rustix/backend/linux_raw/vdso.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
//! Parse the Linux vDSO.
//!
//! The following code is transliterated from
//! tools/testing/selftests/vDSO/parse_vdso.c in Linux 6.13, which is licensed
//! with Creative Commons Zero License, version 1.0,
//! available at <https://creativecommons.org/publicdomain/zero/1.0/legalcode>
//!
//! It also incorporates the patch at:
//! <https://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest.git/commit/tools/testing/selftests/vDSO?h=next&id=01587d80b04f29747b6fd6d766c3bfa632f14eb0>,
//! with changes to fix the pointer arithmetic on s390x.
//!
//! # Safety
//!
//! Parsing the vDSO involves a lot of raw pointer manipulation. This
//! implementation follows Linux's reference implementation, and adds several
//! additional safety checks.
#![allow(unsafe_code)]
use super::c;
use crate::ffi::CStr;
use crate::utils::check_raw_pointer;
use core::ffi::c_void;
use core::mem::size_of;
use core::ptr::{null, null_mut};
use linux_raw_sys::elf::*;
#[cfg(target_arch = "s390x")]
type ElfHashEntry = u64;
#[cfg(not(target_arch = "s390x"))]
type ElfHashEntry = u32;
pub(super) struct Vdso {
// Load information
load_addr: *const Elf_Ehdr,
load_end: *const c_void, // the end of the `PT_LOAD` segment
pv_offset: usize, // recorded paddr - recorded vaddr
// Symbol table
symtab: *const Elf_Sym,
symstrings: *const u8,
gnu_hash: *const u32,
bucket: *const ElfHashEntry,
chain: *const ElfHashEntry,
nbucket: ElfHashEntry,
//nchain: ElfHashEntry,
// Version table
versym: *const u16,
verdef: *const Elf_Verdef,
}
/// Straight from the ELF specification…and then tweaked slightly, in order to
/// avoid a few clang warnings.
/// (And then translated to Rust).
fn elf_hash(name: &CStr) -> u32 {
let mut h: u32 = 0;
for b in name.to_bytes() {
h = (h << 4).wrapping_add(u32::from(*b));
let g = h & 0xf000_0000;
if g != 0 {
h ^= g >> 24;
}
h &= !g;
}
h
}
fn gnu_hash(name: &CStr) -> u32 {
let mut h: u32 = 5381;
for s in name.to_bytes() {
h = h
.wrapping_add(h.wrapping_mul(32))
.wrapping_add(u32::from(*s));
}
h
}
/// Create a `Vdso` value by parsing the vDSO at the `sysinfo_ehdr` address.
fn init_from_sysinfo_ehdr() -> Option<Vdso> {
// SAFETY: The auxv initialization code does extensive checks to ensure
// that the value we get really is an `AT_SYSINFO_EHDR` value from the
// kernel.
unsafe {
let hdr = super::param::auxv::sysinfo_ehdr();
// If the platform doesn't provide a `AT_SYSINFO_EHDR`, we can't locate
// the vDSO.
if hdr.is_null() {
return None;
}
let mut vdso = Vdso {
load_addr: hdr,
load_end: hdr.cast(),
pv_offset: 0,
symtab: null(),
symstrings: null(),
gnu_hash: null(),
bucket: null(),
chain: null(),
nbucket: 0,
//nchain: 0,
versym: null(),
verdef: null(),
};
let hdr = &*hdr;
let pt = check_raw_pointer::<Elf_Phdr>(vdso.base_plus(hdr.e_phoff)? as *mut _)?.as_ptr();
let mut dyn_: *const Elf_Dyn = null();
let mut num_dyn = 0;
// We need two things from the segment table: the load offset
// and the dynamic table.
let mut found_vaddr = false;
for i in 0..hdr.e_phnum {
let phdr = &*pt.add(i as usize);
if phdr.p_type == PT_LOAD && !found_vaddr {
// The segment should be readable and executable, because it
// contains the symbol table and the function bodies.
if phdr.p_flags & (PF_R | PF_X) != (PF_R | PF_X) {
return None;
}
found_vaddr = true;
vdso.load_end = vdso.base_plus(phdr.p_offset.checked_add(phdr.p_memsz)?)?;
vdso.pv_offset = phdr.p_offset.wrapping_sub(phdr.p_vaddr);
} else if phdr.p_type == PT_DYNAMIC {
// If `p_offset` is zero, it's more likely that we're looking
// at memory that has been zeroed than that the kernel has
// somehow aliased the `Ehdr` and the `Elf_Dyn` array.
if phdr.p_offset < size_of::<Elf_Ehdr>() {
return None;
}
dyn_ = check_raw_pointer::<Elf_Dyn>(vdso.base_plus(phdr.p_offset)? as *mut _)?
