    debug_locations: Vec<(u32, ProgPoint, ProgPoint, Allocation)>,
}

impl<'a, F: Function> Env<'a, F> {
    fn new(func: &'a F, env: &'a MachineEnv) -> Self {
        use alloc::vec;
        let mut regs = [
            env.preferred_regs_by_class[RegClass::Int as usize].clone(),
            env.preferred_regs_by_class[RegClass::Float as usize].clone(),
            env.preferred_regs_by_class[RegClass::Vector as usize].clone(),
        ];
        regs[0].extend(
            env.non_preferred_regs_by_class[RegClass::Int as usize]
                .iter()
                .cloned(),
        );
        regs[1].extend(
            env.non_preferred_regs_by_class[RegClass::Float as usize]
                .iter()
                .cloned(),
        );
        regs[2].extend(
            env.non_preferred_regs_by_class[RegClass::Vector as usize]
                .iter()
                .cloned(),
        );
        let allocatable_regs = PRegSet::from(env);
        let init_available_pregs = {
            let mut regs = allocatable_regs;
            for preg in env.fixed_stack_slots.iter() {
                regs.add(*preg);
            }
            regs
        };
        let dedicated_scratch_regs = PartedByRegClass {
            items: [
                env.scratch_by_class[0],
                env.scratch_by_class[1],
                env.scratch_by_class[2],
            ],
        };
        trace!("{:?}", env);
        let (allocs, max_operand_len) = Allocs::new(func);
        let fixed_stack_slots = PRegSet::from_iter(env.fixed_stack_slots.iter().cloned());
        Self {
            func,
            allocatable_regs,
            vreg_allocs: vec![Allocation::none(); func.num_vregs()],
            vreg_spillslots: vec![SpillSlot::invalid(); func.num_vregs()],
            live_vregs: VRegSet::with_capacity(func.num_vregs()),
            lrus: Lrus::new(&regs[0], &regs[1], &regs[2]),
            vreg_in_preg: vec![VReg::invalid(); PReg::NUM_INDEX],
            stack: Stack::new(func),
            fixed_stack_slots,
            vreg_to_live_inst_range: vec![
                (
                    ProgPoint::invalid(),
                    ProgPoint::invalid(),
                    Allocation::none()
                );
                func.num_vregs()
            ],
            preferred_victim: PartedByRegClass {
                items: [
                    regs[0].last().cloned().unwrap_or(PReg::invalid()),
                    regs[1].last().cloned().unwrap_or(PReg::invalid()),
                    regs[2].last().cloned().unwrap_or(PReg::invalid()),
                ],
            },
            reused_input_to_reuse_op: vec![usize::MAX; max_operand_len as usize],
            init_available_pregs,
            available_pregs: PartedByOperandPos {
                items: [init_available_pregs, init_available_pregs],
            },
            allocs,
            edits: Edits::new(fixed_stack_slots, func.num_insts(), dedicated_scratch_regs),
            stats: Stats::default(),
            debug_locations: Vec::with_capacity(func.debug_value_labels().len()),
        }
    }

    fn reset_available_pregs_and_scratch_regs(&mut self) {
        trace!("Resetting the available pregs");
        self.available_pregs = PartedByOperandPos {
            items: [self.init_available_pregs, self.init_available_pregs],
        };
        self.edits.scratch_regs = self.edits.dedicated_scratch_regs.clone();
    }

    fn alloc_scratch_reg(&mut self, inst: Inst, class: RegClass) -> Result<(), RegAllocError> {
        use OperandPos::{Early, Late};
        let reg = self.get_scratch_reg(
            inst,
            class,
            self.available_pregs[Late] & self.available_pregs[Early],
        )?;
        self.edits.scratch_regs[class] = Some(reg);
        self.available_pregs[OperandPos::Early].remove(reg);
        self.available_pregs[OperandPos::Late].remove(reg);
        Ok(())
    }

    fn get_scratch_reg_for_reload(
        &mut self,
        inst: Inst,
        class: RegClass,
        avail_regs: PRegSet,
    ) -> Result<PReg, RegAllocError> {
        let Some(preg) = self.lrus[class].last(avail_regs) else {
            return Err(RegAllocError::TooManyLiveRegs);
        };
        if self.vreg_in_preg[preg.index()] != VReg::invalid() {
            self.evict_vreg_in_preg_before_inst(inst, preg);
        }
        Ok(preg)
    }

    fn get_scratch_reg(
        &mut self,
        inst: Inst,
        class: RegClass,
        avail_regs: PRegSet,
    ) -> Result<PReg, RegAllocError> {
        let Some(preg) = self.lrus[class].last(avail_regs) else {
            return Err(RegAllocError::TooManyLiveRegs);
        };
        if self.vreg_in_preg[preg.index()] != VReg::invalid() {
            self.evict_vreg_in_preg(inst, preg);
        }
        Ok(preg)
    }

