regalloc2/
moves.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
/*
 * Released under the terms of the Apache 2.0 license with LLVM
 * exception. See `LICENSE` for details.
 */

use crate::{ion::data_structures::u64_key, Allocation, PReg};
use core::fmt::Debug;
use smallvec::{smallvec, SmallVec};

/// A list of moves to be performed in sequence, with auxiliary data
/// attached to each.
pub type MoveVec<T> = SmallVec<[(Allocation, Allocation, T); 16]>;

/// A list of moves to be performance in sequence, like a
/// `MoveVec<T>`, except that an unchosen scratch space may occur as
/// well, represented by `Allocation::none()`.
#[derive(Clone, Debug)]
pub enum MoveVecWithScratch<T> {
    /// No scratch was actually used.
    NoScratch(MoveVec<T>),
    /// A scratch space was used.
    Scratch(MoveVec<T>),
}

/// A `ParallelMoves` represents a list of alloc-to-alloc moves that
/// must happen in parallel -- i.e., all reads of sources semantically
/// happen before all writes of destinations, and destinations are
/// allowed to overwrite sources. It can compute a list of sequential
/// moves that will produce the equivalent data movement, possibly
/// using a scratch register if one is necessary.
pub struct ParallelMoves<T: Clone + Copy + Default> {
    parallel_moves: MoveVec<T>,
}

impl<T: Clone + Copy + Default + PartialEq> ParallelMoves<T> {
    pub fn new() -> Self {
        Self {
            parallel_moves: smallvec![],
        }
    }

    pub fn add(&mut self, from: Allocation, to: Allocation, t: T) {
        self.parallel_moves.push((from, to, t));
    }

    fn sources_overlap_dests(&self) -> bool {
        // Assumes `parallel_moves` has already been sorted by `dst`
        // in `resolve()` below. The O(n log n) cost of this loop is no
        // worse than the sort we already did.
        for &(src, _, _) in &self.parallel_moves {
            if self
                .parallel_moves
                .binary_search_by_key(&src, |&(_, dst, _)| dst)
                .is_ok()
            {
                return true;
            }
        }
        false
    }

    /// Resolve the parallel-moves problem to a sequence of separate
    /// moves, such that the combined effect of the sequential moves
    /// is as-if all of the moves added to this `ParallelMoves`
    /// resolver happened in parallel.
    ///
    /// Sometimes, if there is a cycle, a scratch register is
    /// necessary to allow the moves to occur sequentially. In this
    /// case, `Allocation::none()` is returned to represent the
    /// scratch register. The caller may choose to always hold a
    /// separate scratch register unused to allow this to be trivially
    /// rewritten; or may dynamically search for or create a free
    /// register as needed, if none are available.
    pub fn resolve(mut self) -> MoveVecWithScratch<T> {
        // Easy case: zero or one move. Just return our vec.
        if self.parallel_moves.len() <= 1 {
            return MoveVecWithScratch::NoScratch(self.parallel_moves);
        }

        // Sort moves so that we can efficiently test for presence.
        // For that purpose it doesn't matter whether we sort by
        // source or destination, but later we'll want them sorted
        // by destination.
        self.parallel_moves
            .sort_by_key(|&(src, dst, _)| u64_key(dst.bits(), src.bits()));

        // Duplicate moves cannot change the semantics of this
        // parallel move set, so remove them. This is cheap since we
        // just sorted the list.
        self.parallel_moves.dedup();

        // General case: some moves overwrite dests that other moves
        // read as sources. We'll use a general algorithm.
        //
        // *Important property*: because we expect that each register
        // has only one writer (otherwise the effect of the parallel
        // move is undefined), each move can only block one other move
        // (with its one source corresponding to the one writer of
        // that source). Thus, we *can only have simple cycles* (those
        // that are a ring of nodes, i.e., with only one path from a
        // node back to itself); there are no SCCs that are more
        // complex than that. We leverage this fact below to avoid
        // having to do a full Tarjan SCC DFS (with lowest-index
        // computation, etc.): instead, as soon as we find a cycle, we
        // know we have the full cycle and we can do a cyclic move
        // sequence and continue.

