regalloc2/moves.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/*
* Released under the terms of the Apache 2.0 license with LLVM
* exception. See `LICENSE` for details.
*/
use crate::{ion::data_structures::u64_key, Allocation, PReg};
use core::fmt::Debug;
use smallvec::{smallvec, SmallVec};
/// A list of moves to be performed in sequence, with auxiliary data
/// attached to each.
pub type MoveVec<T> = SmallVec<[(Allocation, Allocation, T); 16]>;
/// A list of moves to be performance in sequence, like a
/// `MoveVec<T>`, except that an unchosen scratch space may occur as
/// well, represented by `Allocation::none()`.
#[derive(Clone, Debug)]
pub enum MoveVecWithScratch<T> {
/// No scratch was actually used.
NoScratch(MoveVec<T>),
/// A scratch space was used.
Scratch(MoveVec<T>),
}
/// A `ParallelMoves` represents a list of alloc-to-alloc moves that
/// must happen in parallel -- i.e., all reads of sources semantically
/// happen before all writes of destinations, and destinations are
/// allowed to overwrite sources. It can compute a list of sequential
/// moves that will produce the equivalent data movement, possibly
/// using a scratch register if one is necessary.
pub struct ParallelMoves<T: Clone + Copy + Default> {
parallel_moves: MoveVec<T>,
}
impl<T: Clone + Copy + Default + PartialEq> ParallelMoves<T> {
pub fn new() -> Self {
Self {
parallel_moves: smallvec![],
}
}
pub fn add(&mut self, from: Allocation, to: Allocation, t: T) {
self.parallel_moves.push((from, to, t));
}
fn sources_overlap_dests(&self) -> bool {
// Assumes `parallel_moves` has already been sorted by `dst`
// in `resolve()` below. The O(n log n) cost of this loop is no
// worse than the sort we already did.
for &(src, _, _) in &self.parallel_moves {
if self
.parallel_moves
.binary_search_by_key(&src, |&(_, dst, _)| dst)
.is_ok()
{
return true;
}
}
false
}
/// Resolve the parallel-moves problem to a sequence of separate
/// moves, such that the combined effect of the sequential moves
/// is as-if all of the moves added to this `ParallelMoves`
/// resolver happened in parallel.
///
/// Sometimes, if there is a cycle, a scratch register is
/// necessary to allow the moves to occur sequentially. In this
/// case, `Allocation::none()` is returned to represent the
/// scratch register. The caller may choose to always hold a
/// separate scratch register unused to allow this to be trivially
/// rewritten; or may dynamically search for or create a free
/// register as needed, if none are available.
pub fn resolve(mut self) -> MoveVecWithScratch<T> {
// Easy case: zero or one move. Just return our vec.
if self.parallel_moves.len() <= 1 {
return MoveVecWithScratch::NoScratch(self.parallel_moves);
}
// Sort moves so that we can efficiently test for presence.
// For that purpose it doesn't matter whether we sort by
// source or destination, but later we'll want them sorted
// by destination.
self.parallel_moves
.sort_by_key(|&(src, dst, _)| u64_key(dst.bits(), src.bits()));
// Duplicate moves cannot change the semantics of this
// parallel move set, so remove them. This is cheap since we
// just sorted the list.
self.parallel_moves.dedup();
// General case: some moves overwrite dests that other moves
// read as sources. We'll use a general algorithm.
//
// *Important property*: because we expect that each register
// has only one writer (otherwise the effect of the parallel
// move is undefined), each move can only block one other move
// (with its one source corresponding to the one writer of
// that source). Thus, we *can only have simple cycles* (those
// that are a ring of nodes, i.e., with only one path from a
// node back to itself); there are no SCCs that are more
// complex than that. We leverage this fact below to avoid
// having to do a full Tarjan SCC DFS (with lowest-index
// computation, etc.): instead, as soon as we find a cycle, we
// know we have the full cycle and we can do a cyclic move
// sequence and continue.
// Check that each destination has only one writer.
if cfg!(debug_assertions) {
let mut last_dst = None;
for &(_, dst, _) in &self.parallel_moves {
if last_dst.is_some() {
debug_assert!(last_dst.unwrap() != dst);
}
last_dst = Some(dst);
}
}
// Moving an allocation into itself is technically a cycle but
// should have no effect, as long as there are no other writes
// into that destination.
self.parallel_moves.retain(|&mut (src, dst, _)| src != dst);
// Do any dests overlap sources? If not, we can also just
// return the list.
if !self.sources_overlap_dests() {
return MoveVecWithScratch::NoScratch(self.parallel_moves);
}
// Construct a mapping from move indices to moves they must
// come before. Any given move must come before a move that
// overwrites its destination; we have moves sorted by dest
// above so we can efficiently find such a move, if any.