    fn reserve_reg_for_fixed_operand(
        &mut self,
        op: Operand,
        op_idx: usize,
        preg: PReg,
    ) -> Result<(), RegAllocError> {
        trace!("Reserving register {preg} for fixed operand {op}");
        let early_avail_pregs = self.available_pregs[OperandPos::Early];
        let late_avail_pregs = self.available_pregs[OperandPos::Late];
        match (op.pos(), op.kind()) {
            (OperandPos::Early, OperandKind::Use) => {
                if op.as_fixed_nonallocatable().is_none() && !early_avail_pregs.contains(preg) {
                    return Err(RegAllocError::TooManyLiveRegs);
                }
                self.available_pregs[OperandPos::Early].remove(preg);
                if self.reused_input_to_reuse_op[op_idx] != usize::MAX {
                    if op.as_fixed_nonallocatable().is_none() && !late_avail_pregs.contains(preg) {
                        return Err(RegAllocError::TooManyLiveRegs);
                    }
                    self.available_pregs[OperandPos::Late].remove(preg);
                }
            }
            (OperandPos::Late, OperandKind::Def) => {
                if op.as_fixed_nonallocatable().is_none() && !late_avail_pregs.contains(preg) {
                    return Err(RegAllocError::TooManyLiveRegs);
                }
                self.available_pregs[OperandPos::Late].remove(preg);
            }
            _ => {
                if op.as_fixed_nonallocatable().is_none()
                    && (!early_avail_pregs.contains(preg) || !late_avail_pregs.contains(preg))
                {
                    return Err(RegAllocError::TooManyLiveRegs);
                }
                self.available_pregs[OperandPos::Early].remove(preg);
                self.available_pregs[OperandPos::Late].remove(preg);
            }
        }
        Ok(())
    }

    fn allocd_within_constraint(&self, op: Operand) -> bool {
        let alloc = self.vreg_allocs[op.vreg().vreg()];
        match op.constraint() {
            OperandConstraint::Any => {
                if let Some(preg) = alloc.as_reg() {
                    if !self.available_pregs[op.pos()].contains(preg) {
                        // If a register isn't in the available pregs list, then
                        // there are two cases: either it's reserved for a
                        // fixed register constraint or a vreg allocated in the instruction
                        // is already assigned to it.
                        //
                        // For example:
                        // 1. use v0, use v0, use v0
                        //
                        // Say p0 is assigned to v0 during the processing of the first operand.
                        // When the second v0 operand is being processed, v0 will still be in
                        // v0, so it is still allocated within constraints.
                        trace!("The vreg in {preg}: {}", self.vreg_in_preg[preg.index()]);
                        self.vreg_in_preg[preg.index()] == op.vreg()
                    } else {
                        true
                    }
                } else {
                    !alloc.is_none()
                }
            }
            OperandConstraint::Reg => {
                if self.edits.is_stack(alloc) {
                    return false;
                }
                if let Some(preg) = alloc.as_reg() {
                    if !self.available_pregs[op.pos()].contains(preg) {
                        trace!("The vreg in {preg}: {}", self.vreg_in_preg[preg.index()]);
                        self.vreg_in_preg[preg.index()] == op.vreg()
                    } else {
                        true
                    }
                } else {
                    false
                }
            }
            // It is possible for an operand to have a fixed register constraint to
            // a clobber.
            OperandConstraint::FixedReg(preg) => alloc.is_reg() && alloc.as_reg().unwrap() == preg,
            OperandConstraint::Reuse(_) => {
                unreachable!()
            }
        }
    }

    fn base_evict_vreg_in_preg(&mut self, inst: Inst, preg: PReg, pos: InstPosition) {
        trace!("Removing the vreg in preg {} for eviction", preg);
        let evicted_vreg = self.vreg_in_preg[preg.index()];
        trace!("The removed vreg: {}", evicted_vreg);
        debug_assert_ne!(evicted_vreg, VReg::invalid());
        if self.vreg_spillslots[evicted_vreg.vreg()].is_invalid() {
            self.vreg_spillslots[evicted_vreg.vreg()] = self.stack.allocstack(evicted_vreg.class());
        }
        let slot = self.vreg_spillslots[evicted_vreg.vreg()];
        self.vreg_allocs[evicted_vreg.vreg()] = Allocation::stack(slot);
        trace!("Move reason: eviction");
        self.edits.add_move(
            inst,
            self.vreg_allocs[evicted_vreg.vreg()],
            Allocation::reg(preg),
            evicted_vreg.class(),
            pos,
        );
    }

    fn evict_vreg_in_preg_before_inst(&mut self, inst: Inst, preg: PReg) {
        self.base_evict_vreg_in_preg(inst, preg, InstPosition::Before)
    }

    fn evict_vreg_in_preg(&mut self, inst: Inst, preg: PReg) {
        self.base_evict_vreg_in_preg(inst, preg, InstPosition::After)
    }

    fn freealloc(&mut self, vreg: VReg) {
        trace!("Freeing vreg {}", vreg);
        let alloc = self.vreg_allocs[vreg.vreg()];
        match alloc.kind() {
            AllocationKind::Reg => {
                let preg = alloc.as_reg().unwrap();
                self.vreg_in_preg[preg.index()] = VReg::invalid();
            }
            AllocationKind::Stack => (),
            AllocationKind::None => unreachable!("Attempting to free an unallocated operand!"),
        }
        self.vreg_allocs[vreg.vreg()] = Allocation::none();
        self.live_vregs.remove(vreg.vreg());
        trace!(
            "{} curr alloc is now {}",
            vreg,
            self.vreg_allocs[vreg.vreg()]
        );
    }