        // Check that each destination has only one writer.
        if cfg!(debug_assertions) {
            let mut last_dst = None;
            for &(_, dst, _) in &self.parallel_moves {
                if last_dst.is_some() {
                    debug_assert!(last_dst.unwrap() != dst);
                }
                last_dst = Some(dst);
            }
        }

        // Moving an allocation into itself is technically a cycle but
        // should have no effect, as long as there are no other writes
        // into that destination.
        self.parallel_moves.retain(|&mut (src, dst, _)| src != dst);

        // Do any dests overlap sources? If not, we can also just
        // return the list.
        if !self.sources_overlap_dests() {
            return MoveVecWithScratch::NoScratch(self.parallel_moves);
        }

        // Construct a mapping from move indices to moves they must
        // come before. Any given move must come before a move that
        // overwrites its destination; we have moves sorted by dest
        // above so we can efficiently find such a move, if any.
        const NONE: usize = usize::MAX;
        let must_come_before: SmallVec<[usize; 16]> = self
            .parallel_moves
            .iter()
            .map(|&(src, _, _)| {
                self.parallel_moves
                    .binary_search_by_key(&src, |&(_, dst, _)| dst)
                    .unwrap_or(NONE)
            })
            .collect();

        // Do a simple stack-based DFS and emit moves in postorder,
        // then reverse at the end for RPO. Unlike Tarjan's SCC
        // algorithm, we can emit a cycle as soon as we find one, as
        // noted above.
        #[derive(Clone, Copy, Debug, Eq, PartialEq)]
        enum State {
            /// Not on stack, not visited
            ToDo,
            /// On stack, not yet visited
            Pending,
            /// Visited
            Done,
        }
        let mut ret: MoveVec<T> = smallvec![];
        let mut stack: SmallVec<[usize; 16]> = smallvec![];
        let mut state: SmallVec<[State; 16]> = smallvec![State::ToDo; self.parallel_moves.len()];
        let mut scratch_used = false;

        while let Some(next) = state.iter().position(|&state| state == State::ToDo) {
            stack.push(next);
            state[next] = State::Pending;

            while let Some(&top) = stack.last() {
                debug_assert_eq!(state[top], State::Pending);
                let next = must_come_before[top];
                if next == NONE || state[next] == State::Done {
                    ret.push(self.parallel_moves[top]);
                    state[top] = State::Done;
                    stack.pop();
                    while let Some(top) = stack.pop() {
                        ret.push(self.parallel_moves[top]);
                        state[top] = State::Done;
                    }
                } else if state[next] == State::ToDo {
                    stack.push(next);
                    state[next] = State::Pending;
                } else {
                    // Found a cycle -- emit a cyclic-move sequence
                    // for the cycle on the top of stack, then normal
                    // moves below it. Recall that these moves will be
                    // reversed in sequence, so from the original
                    // parallel move set
                    //
                    //     { B := A, C := B, A := B }
                    //
                    // we will generate something like:
                    //
                    //     A := scratch
                    //     B := A
                    //     C := B
                    //     scratch := C
                    //
                    // which will become:
                    //
                    //     scratch := C
                    //     C := B
                    //     B := A
                    //     A := scratch
                    debug_assert_ne!(top, next);
                    state[top] = State::Done;
                    stack.pop();

                    let (scratch_src, dst, dst_t) = self.parallel_moves[top];
                    scratch_used = true;

                    ret.push((Allocation::none(), dst, dst_t));
                    while let Some(move_idx) = stack.pop() {
                        state[move_idx] = State::Done;
                        ret.push(self.parallel_moves[move_idx]);