const NONE: usize = usize::MAX;
let must_come_before: SmallVec<[usize; 16]> = self
.parallel_moves
.iter()
.map(|&(src, _, _)| {
self.parallel_moves
.binary_search_by_key(&src, |&(_, dst, _)| dst)
.unwrap_or(NONE)
})
.collect();
// Do a simple stack-based DFS and emit moves in postorder,
// then reverse at the end for RPO. Unlike Tarjan's SCC
// algorithm, we can emit a cycle as soon as we find one, as
// noted above.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum State {
/// Not on stack, not visited
ToDo,
/// On stack, not yet visited
Pending,
/// Visited
Done,
}
let mut ret: MoveVec<T> = smallvec![];
let mut stack: SmallVec<[usize; 16]> = smallvec![];
let mut state: SmallVec<[State; 16]> = smallvec![State::ToDo; self.parallel_moves.len()];
let mut scratch_used = false;
while let Some(next) = state.iter().position(|&state| state == State::ToDo) {
stack.push(next);
state[next] = State::Pending;
while let Some(&top) = stack.last() {
debug_assert_eq!(state[top], State::Pending);
let next = must_come_before[top];
if next == NONE || state[next] == State::Done {
ret.push(self.parallel_moves[top]);
state[top] = State::Done;
stack.pop();
while let Some(top) = stack.pop() {
ret.push(self.parallel_moves[top]);
state[top] = State::Done;
}
} else if state[next] == State::ToDo {
stack.push(next);
state[next] = State::Pending;
} else {
// Found a cycle -- emit a cyclic-move sequence
// for the cycle on the top of stack, then normal
// moves below it. Recall that these moves will be
// reversed in sequence, so from the original
// parallel move set
//
// { B := A, C := B, A := B }
//
// we will generate something like:
//
// A := scratch
// B := A
// C := B
// scratch := C
//
// which will become:
//
// scratch := C
// C := B
// B := A
// A := scratch
debug_assert_ne!(top, next);
state[top] = State::Done;
stack.pop();
let (scratch_src, dst, dst_t) = self.parallel_moves[top];
scratch_used = true;
ret.push((Allocation::none(), dst, dst_t));
while let Some(move_idx) = stack.pop() {
state[move_idx] = State::Done;
ret.push(self.parallel_moves[move_idx]);
if move_idx == next {
break;
}
}
ret.push((scratch_src, Allocation::none(), T::default()));
}
}
}
ret.reverse();
if scratch_used {
MoveVecWithScratch::Scratch(ret)
} else {
MoveVecWithScratch::NoScratch(ret)
}
}
}
impl<T> MoveVecWithScratch<T> {
/// Fills in the scratch space, if needed, with the given
/// register/allocation and returns a final list of moves. The
/// scratch register must not occur anywhere in the parallel-move
/// problem given to the resolver that produced this
/// `MoveVecWithScratch`.
pub fn with_scratch(self, scratch: Allocation) -> MoveVec<T> {
match self {
MoveVecWithScratch::NoScratch(moves) => moves,
MoveVecWithScratch::Scratch(mut moves) => {
for (src, dst, _) in &mut moves {
debug_assert!(
*src != scratch && *dst != scratch,
"Scratch register should not also be an actual source or dest of moves"
);
debug_assert!(
!(src.is_none() && dst.is_none()),
"Move resolution should not have produced a scratch-to-scratch move"
);
if src.is_none() {
*src = scratch;
}
if dst.is_none() {
*dst = scratch;
}
}
moves
}
}
}
/// Unwrap without a scratch register.
pub fn without_scratch(self) -> Option<MoveVec<T>> {
match self {
MoveVecWithScratch::NoScratch(moves) => Some(moves),
MoveVecWithScratch::Scratch(..) => None,
}
}
/// Do we need a scratch register?
pub fn needs_scratch(&self) -> bool {
match self {
MoveVecWithScratch::NoScratch(..) => false,
MoveVecWithScratch::Scratch(..) => true,
}
}
}
/// Final stage of move resolution: finding or using scratch
/// registers, creating them if necessary by using stackslots, and
/// ensuring that the final list of moves contains no stack-to-stack
/// moves.
///
/// The resolved list of moves may need one or two scratch registers,
/// and maybe a stackslot, to ensure these conditions. Our general
/// strategy is in two steps.
///
/// First, we find a scratch register, so we only have to worry about
/// a list of moves, all with real locations as src and dest. If we're
/// lucky and there are any registers not allocated at this
/// program-point, we can use a real register. Otherwise, we use an
/// extra stackslot. This is fine, because at this step,
/// stack-to-stack moves are OK.
