1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
use core::future::Future;
use futures_core::Stream;
mod all;
use all::AllFuture;
mod any;
use any::AnyFuture;
mod chain;
pub use chain::Chain;
pub(crate) mod collect;
use collect::{Collect, FromStream};
mod filter;
pub use filter::Filter;
mod filter_map;
pub use filter_map::FilterMap;
mod fold;
use fold::FoldFuture;
mod fuse;
pub use fuse::Fuse;
mod map;
pub use map::Map;
mod map_while;
pub use map_while::MapWhile;
mod merge;
pub use merge::Merge;
mod next;
use next::Next;
mod skip;
pub use skip::Skip;
mod skip_while;
pub use skip_while::SkipWhile;
mod take;
pub use take::Take;
mod take_while;
pub use take_while::TakeWhile;
mod then;
pub use then::Then;
mod try_next;
use try_next::TryNext;
mod peekable;
pub use peekable::Peekable;
cfg_time! {
pub(crate) mod timeout;
pub(crate) mod timeout_repeating;
pub use timeout::Timeout;
pub use timeout_repeating::TimeoutRepeating;
use tokio::time::{Duration, Interval};
mod throttle;
use throttle::{throttle, Throttle};
mod chunks_timeout;
pub use chunks_timeout::ChunksTimeout;
}
/// An extension trait for the [`Stream`] trait that provides a variety of
/// convenient combinator functions.
///
/// Be aware that the `Stream` trait in Tokio is a re-export of the trait found
/// in the [futures] crate, however both Tokio and futures provide separate
/// `StreamExt` utility traits, and some utilities are only available on one of
/// these traits. Click [here][futures-StreamExt] to see the other `StreamExt`
/// trait in the futures crate.
///
/// If you need utilities from both `StreamExt` traits, you should prefer to
/// import one of them, and use the other through the fully qualified call
/// syntax. For example:
/// ```
/// // import one of the traits:
/// use futures::stream::StreamExt;
/// # #[tokio::main(flavor = "current_thread")]
/// # async fn main() {
///
/// let a = tokio_stream::iter(vec![1, 3, 5]);
/// let b = tokio_stream::iter(vec![2, 4, 6]);
///
/// // use the fully qualified call syntax for the other trait:
/// let merged = tokio_stream::StreamExt::merge(a, b);
///
/// // use normal call notation for futures::stream::StreamExt::collect
/// let output: Vec<_> = merged.collect().await;
/// assert_eq!(output, vec![1, 2, 3, 4, 5, 6]);
/// # }
/// ```
///
/// [`Stream`]: crate::Stream
/// [futures]: https://docs.rs/futures
/// [futures-StreamExt]: https://docs.rs/futures/0.3/futures/stream/trait.StreamExt.html
pub trait StreamExt: Stream {
/// Consumes and returns the next value in the stream or `None` if the
/// stream is finished.
///
/// Equivalent to:
///
/// ```ignore
/// async fn next(&mut self) -> Option<Self::Item>;
/// ```
///
/// Note that because `next` doesn't take ownership over the stream,
/// the [`Stream`] type must be [`Unpin`]. If you want to use `next` with a
/// [`!Unpin`](Unpin) stream, you'll first have to pin the stream. This can
/// be done by boxing the stream using [`Box::pin`] or
/// pinning it to the stack using the `pin_mut!` macro from the `pin_utils`
/// crate.
///
/// # Cancel safety
///
/// This method is cancel safe. The returned future only
/// holds onto a reference to the underlying stream,
/// so dropping it will never lose a value.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let mut stream = stream::iter(1..=3);
///
/// assert_eq!(stream.next().await, Some(1));
/// assert_eq!(stream.next().await, Some(2));
/// assert_eq!(stream.next().await, Some(3));
/// assert_eq!(stream.next().await, None);
/// # }
/// ```
fn next(&mut self) -> Next<'_, Self>
where
Self: Unpin,
{
Next::new(self)
}
/// Consumes and returns the next item in the stream. If an error is
/// encountered before the next item, the error is returned instead.