                        if move_idx == next {
                            break;
                        }
                    }
                    ret.push((scratch_src, Allocation::none(), T::default()));
                }
            }
        }

        ret.reverse();

        if scratch_used {
            MoveVecWithScratch::Scratch(ret)
        } else {
            MoveVecWithScratch::NoScratch(ret)
        }
    }
}

impl<T> MoveVecWithScratch<T> {
    /// Fills in the scratch space, if needed, with the given
    /// register/allocation and returns a final list of moves. The
    /// scratch register must not occur anywhere in the parallel-move
    /// problem given to the resolver that produced this
    /// `MoveVecWithScratch`.
    pub fn with_scratch(self, scratch: Allocation) -> MoveVec<T> {
        match self {
            MoveVecWithScratch::NoScratch(moves) => moves,
            MoveVecWithScratch::Scratch(mut moves) => {
                for (src, dst, _) in &mut moves {
                    debug_assert!(
                        *src != scratch && *dst != scratch,
                        "Scratch register should not also be an actual source or dest of moves"
                    );
                    debug_assert!(
                        !(src.is_none() && dst.is_none()),
                        "Move resolution should not have produced a scratch-to-scratch move"
                    );
                    if src.is_none() {
                        *src = scratch;
                    }
                    if dst.is_none() {
                        *dst = scratch;
                    }
                }
                moves
            }
        }
    }

    /// Unwrap without a scratch register.
    pub fn without_scratch(self) -> Option<MoveVec<T>> {
        match self {
            MoveVecWithScratch::NoScratch(moves) => Some(moves),
            MoveVecWithScratch::Scratch(..) => None,
        }
    }

    /// Do we need a scratch register?
    pub fn needs_scratch(&self) -> bool {
        match self {
            MoveVecWithScratch::NoScratch(..) => false,
            MoveVecWithScratch::Scratch(..) => true,
        }
    }
}

/// Final stage of move resolution: finding or using scratch
/// registers, creating them if necessary by using stackslots, and
/// ensuring that the final list of moves contains no stack-to-stack
/// moves.
///
/// The resolved list of moves may need one or two scratch registers,
/// and maybe a stackslot, to ensure these conditions. Our general
/// strategy is in two steps.
///
/// First, we find a scratch register, so we only have to worry about
/// a list of moves, all with real locations as src and dest. If we're
/// lucky and there are any registers not allocated at this
/// program-point, we can use a real register. Otherwise, we use an
/// extra stackslot. This is fine, because at this step,
/// stack-to-stack moves are OK.
///
/// Then, we resolve stack-to-stack moves into stack-to-reg /
/// reg-to-stack pairs. For this, we try to allocate a second free
/// register. If unavailable, we create a new scratch stackslot to
/// serve as a backup of one of the in-use registers, then borrow that
/// register as the scratch register in the middle of stack-to-stack
/// moves.
pub struct MoveAndScratchResolver<GetReg, GetStackSlot, IsStackAlloc>
where
    GetReg: FnMut() -> Option<Allocation>,
    GetStackSlot: FnMut() -> Allocation,
    IsStackAlloc: Fn(Allocation) -> bool,
{
    /// Closure that finds us a PReg at the current location.
    pub find_free_reg: GetReg,
    /// Closure that gets us a stackslot, if needed.
    pub get_stackslot: GetStackSlot,
    /// Closure to determine whether an `Allocation` refers to a stack slot.
    pub is_stack_alloc: IsStackAlloc,
    /// Use this register if no free register is available to use as a
    /// temporary in stack-to-stack moves. If we do use this register
    /// for that purpose, its value will be restored by the end of the
    /// move sequence. Provided by caller and statically chosen. This is
    /// a very last-ditch option, so static choice is OK.
    pub borrowed_scratch_reg: PReg,
}

impl<GetReg, GetStackSlot, IsStackAlloc> MoveAndScratchResolver<GetReg, GetStackSlot, IsStackAlloc>
where
    GetReg: FnMut() -> Option<Allocation>,
    GetStackSlot: FnMut() -> Allocation,
    IsStackAlloc: Fn(Allocation) -> bool,
{
    pub fn compute<T: Debug + Default + Copy>(
        mut self,
        moves: MoveVecWithScratch<T>,
    ) -> MoveVec<T> {
        let moves = if moves.needs_scratch() {
            // Now, find a scratch allocation in order to resolve cycles.
            let scratch = (self.find_free_reg)().unwrap_or_else(|| (self.get_stackslot)());
            trace!("scratch resolver: scratch alloc {:?}", scratch);

            moves.with_scratch(scratch)
        } else {
            moves.without_scratch().unwrap()
        };