    /// Allocates a physical register for the operand `op`.
    fn alloc_reg_for_operand(
        &mut self,
        inst: Inst,
        op: Operand,
    ) -> Result<Allocation, RegAllocError> {
        trace!("available regs: {}", self.available_pregs);
        trace!("Int LRU: {:?}", self.lrus[RegClass::Int]);
        trace!("Float LRU: {:?}", self.lrus[RegClass::Float]);
        trace!("Vector LRU: {:?}", self.lrus[RegClass::Vector]);
        trace!("");
        let draw_from = match (op.pos(), op.kind()) {
            (OperandPos::Late, OperandKind::Use)
            | (OperandPos::Early, OperandKind::Def)
            | (OperandPos::Late, OperandKind::Def)
                if matches!(op.constraint(), OperandConstraint::Reuse(_)) =>
            {
                self.available_pregs[OperandPos::Late] & self.available_pregs[OperandPos::Early]
            }
            _ => self.available_pregs[op.pos()],
        };
        if draw_from.is_empty(op.class()) {
            trace!("No registers available for {op}");
            return Err(RegAllocError::TooManyLiveRegs);
        }
        let Some(preg) = self.lrus[op.class()].last(draw_from) else {
            trace!(
                "Failed to find an available {:?} register in the LRU for operand {op}",
                op.class()
            );
            return Err(RegAllocError::TooManyLiveRegs);
        };
        if self.vreg_in_preg[preg.index()] != VReg::invalid() {
            self.evict_vreg_in_preg(inst, preg);
        }
        trace!("The allocated register for vreg {}: {}", op.vreg(), preg);
        self.lrus[op.class()].poke(preg);
        self.available_pregs[op.pos()].remove(preg);
        match (op.pos(), op.kind()) {
            (OperandPos::Late, OperandKind::Use) => {
                self.available_pregs[OperandPos::Early].remove(preg);
            }
            (OperandPos::Early, OperandKind::Def) => {
                self.available_pregs[OperandPos::Late].remove(preg);
            }
            (OperandPos::Late, OperandKind::Def)
                if matches!(op.constraint(), OperandConstraint::Reuse(_)) =>
            {
                self.available_pregs[OperandPos::Early].remove(preg);
            }
            _ => (),
        };
        Ok(Allocation::reg(preg))
    }

    /// Allocates for the operand `op` with index `op_idx` into the
    /// vector of instruction `inst`'s operands.
    fn alloc_operand(
        &mut self,
        inst: Inst,
        op: Operand,
        op_idx: usize,
    ) -> Result<Allocation, RegAllocError> {
        let new_alloc = match op.constraint() {
            OperandConstraint::Any => self.alloc_reg_for_operand(inst, op)?,
            OperandConstraint::Reg => self.alloc_reg_for_operand(inst, op)?,
            OperandConstraint::FixedReg(preg) => {
                trace!("The fixed preg: {} for operand {}", preg, op);

                Allocation::reg(preg)
            }
            OperandConstraint::Reuse(_) => {
                // This is handled elsewhere.
                unreachable!();
            }
        };
        self.allocs[(inst.index(), op_idx)] = new_alloc;
        Ok(new_alloc)
    }

    /// Allocate operand the `op_idx`th operand `op` in instruction `inst` within its constraint.
    /// Since only fixed register constraints are allowed, `fixed_spillslot` is used when a
    /// fixed stack allocation is needed, like when transferring a stack allocation from a
    /// reuse operand allocation to the reused input.
    fn process_operand_allocation(
        &mut self,
        inst: Inst,
        op: Operand,
        op_idx: usize,
    ) -> Result<(), RegAllocError> {
        if let Some(preg) = op.as_fixed_nonallocatable() {
            self.allocs[(inst.index(), op_idx)] = Allocation::reg(preg);
            trace!(
                "Allocation for instruction {:?} and operand {}: {}",
                inst,
                op,
                self.allocs[(inst.index(), op_idx)]
            );
            return Ok(());
        }
        if !self.allocd_within_constraint(op) {
            trace!("{op} isn't allocated within constraints.");
            let curr_alloc = self.vreg_allocs[op.vreg().vreg()];
            let new_alloc = self.alloc_operand(inst, op, op_idx)?;
            if curr_alloc.is_none() {
                self.live_vregs.insert(op.vreg());
                self.vreg_to_live_inst_range[op.vreg().vreg()].1 = match (op.pos(), op.kind()) {
                    (OperandPos::Late, OperandKind::Use) | (_, OperandKind::Def) => {
                        // Live range ends just before the early phase of the
                        // next instruction.
                        ProgPoint::before(Inst::new(inst.index() + 1))
                    }
                    (OperandPos::Early, OperandKind::Use) => {
                        // Live range ends just before the late phase of the current instruction.
                        ProgPoint::after(inst)
                    }
                };
                self.vreg_to_live_inst_range[op.vreg().vreg()].2 = new_alloc;