///
/// Equivalent to:
///
/// ```ignore
/// async fn try_next(&mut self) -> Result<Option<T>, E>;
/// ```
///
/// This is similar to the [`next`](StreamExt::next) combinator,
/// but returns a [`Result<Option<T>, E>`](Result) rather than
/// an [`Option<Result<T, E>>`](Option), making for easy use
/// with the [`?`](std::ops::Try) operator.
///
/// # Cancel safety
///
/// This method is cancel safe. The returned future only
/// holds onto a reference to the underlying stream,
/// so dropping it will never lose a value.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let mut stream = stream::iter(vec![Ok(1), Ok(2), Err("nope")]);
///
/// assert_eq!(stream.try_next().await, Ok(Some(1)));
/// assert_eq!(stream.try_next().await, Ok(Some(2)));
/// assert_eq!(stream.try_next().await, Err("nope"));
/// # }
/// ```
fn try_next<T, E>(&mut self) -> TryNext<'_, Self>
where
Self: Stream<Item = Result<T, E>> + Unpin,
{
TryNext::new(self)
}
/// Maps this stream's items to a different type, returning a new stream of
/// the resulting type.
///
/// The provided closure is executed over all elements of this stream as
/// they are made available. It is executed inline with calls to
/// [`poll_next`](Stream::poll_next).
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to the existing `map` methods in the
/// standard library.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let stream = stream::iter(1..=3);
/// let mut stream = stream.map(|x| x + 3);
///
/// assert_eq!(stream.next().await, Some(4));
/// assert_eq!(stream.next().await, Some(5));
/// assert_eq!(stream.next().await, Some(6));
/// # }
/// ```
fn map<T, F>(self, f: F) -> Map<Self, F>
where
F: FnMut(Self::Item) -> T,
Self: Sized,
{
Map::new(self, f)
}
/// Map this stream's items to a different type for as long as determined by
/// the provided closure. A stream of the target type will be returned,
/// which will yield elements until the closure returns `None`.
///
/// The provided closure is executed over all elements of this stream as
/// they are made available, until it returns `None`. It is executed inline
/// with calls to [`poll_next`](Stream::poll_next). Once `None` is returned,
/// the underlying stream will not be polled again.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to the [`Iterator::map_while`] method in the
/// standard library.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let stream = stream::iter(1..=10);
/// let mut stream = stream.map_while(|x| {
/// if x < 4 {
/// Some(x + 3)
/// } else {
/// None
/// }
/// });
/// assert_eq!(stream.next().await, Some(4));
/// assert_eq!(stream.next().await, Some(5));
/// assert_eq!(stream.next().await, Some(6));
/// assert_eq!(stream.next().await, None);
/// # }
/// ```
fn map_while<T, F>(self, f: F) -> MapWhile<Self, F>
where
F: FnMut(Self::Item) -> Option<T>,
Self: Sized,
{
MapWhile::new(self, f)
}
/// Maps this stream's items asynchronously to a different type, returning a
/// new stream of the resulting type.
///
/// The provided closure is executed over all elements of this stream as
/// they are made available, and the returned future is executed. Only one
/// future is executed at the time.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to the existing `then` methods in the
/// standard library.
///
/// Be aware that if the future is not `Unpin`, then neither is the `Stream`
/// returned by this method. To handle this, you can use `tokio::pin!` as in
/// the example below or put the stream in a `Box` with `Box::pin(stream)`.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// async fn do_async_work(value: i32) -> i32 {
/// value + 3
/// }
///
/// let stream = stream::iter(1..=3);
/// let stream = stream.then(do_async_work);
///
/// tokio::pin!(stream);
///
/// assert_eq!(stream.next().await, Some(4));
/// assert_eq!(stream.next().await, Some(5));
/// assert_eq!(stream.next().await, Some(6));
/// # }
/// ```
fn then<F, Fut>(self, f: F) -> Then<Self, Fut, F>
where
F: FnMut(Self::Item) -> Fut,
Fut: Future,
Self: Sized,
{
Then::new(self, f)
}
/// Combine two streams into one by interleaving the output of both as it
/// is produced.
///
/// Values are produced from the merged stream in the order they arrive from
/// the two source streams. If both source streams provide values
/// simultaneously, the merge stream alternates between them. This provides
/// some level of fairness. You should not chain calls to `merge`, as this
/// will break the fairness of the merging.