        // Do we have any stack-to-stack moves? Fast return if not.
        let stack_to_stack = moves
            .iter()
            .any(|&(src, dst, _)| self.is_stack_to_stack_move(src, dst));
        if !stack_to_stack {
            return moves;
        }

        // Allocate a scratch register for stack-to-stack move expansion.
        let (scratch_reg, save_slot) = if let Some(reg) = (self.find_free_reg)() {
            trace!(
                "scratch resolver: have free stack-to-stack scratch preg: {:?}",
                reg
            );
            (reg, None)
        } else {
            let reg = Allocation::reg(self.borrowed_scratch_reg);
            // Stackslot into which we need to save the stack-to-stack
            // scratch reg before doing any stack-to-stack moves, if we stole
            // the reg.
            let save = (self.get_stackslot)();
            trace!(
                "scratch resolver: stack-to-stack borrowing {:?} with save stackslot {:?}",
                reg,
                save
            );
            (reg, Some(save))
        };

        // Mutually exclusive flags for whether either scratch_reg or
        // save_slot need to be restored from the other. Initially,
        // scratch_reg has a value we should preserve and save_slot
        // has garbage.
        let mut scratch_dirty = false;
        let mut save_dirty = true;

        let mut result = smallvec![];
        for &(src, dst, data) in &moves {
            // Do we have a stack-to-stack move? If so, resolve.
            if self.is_stack_to_stack_move(src, dst) {
                trace!("scratch resolver: stack to stack: {:?} -> {:?}", src, dst);

                // If the selected scratch register is stolen from the
                // set of in-use registers, then we need to save the
                // current contents of the scratch register before using
                // it as a temporary.
                if let Some(save_slot) = save_slot {
                    // However we may have already done so for an earlier
                    // stack-to-stack move in which case we don't need
                    // to do it again.
                    if save_dirty {
                        debug_assert!(!scratch_dirty);
                        result.push((scratch_reg, save_slot, T::default()));
                        save_dirty = false;
                    }
                }

                // We can't move directly from one stack slot to another
                // on any architecture we care about, so stack-to-stack
                // moves must go via a scratch register.
                result.push((src, scratch_reg, data));
                result.push((scratch_reg, dst, data));
                scratch_dirty = true;
            } else {
                // This is not a stack-to-stack move, but we need to
                // make sure that the scratch register is in the correct
                // state if this move interacts with that register.
                if src == scratch_reg && scratch_dirty {
                    // We're copying from the scratch register so if
                    // it was stolen for a stack-to-stack move then we
                    // need to make sure it has the correct contents,
                    // not whatever was temporarily copied into it. If
                    // we got scratch_reg from find_free_reg then it
                    // had better not have been used as the source of
                    // a move. So if we're here it's because we fell
                    // back to the caller-provided last-resort scratch
                    // register, and we must therefore have a save-slot
                    // allocated too.
                    debug_assert!(!save_dirty);
                    let save_slot = save_slot.expect("move source should not be a free register");
                    result.push((save_slot, scratch_reg, T::default()));
                    scratch_dirty = false;
                }
                if dst == scratch_reg {
                    // We are writing something to the scratch register
                    // so it doesn't matter what was there before. We
                    // can avoid restoring it, but we will need to save
                    // it again before the next stack-to-stack move.
                    scratch_dirty = false;
                    save_dirty = true;
                }
                result.push((src, dst, data));
            }
        }

        // Now that all the stack-to-stack moves are done, restore the
        // scratch register if necessary.
        if let Some(save_slot) = save_slot {
            if scratch_dirty {
                debug_assert!(!save_dirty);
                result.push((save_slot, scratch_reg, T::default()));
            }
        }

        trace!("scratch resolver: got {:?}", result);
        result
    }

    fn is_stack_to_stack_move(&self, src: Allocation, dst: Allocation) -> bool {
        (self.is_stack_alloc)(src) && (self.is_stack_alloc)(dst)
    }
}