                trace!("Setting vreg_allocs[{op}] to {new_alloc:?}");
                self.vreg_allocs[op.vreg().vreg()] = new_alloc;
                if let Some(preg) = new_alloc.as_reg() {
                    self.vreg_in_preg[preg.index()] = op.vreg();
                }
            }
            // Need to insert a move to propagate flow from the current
            // allocation to the subsequent places where the value was
            // used (in `prev_alloc`, that is).
            else {
                trace!("Move reason: Prev allocation doesn't meet constraints");
                if self.edits.is_stack(new_alloc)
                    && self.edits.is_stack(curr_alloc)
                    && self.edits.scratch_regs[op.class()].is_none()
                {
                    self.alloc_scratch_reg(inst, op.class())?;
                }
                if op.kind() == OperandKind::Def {
                    trace!("Adding edit from {new_alloc:?} to {curr_alloc:?} after inst {inst:?} for {op}");
                    self.edits.add_move(
                        inst,
                        new_alloc,
                        curr_alloc,
                        op.class(),
                        InstPosition::After,
                    );
                    // No need to set vreg_in_preg because it will be set during
                    // `freealloc` if needed.
                }
                // Edits for use operands are added later to avoid inserting
                // edits out of order.

                if let Some(preg) = new_alloc.as_reg() {
                    // Don't change the allocation.
                    self.vreg_in_preg[preg.index()] = VReg::invalid();
                }
            }
            trace!(
                "Allocation for instruction {:?} and operand {}: {}",
                inst,
                op,
                self.allocs[(inst.index(), op_idx)]
            );
        } else {
            trace!("{op} is already allocated within constraints");
            self.allocs[(inst.index(), op_idx)] = self.vreg_allocs[op.vreg().vreg()];
            if let Some(preg) = self.allocs[(inst.index(), op_idx)].as_reg() {
                if self.allocatable_regs.contains(preg) {
                    self.lrus[preg.class()].poke(preg);
                }
                self.available_pregs[op.pos()].remove(preg);
                match (op.pos(), op.kind()) {
                    (OperandPos::Late, OperandKind::Use) => {
                        self.available_pregs[OperandPos::Early].remove(preg);
                    }
                    (OperandPos::Early, OperandKind::Def) => {
                        self.available_pregs[OperandPos::Late].remove(preg);
                    }
                    _ => (),
                };
            }
            trace!(
                "Allocation for instruction {:?} and operand {}: {}",
                inst,
                op,
                self.allocs[(inst.index(), op_idx)]
            );
        }
        trace!(
            "Late available regs: {}",
            self.available_pregs[OperandPos::Late]
        );
        trace!(
            "Early available regs: {}",
            self.available_pregs[OperandPos::Early]
        );
        Ok(())
    }

    fn remove_clobbers_from_available_pregs(&mut self, clobbers: PRegSet) {
        trace!("Removing clobbers {clobbers} from available reg sets");
        // Don't let defs get allocated to clobbers.
        // Consider a scenario:
        //
        // 1. (early|late) def v0 (reg). Clobbers: [p0]
        // 2. use v0 (fixed: p0)
        //
        // If p0 isn't removed from the both available reg sets, then
        // p0 could get allocated to v0 in inst 1, making it impossible
        // to restore it after the instruction.
        // To avoid this scenario, clobbers should be removed from both late
        // and early reg sets.
        let all_but_clobbers = clobbers.invert();
        self.available_pregs[OperandPos::Late].intersect_from(all_but_clobbers);
        self.available_pregs[OperandPos::Early].intersect_from(all_but_clobbers);
    }

    /// If instruction `inst` is a branch in `block`,
    /// this function places branch arguments in the spillslots
    /// expected by the destination blocks.
    fn process_branch(&mut self, block: Block, inst: Inst) -> Result<(), RegAllocError> {
        use OperandPos::*;
        trace!("Processing branch instruction {inst:?} in block {block:?}");

        let mut int_parallel_moves = ParallelMoves::new();
        let mut float_parallel_moves = ParallelMoves::new();
        let mut vec_parallel_moves = ParallelMoves::new();

        for (succ_idx, succ) in self.func.block_succs(block).iter().enumerate() {
            for (pos, vreg) in self
                .func
                .branch_blockparams(block, inst, succ_idx)
                .iter()
                .enumerate()
            {
                let succ_params = self.func.block_params(*succ);
                let succ_param_vreg = succ_params[pos];
                if self.vreg_spillslots[succ_param_vreg.vreg()].is_invalid() {
                    self.vreg_spillslots[succ_param_vreg.vreg()] =
                        self.stack.allocstack(succ_param_vreg.class());
                }
                if self.vreg_spillslots[vreg.vreg()].is_invalid() {
                    self.vreg_spillslots[vreg.vreg()] = self.stack.allocstack(vreg.class());
                }
                let vreg_spill = Allocation::stack(self.vreg_spillslots[vreg.vreg()]);
                let curr_alloc = self.vreg_allocs[vreg.vreg()];
                if curr_alloc.is_none() {
                    self.live_vregs.insert(*vreg);
                    self.vreg_to_live_inst_range[vreg.vreg()].1 = ProgPoint::before(inst);
                } else if curr_alloc != vreg_spill {
                    if self.edits.is_stack(curr_alloc)
                        && self.edits.scratch_regs[vreg.class()].is_none()
                    {
                        let reg = self.get_scratch_reg_for_reload(
                            inst,
                            vreg.class(),
                            self.available_pregs[Early] & self.available_pregs[Late],
                        )?;
                        self.edits.scratch_regs[vreg.class()] = Some(reg);
                        self.available_pregs[OperandPos::Early].remove(reg);
                        self.available_pregs[OperandPos::Late].remove(reg);
                    }
                    self.edits.add_move(
                        inst,
                        vreg_spill,
                        curr_alloc,
                        vreg.class(),
                        InstPosition::Before,
                    );
                }
                self.vreg_allocs[vreg.vreg()] = vreg_spill;
                let parallel_moves = match vreg.class() {
                    RegClass::Int => &mut int_parallel_moves,
                    RegClass::Float => &mut float_parallel_moves,
                    RegClass::Vector => &mut vec_parallel_moves,
                };
                let from = Allocation::stack(self.vreg_spillslots[vreg.vreg()]);
                let to = Allocation::stack(self.vreg_spillslots[succ_param_vreg.vreg()]);
                trace!("Recording parallel move from {from} to {to}");
                parallel_moves.add(from, to, Some(*vreg));
            }
        }