///
/// Then, we resolve stack-to-stack moves into stack-to-reg /
/// reg-to-stack pairs. For this, we try to allocate a second free
/// register. If unavailable, we create a new scratch stackslot to
/// serve as a backup of one of the in-use registers, then borrow that
/// register as the scratch register in the middle of stack-to-stack
/// moves.
pub struct MoveAndScratchResolver<GetReg, GetStackSlot, IsStackAlloc>
where
GetReg: FnMut() -> Option<Allocation>,
GetStackSlot: FnMut() -> Allocation,
IsStackAlloc: Fn(Allocation) -> bool,
{
/// Closure that finds us a PReg at the current location.
pub find_free_reg: GetReg,
/// Closure that gets us a stackslot, if needed.
pub get_stackslot: GetStackSlot,
/// Closure to determine whether an `Allocation` refers to a stack slot.
pub is_stack_alloc: IsStackAlloc,
/// Use this register if no free register is available to use as a
/// temporary in stack-to-stack moves. If we do use this register
/// for that purpose, its value will be restored by the end of the
/// move sequence. Provided by caller and statically chosen. This is
/// a very last-ditch option, so static choice is OK.
pub borrowed_scratch_reg: PReg,
}
impl<GetReg, GetStackSlot, IsStackAlloc> MoveAndScratchResolver<GetReg, GetStackSlot, IsStackAlloc>
where
GetReg: FnMut() -> Option<Allocation>,
GetStackSlot: FnMut() -> Allocation,
IsStackAlloc: Fn(Allocation) -> bool,
{
pub fn compute<T: Debug + Default + Copy>(
mut self,
moves: MoveVecWithScratch<T>,
) -> MoveVec<T> {
let moves = if moves.needs_scratch() {
// Now, find a scratch allocation in order to resolve cycles.
let scratch = (self.find_free_reg)().unwrap_or_else(|| (self.get_stackslot)());
trace!("scratch resolver: scratch alloc {:?}", scratch);
moves.with_scratch(scratch)
} else {
moves.without_scratch().unwrap()
};
// Do we have any stack-to-stack moves? Fast return if not.
let stack_to_stack = moves
.iter()
.any(|&(src, dst, _)| self.is_stack_to_stack_move(src, dst));
if !stack_to_stack {
return moves;
}
// Allocate a scratch register for stack-to-stack move expansion.
let (scratch_reg, save_slot) = if let Some(reg) = (self.find_free_reg)() {
trace!(
"scratch resolver: have free stack-to-stack scratch preg: {:?}",
reg
);
(reg, None)
} else {
let reg = Allocation::reg(self.borrowed_scratch_reg);
// Stackslot into which we need to save the stack-to-stack
// scratch reg before doing any stack-to-stack moves, if we stole
// the reg.
let save = (self.get_stackslot)();
trace!(
"scratch resolver: stack-to-stack borrowing {:?} with save stackslot {:?}",
reg,
save
);
(reg, Some(save))
};
// Mutually exclusive flags for whether either scratch_reg or
// save_slot need to be restored from the other. Initially,
// scratch_reg has a value we should preserve and save_slot
// has garbage.
let mut scratch_dirty = false;
let mut save_dirty = true;
let mut result = smallvec![];
for &(src, dst, data) in &moves {
// Do we have a stack-to-stack move? If so, resolve.
if self.is_stack_to_stack_move(src, dst) {
trace!("scratch resolver: stack to stack: {:?} -> {:?}", src, dst);
// If the selected scratch register is stolen from the
// set of in-use registers, then we need to save the
// current contents of the scratch register before using
// it as a temporary.
if let Some(save_slot) = save_slot {
// However we may have already done so for an earlier
// stack-to-stack move in which case we don't need
// to do it again.
if save_dirty {
debug_assert!(!scratch_dirty);
result.push((scratch_reg, save_slot, T::default()));
save_dirty = false;
}
}
// We can't move directly from one stack slot to another
// on any architecture we care about, so stack-to-stack
// moves must go via a scratch register.
result.push((src, scratch_reg, data));
result.push((scratch_reg, dst, data));
scratch_dirty = true;
} else {
// This is not a stack-to-stack move, but we need to
// make sure that the scratch register is in the correct
// state if this move interacts with that register.
if src == scratch_reg && scratch_dirty {
// We're copying from the scratch register so if
// it was stolen for a stack-to-stack move then we
// need to make sure it has the correct contents,
// not whatever was temporarily copied into it. If
// we got scratch_reg from find_free_reg then it
// had better not have been used as the source of
// a move. So if we're here it's because we fell
// back to the caller-provided last-resort scratch
// register, and we must therefore have a save-slot
// allocated too.
debug_assert!(!save_dirty);
let save_slot = save_slot.expect("move source should not be a free register");
result.push((save_slot, scratch_reg, T::default()));
scratch_dirty = false;
}
if dst == scratch_reg {
// We are writing something to the scratch register
// so it doesn't matter what was there before. We
// can avoid restoring it, but we will need to save
// it again before the next stack-to-stack move.
scratch_dirty = false;
save_dirty = true;
}
result.push((src, dst, data));
}
}
// Now that all the stack-to-stack moves are done, restore the
// scratch register if necessary.
if let Some(save_slot) = save_slot {
if scratch_dirty {
debug_assert!(!save_dirty);
result.push((save_slot, scratch_reg, T::default()));
}
}
trace!("scratch resolver: got {:?}", result);
result
}
fn is_stack_to_stack_move(&self, src: Allocation, dst: Allocation) -> bool {
(self.is_stack_alloc)(src) && (self.is_stack_alloc)(dst)
}
}