///
/// The merged stream completes once **both** source streams complete. When
/// one source stream completes before the other, the merge stream
/// exclusively polls the remaining stream.
///
/// For merging multiple streams, consider using [`StreamMap`] instead.
///
/// [`StreamMap`]: crate::StreamMap
///
/// # Examples
///
/// ```
/// use tokio_stream::{StreamExt, Stream};
/// use tokio::sync::mpsc;
/// use tokio::time;
///
/// use std::time::Duration;
/// use std::pin::Pin;
///
/// # /*
/// #[tokio::main]
/// # */
/// # #[tokio::main(flavor = "current_thread")]
/// async fn main() {
/// # time::pause();
/// let (tx1, mut rx1) = mpsc::channel::<usize>(10);
/// let (tx2, mut rx2) = mpsc::channel::<usize>(10);
///
/// // Convert the channels to a `Stream`.
/// let rx1 = Box::pin(async_stream::stream! {
/// while let Some(item) = rx1.recv().await {
/// yield item;
/// }
/// }) as Pin<Box<dyn Stream<Item = usize> + Send>>;
///
/// let rx2 = Box::pin(async_stream::stream! {
/// while let Some(item) = rx2.recv().await {
/// yield item;
/// }
/// }) as Pin<Box<dyn Stream<Item = usize> + Send>>;
///
/// let mut rx = rx1.merge(rx2);
///
/// tokio::spawn(async move {
/// // Send some values immediately
/// tx1.send(1).await.unwrap();
/// tx1.send(2).await.unwrap();
///
/// // Let the other task send values
/// time::sleep(Duration::from_millis(20)).await;
///
/// tx1.send(4).await.unwrap();
/// });
///
/// tokio::spawn(async move {
/// // Wait for the first task to send values
/// time::sleep(Duration::from_millis(5)).await;
///
/// tx2.send(3).await.unwrap();
///
/// time::sleep(Duration::from_millis(25)).await;
///
/// // Send the final value
/// tx2.send(5).await.unwrap();
/// });
///
/// assert_eq!(1, rx.next().await.unwrap());
/// assert_eq!(2, rx.next().await.unwrap());
/// assert_eq!(3, rx.next().await.unwrap());
/// assert_eq!(4, rx.next().await.unwrap());
/// assert_eq!(5, rx.next().await.unwrap());
///
/// // The merged stream is consumed
/// assert!(rx.next().await.is_none());
/// }
/// ```
fn merge<U>(self, other: U) -> Merge<Self, U>
where
U: Stream<Item = Self::Item>,
Self: Sized,
{
Merge::new(self, other)
}
/// Filters the values produced by this stream according to the provided
/// predicate.
///
/// As values of this stream are made available, the provided predicate `f`
/// will be run against them. If the predicate
/// resolves to `true`, then the stream will yield the value, but if the
/// predicate resolves to `false`, then the value
/// will be discarded and the next value will be produced.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to [`Iterator::filter`] method in the
/// standard library.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let stream = stream::iter(1..=8);
/// let mut evens = stream.filter(|x| x % 2 == 0);
///
/// assert_eq!(Some(2), evens.next().await);
/// assert_eq!(Some(4), evens.next().await);
/// assert_eq!(Some(6), evens.next().await);
/// assert_eq!(Some(8), evens.next().await);
/// assert_eq!(None, evens.next().await);
/// # }
/// ```
fn filter<F>(self, f: F) -> Filter<Self, F>
where
F: FnMut(&Self::Item) -> bool,
Self: Sized,
{
Filter::new(self, f)
}
/// Filters the values produced by this stream while simultaneously mapping
/// them to a different type according to the provided closure.
///
/// As values of this stream are made available, the provided function will
/// be run on them. If the predicate `f` resolves to
/// [`Some(item)`](Some) then the stream will yield the value `item`, but if
/// it resolves to [`None`], then the value will be skipped.
///
/// Note that this function consumes the stream passed into it and returns a
/// wrapped version of it, similar to [`Iterator::filter_map`] method in the
/// standard library.