        let resolved_int = int_parallel_moves.resolve();
        let resolved_float = float_parallel_moves.resolve();
        let resolved_vec = vec_parallel_moves.resolve();
        let mut scratch_regs = self.edits.scratch_regs.clone();
        let mut num_spillslots = self.stack.num_spillslots;
        let mut avail_regs = self.available_pregs[Early] & self.available_pregs[Late];

        trace!("Resolving parallel moves");
        for (resolved, class) in [
            (resolved_int, RegClass::Int),
            (resolved_float, RegClass::Float),
            (resolved_vec, RegClass::Vector),
        ] {
            let scratch_resolver = MoveAndScratchResolver {
                find_free_reg: || {
                    if let Some(reg) = scratch_regs[class] {
                        trace!("Retrieved reg {reg} for scratch resolver");
                        scratch_regs[class] = None;
                        Some(Allocation::reg(reg))
                    } else {
                        let Some(preg) = self.lrus[class].last(avail_regs) else {
                            trace!("Couldn't find any reg for scratch resolver");
                            return None;
                        };
                        avail_regs.remove(preg);
                        trace!("Retrieved reg {preg} for scratch resolver");
                        Some(Allocation::reg(preg))
                    }
                },
                get_stackslot: || {
                    let size: u32 = self.func.spillslot_size(class).try_into().unwrap();
                    let mut offset = num_spillslots;
                    debug_assert!(size.is_power_of_two());
                    offset = (offset + size - 1) & !(size - 1);
                    let slot = if self.func.multi_spillslot_named_by_last_slot() {
                        offset + size - 1
                    } else {
                        offset
                    };
                    offset += size;
                    num_spillslots = offset;
                    trace!("Retrieved slot {slot} for scratch resolver");
                    Allocation::stack(SpillSlot::new(slot as usize))
                },
                is_stack_alloc: |alloc| self.edits.is_stack(alloc),
                borrowed_scratch_reg: self.preferred_victim[class],
            };
            let moves = scratch_resolver.compute(resolved);
            trace!("Resolved {class:?} parallel moves");
            for (from, to, _) in moves.into_iter().rev() {
                self.edits
                    .edits
                    .push((ProgPoint::before(inst), Edit::Move { from, to }))
            }
            self.stack.num_spillslots = num_spillslots;
        }
        trace!("Completed processing branch");
        Ok(())
    }

    fn alloc_inst(&mut self, block: Block, inst: Inst) -> Result<(), RegAllocError> {
        trace!("Allocating instruction {:?}", inst);
        self.reset_available_pregs_and_scratch_regs();
        let operands = Operands::new(self.func.inst_operands(inst));
        let clobbers = self.func.inst_clobbers(inst);