.as_ptr();
num_dyn = phdr.p_memsz / size_of::<Elf_Dyn>();
} else if phdr.p_type == PT_INTERP || phdr.p_type == PT_GNU_RELRO {
// Don't trust any ELF image that has an “interpreter” or
// that uses RELRO, which is likely to be a user ELF image
// rather and not the kernel vDSO.
return None;
}
}
if !found_vaddr || dyn_.is_null() {
return None; // Failed
}
// Fish out the useful bits of the dynamic table.
let mut hash: *const ElfHashEntry = null();
vdso.symstrings = null();
vdso.symtab = null();
vdso.versym = null();
vdso.verdef = null();
let mut i = 0;
loop {
if i == num_dyn {
return None;
}
let d = &*dyn_.add(i);
match d.d_tag {
DT_STRTAB => {
vdso.symstrings =
check_raw_pointer::<u8>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_SYMTAB => {
vdso.symtab =
check_raw_pointer::<Elf_Sym>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_HASH => {
hash = check_raw_pointer::<ElfHashEntry>(
vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _
)?
.as_ptr();
}
DT_GNU_HASH => {
vdso.gnu_hash =
check_raw_pointer::<u32>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr()
}
DT_VERSYM => {
vdso.versym =
check_raw_pointer::<u16>(vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _)?
.as_ptr();
}
DT_VERDEF => {
vdso.verdef = check_raw_pointer::<Elf_Verdef>(
vdso.addr_from_elf(d.d_un.d_ptr)? as *mut _,
)?
.as_ptr();
}
DT_SYMENT => {
if d.d_un.d_ptr != size_of::<Elf_Sym>() {
return None; // Failed
}
}
DT_NULL => break,
_ => {}
}
i = i.checked_add(1)?;
}
// `check_raw_pointer` will have checked these pointers for null,
// however they could still be null if the expected dynamic table
// entries are absent.
if vdso.symstrings.is_null()
|| vdso.symtab.is_null()
|| (hash.is_null() && vdso.gnu_hash.is_null())
{
return None; // Failed
}
if vdso.verdef.is_null() {
vdso.versym = null();
}
// Parse the hash table header.
if !vdso.gnu_hash.is_null() {
vdso.nbucket = ElfHashEntry::from(*vdso.gnu_hash);
// The bucket array is located after the header (4 uint32) and the
// bloom filter (size_t array of gnu_hash[2] elements).
vdso.bucket = vdso
.gnu_hash
.add(4)
.add(size_of::<c::size_t>() / 4 * *vdso.gnu_hash.add(2) as usize)
.cast();
} else {
vdso.nbucket = *hash.add(0);
//vdso.nchain = *hash.add(1);
vdso.bucket = hash.add(2);
vdso.chain = hash.add(vdso.nbucket as usize + 2);
}
// That's all we need.
Some(vdso)
}
}
impl Vdso {
/// Parse the vDSO.
///
/// Returns `None` if the vDSO can't be located or if it doesn't conform to
/// our expectations.
#[inline]
pub(super) fn new() -> Option<Self> {
init_from_sysinfo_ehdr()
}
/// Check the version for a symbol.
///
/// # Safety
///
/// The raw pointers inside `self` must be valid.
unsafe fn match_version(&self, mut ver: u16, name: &CStr, hash: u32) -> bool {
// This is a helper function to check if the version indexed by
// ver matches name (which hashes to hash).
//
// The version definition table is a mess, and I don't know how
// to do this in better than linear time without allocating memory
// to build an index. I also don't know why the table has
// variable size entries in the first place.
//
// For added fun, I can't find a comprehensible specification of how
// to parse all the weird flags in the table.
//
// So I just parse the whole table every time.
// First step: find the version definition
ver &= 0x7fff; // Apparently bit 15 means "hidden"
let mut def = self.verdef;
loop {
if (*def).vd_version != VER_DEF_CURRENT {
return false; // Failed
}
if ((*def).vd_flags & VER_FLG_BASE) == 0 && ((*def).vd_ndx & 0x7fff) == ver {
break;
}
if (*def).vd_next == 0 {
return false; // No definition.
}
def = def
.cast::<u8>()
.add((*def).vd_next as usize)
.cast::<Elf_Verdef>();
}
// Now figure out whether it matches.
let aux = &*(def.cast::<u8>())
.add((*def).vd_aux as usize)
.cast::<Elf_Verdaux>();
(*def).vd_hash == hash
&& (name == CStr::from_ptr(self.symstrings.add(aux.vda_name as usize).cast()))
}
/// Check to see if the symbol is the one we're looking for.