///
/// # Examples
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let stream = stream::iter(1..=8);
/// let mut evens = stream.filter_map(|x| {
/// if x % 2 == 0 { Some(x + 1) } else { None }
/// });
///
/// assert_eq!(Some(3), evens.next().await);
/// assert_eq!(Some(5), evens.next().await);
/// assert_eq!(Some(7), evens.next().await);
/// assert_eq!(Some(9), evens.next().await);
/// assert_eq!(None, evens.next().await);
/// # }
/// ```
fn filter_map<T, F>(self, f: F) -> FilterMap<Self, F>
where
F: FnMut(Self::Item) -> Option<T>,
Self: Sized,
{
FilterMap::new(self, f)
}
/// Creates a stream which ends after the first `None`.
///
/// After a stream returns `None`, behavior is undefined. Future calls to
/// `poll_next` may or may not return `Some(T)` again or they may panic.
/// `fuse()` adapts a stream, ensuring that after `None` is given, it will
/// return `None` forever.
///
/// # Examples
///
/// ```
/// use tokio_stream::{Stream, StreamExt};
///
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
///
/// // a stream which alternates between Some and None
/// struct Alternate {
/// state: i32,
/// }
///
/// impl Stream for Alternate {
/// type Item = i32;
///
/// fn poll_next(mut self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Option<i32>> {
/// let val = self.state;
/// self.state = self.state + 1;
///
/// // if it's even, Some(i32), else None
/// if val % 2 == 0 {
/// Poll::Ready(Some(val))
/// } else {
/// Poll::Ready(None)
/// }
/// }
/// }
///
/// #[tokio::main]
/// async fn main() {
/// let mut stream = Alternate { state: 0 };
///
/// // the stream goes back and forth
/// assert_eq!(stream.next().await, Some(0));
/// assert_eq!(stream.next().await, None);
/// assert_eq!(stream.next().await, Some(2));
/// assert_eq!(stream.next().await, None);
///
/// // however, once it is fused
/// let mut stream = stream.fuse();
///
/// assert_eq!(stream.next().await, Some(4));
/// assert_eq!(stream.next().await, None);
///
/// // it will always return `None` after the first time.
/// assert_eq!(stream.next().await, None);
/// assert_eq!(stream.next().await, None);
/// assert_eq!(stream.next().await, None);
/// }
/// ```
fn fuse(self) -> Fuse<Self>
where
Self: Sized,
{
Fuse::new(self)
}
/// Creates a new stream of at most `n` items of the underlying stream.
///
/// Once `n` items have been yielded from this stream then it will always
/// return that the stream is done.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let mut stream = stream::iter(1..=10).take(3);
///
/// assert_eq!(Some(1), stream.next().await);
/// assert_eq!(Some(2), stream.next().await);
/// assert_eq!(Some(3), stream.next().await);
/// assert_eq!(None, stream.next().await);
/// # }
/// ```
fn take(self, n: usize) -> Take<Self>
where
Self: Sized,
{
Take::new(self, n)
}
/// Take elements from this stream while the provided predicate
/// resolves to `true`.
///
/// This function, like `Iterator::take_while`, will take elements from the
/// stream until the predicate `f` resolves to `false`. Once one element
/// returns false it will always return that the stream is done.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let mut stream = stream::iter(1..=10).take_while(|x| *x <= 3);
///
/// assert_eq!(Some(1), stream.next().await);
/// assert_eq!(Some(2), stream.next().await);
/// assert_eq!(Some(3), stream.next().await);
/// assert_eq!(None, stream.next().await);
/// # }
/// ```
fn take_while<F>(self, f: F) -> TakeWhile<Self, F>
where
F: FnMut(&Self::Item) -> bool,
Self: Sized,
{
TakeWhile::new(self, f)
}
/// Creates a new stream that will skip the `n` first items of the
/// underlying stream.
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let mut stream = stream::iter(1..=10).skip(7);
///
/// assert_eq!(Some(8), stream.next().await);
/// assert_eq!(Some(9), stream.next().await);
/// assert_eq!(Some(10), stream.next().await);
/// assert_eq!(None, stream.next().await);
/// # }
/// ```
fn skip(self, n: usize) -> Skip<Self>
where
Self: Sized,
{
Skip::new(self, n)
}
/// Skip elements from the underlying stream while the provided predicate
/// resolves to `true`.