        for (op_idx, op) in operands.reuse() {
            trace!("Initializing reused_input_to_reuse_op for {op}");
            let OperandConstraint::Reuse(reused_idx) = op.constraint() else {
                unreachable!()
            };
            self.reused_input_to_reuse_op[reused_idx] = op_idx;
        }
        for (op_idx, op) in operands.fixed() {
            let OperandConstraint::FixedReg(preg) = op.constraint() else {
                unreachable!();
            };
            self.reserve_reg_for_fixed_operand(op, op_idx, preg)?;
            if self.allocatable_regs.contains(preg) {
                self.lrus[preg.class()].poke(preg);
            }
        }
        for (_, op) in operands.fixed() {
            let OperandConstraint::FixedReg(preg) = op.constraint() else {
                unreachable!();
            };
            // Eviction has to be done separately to avoid using a fixed register
            // as a scratch register.
            if self.vreg_in_preg[preg.index()] != VReg::invalid()
                && self.vreg_in_preg[preg.index()] != op.vreg()
            {
                trace!(
                    "Evicting {} from fixed register {preg}",
                    self.vreg_in_preg[preg.index()]
                );
                if self.fixed_stack_slots.contains(preg)
                    && self.edits.scratch_regs[preg.class()].is_none()
                {
                    self.alloc_scratch_reg(inst, preg.class())?;
                }
                self.evict_vreg_in_preg(inst, preg);
                self.vreg_in_preg[preg.index()] = VReg::invalid();
            }
        }
        self.remove_clobbers_from_available_pregs(clobbers);
        for preg in clobbers {
            if self.vreg_in_preg[preg.index()] != VReg::invalid() {
                trace!(
                    "Evicting {} from clobber {preg}",
                    self.vreg_in_preg[preg.index()]
                );
                if self.fixed_stack_slots.contains(preg)
                    && self.edits.scratch_regs[preg.class()].is_none()
                {
                    self.alloc_scratch_reg(inst, preg.class())?;
                }
                self.evict_vreg_in_preg(inst, preg);
                self.vreg_in_preg[preg.index()] = VReg::invalid();
            }
        }
        for (op_idx, op) in operands.def_ops() {
            trace!("Allocating def operands {op}");
            if let OperandConstraint::Reuse(reused_idx) = op.constraint() {
                let reused_op = operands[reused_idx];
                let new_reuse_op =
                    Operand::new(op.vreg(), reused_op.constraint(), op.kind(), op.pos());
                trace!("allocating reuse op {op} as {new_reuse_op}");
                self.process_operand_allocation(inst, new_reuse_op, op_idx)?;
            } else {
                self.process_operand_allocation(inst, op, op_idx)?;
            }
            let slot = self.vreg_spillslots[op.vreg().vreg()];
            if slot.is_valid() {
                self.vreg_to_live_inst_range[op.vreg().vreg()].2 = Allocation::stack(slot);
                let curr_alloc = self.vreg_allocs[op.vreg().vreg()];
                let vreg_slot = self.vreg_spillslots[op.vreg().vreg()];
                let (is_stack_to_stack, src_and_dest_are_same) =
                    if let Some(curr_alloc) = curr_alloc.as_stack() {
                        (true, curr_alloc == vreg_slot)
                    } else {
                        (self.edits.is_stack(curr_alloc), false)
                    };
                if !src_and_dest_are_same {
                    if is_stack_to_stack && self.edits.scratch_regs[op.class()].is_none() {
                        self.alloc_scratch_reg(inst, op.class())?;
                    };
                    self.edits.add_move(
                        inst,
                        self.vreg_allocs[op.vreg().vreg()],
                        Allocation::stack(self.vreg_spillslots[op.vreg().vreg()]),
                        op.class(),
                        InstPosition::After,
                    );
                }
            }
            self.vreg_to_live_inst_range[op.vreg().vreg()].0 = ProgPoint::after(inst);
            self.freealloc(op.vreg());
        }
        for (op_idx, op) in operands.use_ops() {
            trace!("Allocating use operand {op}");
            if self.reused_input_to_reuse_op[op_idx] != usize::MAX {
                let reuse_op_idx = self.reused_input_to_reuse_op[op_idx];
                let reuse_op_alloc = self.allocs[(inst.index(), reuse_op_idx)];
                let Some(preg) = reuse_op_alloc.as_reg() else {
                    unreachable!();
                };
                let new_reused_input_constraint = OperandConstraint::FixedReg(preg);
                let new_reused_input =
                    Operand::new(op.vreg(), new_reused_input_constraint, op.kind(), op.pos());
                trace!("Allocating reused input {op} as {new_reused_input}");
                self.process_operand_allocation(inst, new_reused_input, op_idx)?;
            } else {
                self.process_operand_allocation(inst, op, op_idx)?;
            }
        }
        for (op_idx, op) in operands.use_ops() {
            if op.as_fixed_nonallocatable().is_some() {
                continue;
            }
            if self.vreg_allocs[op.vreg().vreg()] != self.allocs[(inst.index(), op_idx)] {
                let curr_alloc = self.vreg_allocs[op.vreg().vreg()];
                let new_alloc = self.allocs[(inst.index(), op_idx)];
                trace!("Adding edit from {curr_alloc:?} to {new_alloc:?} before inst {inst:?} for {op}");
                self.edits.add_move(
                    inst,
                    curr_alloc,
                    new_alloc,
                    op.class(),
                    InstPosition::Before,
                );
            }
        }
        if self.func.is_branch(inst) {
            self.process_branch(block, inst)?;
        }
        for entry in self.reused_input_to_reuse_op.iter_mut() {
            *entry = usize::MAX;
        }
        if trace_enabled!() {
            self.log_post_inst_processing_state(inst);
        }
        Ok(())
    }