///
/// # Safety
///
/// The raw pointers inside `self` must be valid.
unsafe fn check_sym(
&self,
sym: &Elf_Sym,
i: ElfHashEntry,
name: &CStr,
version: &CStr,
ver_hash: u32,
) -> bool {
// Check for a defined global or weak function w/ right name.
//
// Accept `STT_NOTYPE` in addition to `STT_FUNC` for the symbol
// type, for compatibility with some versions of Linux on
// PowerPC64. See [this commit] in Linux for more background.
//
// [this commit]: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/tools/testing/selftests/vDSO/parse_vdso.c?id=0161bd38c24312853ed5ae9a425a1c41c4ac674a
if ELF_ST_TYPE(sym.st_info) != STT_FUNC && ELF_ST_TYPE(sym.st_info) != STT_NOTYPE {
return false;
}
if ELF_ST_BIND(sym.st_info) != STB_GLOBAL && ELF_ST_BIND(sym.st_info) != STB_WEAK {
return false;
}
if name != CStr::from_ptr(self.symstrings.add(sym.st_name as usize).cast()) {
return false;
}
// Check symbol version.
if !self.versym.is_null()
&& !self.match_version(*self.versym.add(i as usize), version, ver_hash)
{
return false;
}
true
}
/// Look up a symbol in the vDSO.
pub(super) fn sym(&self, version: &CStr, name: &CStr) -> *mut c::c_void {
let ver_hash = elf_hash(version);
// SAFETY: The pointers in `self` must be valid.
unsafe {
if !self.gnu_hash.is_null() {
let mut h1: u32 = gnu_hash(name);
// Changes to fix the pointer arithmetic on s390x: cast
// `self.bucket` to `*const u32` here, because even though
// s390x's `ElfHashEntry` is 64-bit for `DT_HASH` tables,
// it uses 32-bit entries for `DT_GNU_HASH` tables.
let mut i = *self
.bucket
.cast::<u32>()
.add((ElfHashEntry::from(h1) % self.nbucket) as usize);
if i == 0 {
return null_mut();
}
h1 |= 1;
// Changes to fix the pointer arithmetic on s390x: As above,
// cast `self.bucket` to `*const u32`.
let mut hashval = self
.bucket
.cast::<u32>()
.add(self.nbucket as usize)
.add((i - *self.gnu_hash.add(1)) as usize);
loop {
let sym: &Elf_Sym = &*self.symtab.add(i as usize);
let h2 = *hashval;
hashval = hashval.add(1);
if h1 == (h2 | 1)
&& self.check_sym(sym, ElfHashEntry::from(i), name, version, ver_hash)
{
let sum = self.addr_from_elf(sym.st_value).unwrap();
assert!(
sum as usize >= self.load_addr as usize
&& sum as usize <= self.load_end as usize
);
return sum as *mut c::c_void;
}
if (h2 & 1) != 0 {
break;
}
i += 1;
}
} else {
let mut i = *self
.bucket
.add((ElfHashEntry::from(elf_hash(name)) % self.nbucket) as usize);
while i != 0 {
let sym: &Elf_Sym = &*self.symtab.add(i as usize);
if sym.st_shndx != SHN_UNDEF && self.check_sym(sym, i, name, version, ver_hash)
{
let sum = self.addr_from_elf(sym.st_value).unwrap();
assert!(
sum as usize >= self.load_addr as usize
&& sum as usize <= self.load_end as usize
);
return sum as *mut c::c_void;
}
i = *self.chain.add(i as usize);
}
}
}
null_mut()
}
/// Add the given address to the vDSO base address.
unsafe fn base_plus(&self, offset: usize) -> Option<*const c_void> {
// Check for overflow.
let _ = (self.load_addr as usize).checked_add(offset)?;
// Add the offset to the base.
Some(self.load_addr.cast::<u8>().add(offset).cast())
}
/// Translate an ELF-address-space address into a usable virtual address.
unsafe fn addr_from_elf(&self, elf_addr: usize) -> Option<*const c_void> {
self.base_plus(elf_addr.wrapping_add(self.pv_offset))
}
}
#[cfg(test)]
mod tests {
use super::*;
// Disable on MIPS since QEMU on MIPS doesn't provide a vDSO.