///
/// This function, like [`Iterator::skip_while`], will ignore elements from the
/// stream until the predicate `f` resolves to `false`. Once one element
/// returns false, the rest of the elements will be yielded.
///
/// [`Iterator::skip_while`]: std::iter::Iterator::skip_while()
///
/// # Examples
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
/// let mut stream = stream::iter(vec![1,2,3,4,1]).skip_while(|x| *x < 3);
///
/// assert_eq!(Some(3), stream.next().await);
/// assert_eq!(Some(4), stream.next().await);
/// assert_eq!(Some(1), stream.next().await);
/// assert_eq!(None, stream.next().await);
/// # }
/// ```
fn skip_while<F>(self, f: F) -> SkipWhile<Self, F>
where
F: FnMut(&Self::Item) -> bool,
Self: Sized,
{
SkipWhile::new(self, f)
}
/// Tests if every element of the stream matches a predicate.
///
/// Equivalent to:
///
/// ```ignore
/// async fn all<F>(&mut self, f: F) -> bool;
/// ```
///
/// `all()` takes a closure that returns `true` or `false`. It applies
/// this closure to each element of the stream, and if they all return
/// `true`, then so does `all`. If any of them return `false`, it
/// returns `false`. An empty stream returns `true`.
///
/// `all()` is short-circuiting; in other words, it will stop processing
/// as soon as it finds a `false`, given that no matter what else happens,
/// the result will also be `false`.
///
/// An empty stream returns `true`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let a = [1, 2, 3];
///
/// assert!(stream::iter(&a).all(|&x| x > 0).await);
///
/// assert!(!stream::iter(&a).all(|&x| x > 2).await);
/// # }
/// ```
///
/// Stopping at the first `false`:
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let a = [1, 2, 3];
///
/// let mut iter = stream::iter(&a);
///
/// assert!(!iter.all(|&x| x != 2).await);
///
/// // we can still use `iter`, as there are more elements.
/// assert_eq!(iter.next().await, Some(&3));
/// # }
/// ```
fn all<F>(&mut self, f: F) -> AllFuture<'_, Self, F>
where
Self: Unpin,
F: FnMut(Self::Item) -> bool,
{
AllFuture::new(self, f)
}
/// Tests if any element of the stream matches a predicate.
///
/// Equivalent to:
///
/// ```ignore
/// async fn any<F>(&mut self, f: F) -> bool;
/// ```
///
/// `any()` takes a closure that returns `true` or `false`. It applies
/// this closure to each element of the stream, and if any of them return
/// `true`, then so does `any()`. If they all return `false`, it
/// returns `false`.
///
/// `any()` is short-circuiting; in other words, it will stop processing
/// as soon as it finds a `true`, given that no matter what else happens,
/// the result will also be `true`.
///
/// An empty stream returns `false`.
///
/// Basic usage:
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let a = [1, 2, 3];
///
/// assert!(stream::iter(&a).any(|&x| x > 0).await);
///
/// assert!(!stream::iter(&a).any(|&x| x > 5).await);
/// # }
/// ```
///
/// Stopping at the first `true`:
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
///
/// let a = [1, 2, 3];
///
/// let mut iter = stream::iter(&a);
///
/// assert!(iter.any(|&x| x != 2).await);
///
/// // we can still use `iter`, as there are more elements.
/// assert_eq!(iter.next().await, Some(&2));
/// # }
/// ```
fn any<F>(&mut self, f: F) -> AnyFuture<'_, Self, F>
where
Self: Unpin,
F: FnMut(Self::Item) -> bool,
{
AnyFuture::new(self, f)
}
/// Combine two streams into one by first returning all values from the
/// first stream then all values from the second stream.
///
/// As long as `self` still has values to emit, no values from `other` are
/// emitted, even if some are ready.