    /// At the beginning of every block, all virtual registers that are
    /// livein are expected to be in their respective spillslots.
    /// This function sets the current allocations of livein registers
    /// to their spillslots and inserts the edits to flow livein values to
    /// the allocations where they are expected to be before the first
    /// instruction.
    fn reload_at_begin(&mut self, block: Block) -> Result<(), RegAllocError> {
        trace!(
            "Reloading live registers at the beginning of block {:?}",
            block
        );
        trace!(
            "Live registers at the beginning of block {:?}: {:?}",
            block,
            self.live_vregs
        );
        trace!(
            "Block params at block {:?} beginning: {:?}",
            block,
            self.func.block_params(block)
        );
        trace!(
            "Available pregs: {}",
            self.available_pregs[OperandPos::Early]
        );
        self.reset_available_pregs_and_scratch_regs();
        let avail_regs_for_scratch = self.available_pregs[OperandPos::Early];
        let first_inst = self.func.block_insns(block).first();
        // We need to check for the registers that are still live.
        // These registers are either livein or block params
        // Liveins should be stack-allocated and block params should be freed.
        for vreg in self.func.block_params(block).iter().cloned() {
            trace!("Processing {}", vreg);
            if self.vreg_allocs[vreg.vreg()] == Allocation::none() {
                // If this block param was never used, its allocation will
                // be none at this point.
                continue;
            }
            if self.vreg_spillslots[vreg.vreg()].is_invalid() {
                self.vreg_spillslots[vreg.vreg()] = self.stack.allocstack(vreg.class());
            }
            // The allocation where the vreg is expected to be before
            // the first instruction.
            let prev_alloc = self.vreg_allocs[vreg.vreg()];
            let slot = Allocation::stack(self.vreg_spillslots[vreg.vreg()]);
            self.vreg_to_live_inst_range[vreg.vreg()].2 = slot;
            self.vreg_to_live_inst_range[vreg.vreg()].0 = ProgPoint::before(first_inst);
            trace!("{} is a block param. Freeing it", vreg);
            // A block's block param is not live before the block.
            // And `vreg_allocs[i]` of a virtual register i is none for
            // dead vregs.
            self.freealloc(vreg);
            if slot == prev_alloc {
                // No need to do any movements if the spillslot is where the vreg is expected to be.
                trace!(
                    "No need to reload {} because it's already in its expected allocation",
                    vreg
                );
                continue;
            }
            trace!(
                "Move reason: reload {} at begin - move from its spillslot",
                vreg
            );
            if self.edits.is_stack(prev_alloc) && self.edits.scratch_regs[vreg.class()].is_none() {
                let reg = self.get_scratch_reg_for_reload(
                    first_inst,
                    vreg.class(),
                    avail_regs_for_scratch,
                )?;
                self.edits.scratch_regs[vreg.class()] = Some(reg);
            }
            self.edits.add_move(
                self.func.block_insns(block).first(),
                slot,
                prev_alloc,
                vreg.class(),
                InstPosition::Before,
            );
        }
        for vreg in self.live_vregs.iter() {
            trace!("Processing {}", vreg);
            trace!(
                "{} is not a block param. It's a liveout vreg from some predecessor",
                vreg
            );
            if self.vreg_spillslots[vreg.vreg()].is_invalid() {
                self.vreg_spillslots[vreg.vreg()] = self.stack.allocstack(vreg.class());
            }
            // The allocation where the vreg is expected to be before
            // the first instruction.
            let prev_alloc = self.vreg_allocs[vreg.vreg()];
            let slot = Allocation::stack(self.vreg_spillslots[vreg.vreg()]);
            trace!("Setting {}'s current allocation to its spillslot", vreg);
            self.vreg_allocs[vreg.vreg()] = slot;
            if let Some(preg) = prev_alloc.as_reg() {
                trace!("{} was in {}. Removing it", preg, vreg);
                // Nothing is in that preg anymore.
                self.vreg_in_preg[preg.index()] = VReg::invalid();
            }
            if slot == prev_alloc {
                // No need to do any movements if the spillslot is where the vreg is expected to be.
                trace!(
                    "No need to reload {} because it's already in its expected allocation",
                    vreg
                );
                continue;
            }
            trace!(
                "Move reason: reload {} at begin - move from its spillslot",
                vreg
            );
            if self.edits.is_stack(prev_alloc) && self.edits.scratch_regs[vreg.class()].is_none() {
                let Some(preg) = self.lrus[vreg.class()].last(avail_regs_for_scratch) else {
                    return Err(RegAllocError::TooManyLiveRegs);
                };
                if self.vreg_in_preg[preg.index()] != VReg::invalid() {
                    // Had to put `evict_reg_in_preg_before_inst` here because of borrow checker rules.
                    trace!("Removing the vreg in preg {} for eviction", preg);
                    let evicted_vreg = self.vreg_in_preg[preg.index()];
                    trace!("The removed vreg: {}", evicted_vreg);
                    debug_assert_ne!(evicted_vreg, VReg::invalid());
                    if self.vreg_spillslots[evicted_vreg.vreg()].is_invalid() {
                        self.vreg_spillslots[evicted_vreg.vreg()] =
                            self.stack.allocstack(evicted_vreg.class());
                    }
                    let slot = self.vreg_spillslots[evicted_vreg.vreg()];
                    self.vreg_allocs[evicted_vreg.vreg()] = Allocation::stack(slot);
                    trace!("Move reason: eviction");
                    self.edits.add_move(
                        first_inst,
                        self.vreg_allocs[evicted_vreg.vreg()],
                        Allocation::reg(preg),
                        evicted_vreg.class(),
                        InstPosition::Before,
                    );
                }
                self.edits.scratch_regs[vreg.class()] = Some(preg);
            }
            self.edits.add_move(
                first_inst,
                slot,
                prev_alloc,
                vreg.class(),
                InstPosition::Before,
            );
        }
        if trace_enabled!() {
            self.log_post_reload_at_begin_state(block);
        }
        Ok(())
    }