#[cfg(linux_raw)]
#[test]
#[cfg_attr(any(target_arch = "mips", target_arch = "mips64"), ignore)]
#[allow(unused_variables)]
fn test_vdso() {
let vdso = Vdso::new().unwrap();
assert!(!vdso.symtab.is_null());
assert!(!vdso.symstrings.is_null());
{
#[cfg(target_arch = "x86_64")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime"));
#[cfg(target_arch = "arm")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
#[cfg(target_arch = "aarch64")]
let ptr = vdso.sym(cstr!("LINUX_2.6.39"), cstr!("__kernel_clock_gettime"));
#[cfg(target_arch = "x86")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
#[cfg(target_arch = "riscv64")]
let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_clock_gettime"));
#[cfg(target_arch = "powerpc")]
let _ptr = vdso.sym(cstr!("LINUX_5.11"), cstr!("__kernel_clock_gettime64"));
#[cfg(target_arch = "powerpc64")]
let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_clock_gettime"));
#[cfg(target_arch = "s390x")]
let ptr = vdso.sym(cstr!("LINUX_2.6.29"), cstr!("__kernel_clock_gettime"));
#[cfg(any(target_arch = "mips", target_arch = "mips32r6"))]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime64"));
#[cfg(any(target_arch = "mips64", target_arch = "mips64r6"))]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_gettime"));
// On PowerPC, "__kernel_clock_gettime64" isn't available in
// Linux < 5.11.
// On x86, "__vdso_clock_gettime64" isn't available in
// Linux < 5.3.
#[cfg(not(any(target_arch = "powerpc", target_arch = "x86")))]
assert!(!ptr.is_null());
}
{
#[cfg(target_arch = "x86_64")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_getres"));
#[cfg(target_arch = "arm")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_getres"));
#[cfg(target_arch = "aarch64")]
let ptr = vdso.sym(cstr!("LINUX_2.6.39"), cstr!("__kernel_clock_getres"));
#[cfg(target_arch = "x86")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_getres"));
#[cfg(target_arch = "riscv64")]
let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_clock_getres"));
#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_clock_getres"));
#[cfg(target_arch = "s390x")]
let ptr = vdso.sym(cstr!("LINUX_2.6.29"), cstr!("__kernel_clock_getres"));
#[cfg(any(target_arch = "mips", target_arch = "mips32r6"))]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_getres"));
#[cfg(any(target_arch = "mips64", target_arch = "mips64r6"))]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_clock_getres"));
// Some versions of Linux appear to lack "__vdso_clock_getres" on x86.
#[cfg(not(target_arch = "x86"))]
assert!(!ptr.is_null());
}
{
#[cfg(target_arch = "x86_64")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_gettimeofday"));
#[cfg(target_arch = "arm")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_gettimeofday"));
#[cfg(target_arch = "aarch64")]
let ptr = vdso.sym(cstr!("LINUX_2.6.39"), cstr!("__kernel_gettimeofday"));
#[cfg(target_arch = "x86")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_gettimeofday"));
#[cfg(target_arch = "riscv64")]
let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_gettimeofday"));
#[cfg(any(target_arch = "powerpc", target_arch = "powerpc64"))]
let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_gettimeofday"));
#[cfg(target_arch = "s390x")]
let ptr = vdso.sym(cstr!("LINUX_2.6.29"), cstr!("__kernel_gettimeofday"));
#[cfg(any(target_arch = "mips", target_arch = "mips32r6"))]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_gettimeofday"));
#[cfg(any(target_arch = "mips64", target_arch = "mips64r6"))]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_gettimeofday"));
// Some versions of Linux appear to lack "__vdso_gettimeofday" on x86.
#[cfg(not(target_arch = "x86"))]
assert!(!ptr.is_null());
}
#[cfg(any(
target_arch = "x86_64",
target_arch = "x86",
target_arch = "riscv64",
target_arch = "powerpc",
target_arch = "powerpc64",
target_arch = "s390x",
))]
{
#[cfg(target_arch = "x86_64")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_getcpu"));
#[cfg(target_arch = "x86")]
let ptr = vdso.sym(cstr!("LINUX_2.6"), cstr!("__vdso_getcpu"));
#[cfg(target_arch = "riscv64")]
let ptr = vdso.sym(cstr!("LINUX_4.15"), cstr!("__vdso_getcpu"));
#[cfg(target_arch = "powerpc")]
let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_getcpu"));
#[cfg(target_arch = "powerpc64")]
let ptr = vdso.sym(cstr!("LINUX_2.6.15"), cstr!("__kernel_getcpu"));
#[cfg(target_arch = "s390x")]
let ptr = vdso.sym(cstr!("LINUX_2.6.29"), cstr!("__kernel_getcpu"));
// On PowerPC, "__kernel_getcpu" isn't available in 32-bit kernels.
// Some versions of Linux appear to lack "__vdso_getcpu" on x86.
#[cfg(not(any(target_arch = "powerpc", target_arch = "x86")))]
assert!(!ptr.is_null());
}
}
}