///
/// # Examples
///
/// ```
/// use tokio_stream::{self as stream, StreamExt};
///
/// #[tokio::main]
/// async fn main() {
/// let one = stream::iter(vec![1, 2, 3]);
/// let two = stream::iter(vec![4, 5, 6]);
///
/// let mut stream = one.chain(two);
///
/// assert_eq!(stream.next().await, Some(1));
/// assert_eq!(stream.next().await, Some(2));
/// assert_eq!(stream.next().await, Some(3));
/// assert_eq!(stream.next().await, Some(4));
/// assert_eq!(stream.next().await, Some(5));
/// assert_eq!(stream.next().await, Some(6));
/// assert_eq!(stream.next().await, None);
/// }
/// ```
fn chain<U>(self, other: U) -> Chain<Self, U>
where
U: Stream<Item = Self::Item>,
Self: Sized,
{
Chain::new(self, other)
}
/// A combinator that applies a function to every element in a stream
/// producing a single, final value.
///
/// Equivalent to:
///
/// ```ignore
/// async fn fold<B, F>(self, init: B, f: F) -> B;
/// ```
///
/// # Examples
/// Basic usage:
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, *};
///
/// let s = stream::iter(vec![1u8, 2, 3]);
/// let sum = s.fold(0, |acc, x| acc + x).await;
///
/// assert_eq!(sum, 6);
/// # }
/// ```
fn fold<B, F>(self, init: B, f: F) -> FoldFuture<Self, B, F>
where
Self: Sized,
F: FnMut(B, Self::Item) -> B,
{
FoldFuture::new(self, init, f)
}
/// Drain stream pushing all emitted values into a collection.
///
/// Equivalent to:
///
/// ```ignore
/// async fn collect<T>(self) -> T;
/// ```
///
/// `collect` streams all values, awaiting as needed. Values are pushed into
/// a collection. A number of different target collection types are
/// supported, including [`Vec`], [`String`], and [`Bytes`].
///
/// [`Bytes`]: https://docs.rs/bytes/0.6.0/bytes/struct.Bytes.html
///
/// # `Result`
///
/// `collect()` can also be used with streams of type `Result<T, E>` where
/// `T: FromStream<_>`. In this case, `collect()` will stream as long as
/// values yielded from the stream are `Ok(_)`. If `Err(_)` is encountered,
/// streaming is terminated and `collect()` returns the `Err`.
///
/// # Notes
///
/// `FromStream` is currently a sealed trait. Stabilization is pending
/// enhancements to the Rust language.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use tokio_stream::{self as stream, StreamExt};
///
/// #[tokio::main]
/// async fn main() {
/// let doubled: Vec<i32> =
/// stream::iter(vec![1, 2, 3])
/// .map(|x| x * 2)
/// .collect()
/// .await;
///
/// assert_eq!(vec![2, 4, 6], doubled);
/// }
/// ```
///
/// Collecting a stream of `Result` values
///
/// ```
/// use tokio_stream::{self as stream, StreamExt};
///
/// #[tokio::main]
/// async fn main() {
/// // A stream containing only `Ok` values will be collected
/// let values: Result<Vec<i32>, &str> =
/// stream::iter(vec![Ok(1), Ok(2), Ok(3)])
/// .collect()
/// .await;
///
/// assert_eq!(Ok(vec![1, 2, 3]), values);
///
/// // A stream containing `Err` values will return the first error.
/// let results = vec![Ok(1), Err("no"), Ok(2), Ok(3), Err("nein")];
///
/// let values: Result<Vec<i32>, &str> =
/// stream::iter(results)
/// .collect()
/// .await;
///
/// assert_eq!(Err("no"), values);
/// }
/// ```
fn collect<T>(self) -> Collect<Self, T>
where
T: FromStream<Self::Item>,
Self: Sized,
{
Collect::new(self)
}
/// Applies a per-item timeout to the passed stream.
///
/// `timeout()` takes a `Duration` that represents the maximum amount of
/// time each element of the stream has to complete before timing out.
///
/// If the wrapped stream yields a value before the deadline is reached, the
/// value is returned. Otherwise, an error is returned. The caller may decide
/// to continue consuming the stream and will eventually get the next source
/// stream value once it becomes available. See
/// [`timeout_repeating`](StreamExt::timeout_repeating) for an alternative
/// where the timeouts will repeat.
///
/// # Notes
///
/// This function consumes the stream passed into it and returns a
/// wrapped version of it.