    fn log_post_reload_at_begin_state(&self, block: Block) {
        use alloc::format;
        trace!("");
        trace!("State after instruction reload_at_begin of {:?}", block);
        let mut map = FxHashMap::default();
        for (vreg_idx, alloc) in self.vreg_allocs.iter().enumerate() {
            if *alloc != Allocation::none() {
                map.insert(format!("vreg{vreg_idx}"), alloc);
            }
        }
        trace!("vreg_allocs: {:?}", map);
        let mut map = FxHashMap::default();
        for i in 0..self.vreg_in_preg.len() {
            if self.vreg_in_preg[i] != VReg::invalid() {
                map.insert(PReg::from_index(i), self.vreg_in_preg[i]);
            }
        }
        trace!("vreg_in_preg: {:?}", map);
        trace!("Int LRU: {:?}", self.lrus[RegClass::Int]);
        trace!("Float LRU: {:?}", self.lrus[RegClass::Float]);
        trace!("Vector LRU: {:?}", self.lrus[RegClass::Vector]);
    }

    fn log_post_inst_processing_state(&self, inst: Inst) {
        use alloc::format;
        trace!("");
        trace!("State after instruction {:?}", inst);
        let mut map = FxHashMap::default();
        for (vreg_idx, alloc) in self.vreg_allocs.iter().enumerate() {
            if *alloc != Allocation::none() {
                map.insert(format!("vreg{vreg_idx}"), alloc);
            }
        }
        trace!("vreg_allocs: {:?}", map);
        let mut v = Vec::new();
        for i in 0..self.vreg_in_preg.len() {
            if self.vreg_in_preg[i] != VReg::invalid() {
                v.push(format!(
                    "{}: {}, ",
                    PReg::from_index(i),
                    self.vreg_in_preg[i]
                ));
            }
        }
        trace!("vreg_in_preg: {:?}", v);
        trace!("Int LRU: {:?}", self.lrus[RegClass::Int]);
        trace!("Float LRU: {:?}", self.lrus[RegClass::Float]);
        trace!("Vector LRU: {:?}", self.lrus[RegClass::Vector]);
        trace!("");
    }

    fn alloc_block(&mut self, block: Block) -> Result<(), RegAllocError> {
        trace!("{:?} start", block);
        for inst in self.func.block_insns(block).iter().rev() {
            self.alloc_inst(block, inst)?;
        }
        self.reload_at_begin(block)?;
        trace!("{:?} end\n", block);
        Ok(())
    }

    fn build_debug_info(&mut self) {
        trace!("Building debug location info");
        for &(vreg, start, end, label) in self.func.debug_value_labels() {
            let (point_start, point_end, alloc) = self.vreg_to_live_inst_range[vreg.vreg()];
            if point_start.inst() <= start && end <= point_end.inst().next() {
                self.debug_locations
                    .push((label, point_start, point_end, alloc));
            }
        }
        self.debug_locations.sort_by_key(|loc| loc.0);
    }

    fn run(&mut self) -> Result<(), RegAllocError> {
        debug_assert_eq!(self.func.entry_block().index(), 0);
        for block in (0..self.func.num_blocks()).rev() {
            self.alloc_block(Block::new(block))?;
        }
        self.edits.edits.reverse();
        self.build_debug_info();
        // Ought to check if there are livein registers
        // then throw an error, but will that be expensive?
        Ok(())
    }
}

fn log_function<F: Function>(func: &F) {
    trace!("Processing a new function");
    for block in 0..func.num_blocks() {
        let block = Block::new(block);
        trace!(
            "Block {:?}. preds: {:?}. succs: {:?}, params: {:?}",
            block,
            func.block_preds(block),
            func.block_succs(block),
            func.block_params(block)
        );
        for inst in func.block_insns(block).iter() {
            let clobbers = func.inst_clobbers(inst);
            trace!(
                "inst{:?}: {:?}. Clobbers: {}",
                inst.index(),
                func.inst_operands(inst),
                clobbers
            );
            if func.is_branch(inst) {
                trace!("Block args: ");
                for (succ_idx, _succ) in func.block_succs(block).iter().enumerate() {
                    trace!(" {:?}", func.branch_blockparams(block, inst, succ_idx));
                }
            }
        }
        trace!("");
    }
}

fn log_output<'a, F: Function>(env: &Env<'a, F>) {
    trace!("Done!");
    use alloc::format;
    let mut v = Vec::new();
    for i in 0..env.func.num_vregs() {
        if env.vreg_spillslots[i].is_valid() {
            v.push((
                format!("{}", VReg::new(i, RegClass::Int)),
                format!("{}", Allocation::stack(env.vreg_spillslots[i])),
            ));
        }
    }
    trace!("VReg spillslots: {:?}", v);
    trace!("Final edits: {:?}", env.edits.edits);
}

pub fn run<F: Function>(
    func: &F,
    mach_env: &MachineEnv,
    verbose_log: bool,
    enable_ssa_checker: bool,
) -> Result<Output, RegAllocError> {
    if enable_ssa_checker {
        validate_ssa(func, &CFGInfo::new(func)?)?;
    }

    if trace_enabled!() || verbose_log {
        log_function(func);
    }

    let mut env = Env::new(func, mach_env);
    env.run()?;

    if trace_enabled!() || verbose_log {
        log_output(&env);
    }

    Ok(Output {
        edits: env.edits.edits,
        allocs: env.allocs.allocs,
        inst_alloc_offsets: env.allocs.inst_alloc_offsets,
        num_spillslots: env.stack.num_spillslots as usize,
        debug_locations: env.debug_locations,
        stats: env.stats,
    })
}