///
/// Polling the returned stream will continue to poll the inner stream even
/// if one or more items time out.
///
/// # Examples
///
/// Suppose we have a stream `int_stream` that yields 3 numbers (1, 2, 3):
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
/// use std::time::Duration;
/// # let int_stream = stream::iter(1..=3);
///
/// let int_stream = int_stream.timeout(Duration::from_secs(1));
/// tokio::pin!(int_stream);
///
/// // When no items time out, we get the 3 elements in succession:
/// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
/// assert_eq!(int_stream.try_next().await, Ok(Some(2)));
/// assert_eq!(int_stream.try_next().await, Ok(Some(3)));
/// assert_eq!(int_stream.try_next().await, Ok(None));
///
/// // If the second item times out, we get an error and continue polling the stream:
/// # let mut int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]);
/// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
/// assert!(int_stream.try_next().await.is_err());
/// assert_eq!(int_stream.try_next().await, Ok(Some(2)));
/// assert_eq!(int_stream.try_next().await, Ok(Some(3)));
/// assert_eq!(int_stream.try_next().await, Ok(None));
///
/// // If we want to stop consuming the source stream the first time an
/// // element times out, we can use the `take_while` operator:
/// # let int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]);
/// let mut int_stream = int_stream.take_while(Result::is_ok);
///
/// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
/// assert_eq!(int_stream.try_next().await, Ok(None));
/// # }
/// ```
///
/// Once a timeout error is received, no further events will be received
/// unless the wrapped stream yields a value (timeouts do not repeat).
///
/// ```
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// use tokio_stream::{StreamExt, wrappers::IntervalStream};
/// use std::time::Duration;
/// let interval_stream = IntervalStream::new(tokio::time::interval(Duration::from_millis(100)));
/// let timeout_stream = interval_stream.timeout(Duration::from_millis(10));
/// tokio::pin!(timeout_stream);
///
/// // Only one timeout will be received between values in the source stream.
/// assert!(timeout_stream.try_next().await.is_ok());
/// assert!(timeout_stream.try_next().await.is_err(), "expected one timeout");
/// assert!(timeout_stream.try_next().await.is_ok(), "expected no more timeouts");
/// # }
/// ```
#[cfg(feature = "time")]
#[cfg_attr(docsrs, doc(cfg(feature = "time")))]
fn timeout(self, duration: Duration) -> Timeout<Self>
where
Self: Sized,
{
Timeout::new(self, duration)
}
/// Applies a per-item timeout to the passed stream.
///
/// `timeout_repeating()` takes an [`Interval`] that controls the time each
/// element of the stream has to complete before timing out.
///
/// If the wrapped stream yields a value before the deadline is reached, the
/// value is returned. Otherwise, an error is returned. The caller may decide
/// to continue consuming the stream and will eventually get the next source
/// stream value once it becomes available. Unlike `timeout()`, if no value
/// becomes available before the deadline is reached, additional errors are
/// returned at the specified interval. See [`timeout`](StreamExt::timeout)
/// for an alternative where the timeouts do not repeat.
///
/// # Notes
///
/// This function consumes the stream passed into it and returns a
/// wrapped version of it.
///
/// Polling the returned stream will continue to poll the inner stream even
/// if one or more items time out.
///
/// # Examples
///
/// Suppose we have a stream `int_stream` that yields 3 numbers (1, 2, 3):
///
/// ```
/// # #[tokio::main]
/// # async fn main() {
/// use tokio_stream::{self as stream, StreamExt};
/// use std::time::Duration;
/// # let int_stream = stream::iter(1..=3);
///
/// let int_stream = int_stream.timeout_repeating(tokio::time::interval(Duration::from_secs(1)));
/// tokio::pin!(int_stream);
///
/// // When no items time out, we get the 3 elements in succession:
/// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
/// assert_eq!(int_stream.try_next().await, Ok(Some(2)));
/// assert_eq!(int_stream.try_next().await, Ok(Some(3)));
/// assert_eq!(int_stream.try_next().await, Ok(None));
///
/// // If the second item times out, we get an error and continue polling the stream:
/// # let mut int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]);
/// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
/// assert!(int_stream.try_next().await.is_err());
/// assert_eq!(int_stream.try_next().await, Ok(Some(2)));
/// assert_eq!(int_stream.try_next().await, Ok(Some(3)));
/// assert_eq!(int_stream.try_next().await, Ok(None));
///
/// // If we want to stop consuming the source stream the first time an
/// // element times out, we can use the `take_while` operator:
/// # let int_stream = stream::iter(vec![Ok(1), Err(()), Ok(2), Ok(3)]);
/// let mut int_stream = int_stream.take_while(Result::is_ok);
///
/// assert_eq!(int_stream.try_next().await, Ok(Some(1)));
/// assert_eq!(int_stream.try_next().await, Ok(None));
/// # }
/// ```
///
/// Timeout errors will be continuously produced at the specified interval
/// until the wrapped stream yields a value.
///
/// ```
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// # async fn main() {
/// use tokio_stream::{StreamExt, wrappers::IntervalStream};
/// use std::time::Duration;
/// let interval_stream = IntervalStream::new(tokio::time::interval(Duration::from_millis(23)));
/// let timeout_stream = interval_stream.timeout_repeating(tokio::time::interval(Duration::from_millis(9)));
/// tokio::pin!(timeout_stream);
///
/// // Multiple timeouts will be received between values in the source stream.
/// assert!(timeout_stream.try_next().await.is_ok());
/// assert!(timeout_stream.try_next().await.is_err(), "expected one timeout");
/// assert!(timeout_stream.try_next().await.is_err(), "expected a second timeout");
/// // Will eventually receive another value from the source stream...
/// assert!(timeout_stream.try_next().await.is_ok(), "expected non-timeout");
/// # }
/// ```
#[cfg(feature = "time")]
#[cfg_attr(docsrs, doc(cfg(feature = "time")))]
fn timeout_repeating(self, interval: Interval) -> TimeoutRepeating<Self>
where
Self: Sized,
{
TimeoutRepeating::new(self, interval)
}
/// Slows down a stream by enforcing a delay between items.
///
/// The underlying timer behind this utility has a granularity of one millisecond.
///
/// # Example
///
/// Create a throttled stream.
/// ```rust,no_run
/// use std::time::Duration;
/// use tokio_stream::StreamExt;
///
/// # async fn dox() {
/// let item_stream = futures::stream::repeat("one").throttle(Duration::from_secs(2));
/// tokio::pin!(item_stream);
///
/// loop {
/// // The string will be produced at most every 2 seconds
/// println!("{:?}", item_stream.next().await);
/// }
/// # }
/// ```
#[cfg(feature = "time")]
#[cfg_attr(docsrs, doc(cfg(feature = "time")))]
fn throttle(self, duration: Duration) -> Throttle<Self>
where
Self: Sized,
{
throttle(duration, self)
}
/// Batches the items in the given stream using a maximum duration and size for each batch.
///
/// This stream returns the next batch of items in the following situations:
/// 1. The inner stream has returned at least `max_size` many items since the last batch.
/// 2. The time since the first item of a batch is greater than the given duration.
/// 3. The end of the stream is reached.
///
/// The length of the returned vector is never empty or greater than the maximum size. Empty batches
/// will not be emitted if no items are received upstream.
///
/// # Panics
///
/// This function panics if `max_size` is zero
///
/// # Example
///
/// ```rust
/// use std::time::Duration;
/// use tokio::time;
/// use tokio_stream::{self as stream, StreamExt};
/// use futures::FutureExt;
///
/// #[tokio::main]
/// # async fn _unused() {}
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let iter = vec![1, 2, 3, 4].into_iter();
/// let stream0 = stream::iter(iter);
///
/// let iter = vec![5].into_iter();
/// let stream1 = stream::iter(iter)
/// .then(move |n| time::sleep(Duration::from_secs(5)).map(move |_| n));
///
/// let chunk_stream = stream0
/// .chain(stream1)
/// .chunks_timeout(3, Duration::from_secs(2));
/// tokio::pin!(chunk_stream);
///
/// // a full batch was received
/// assert_eq!(chunk_stream.next().await, Some(vec![1,2,3]));
/// // deadline was reached before max_size was reached
/// assert_eq!(chunk_stream.next().await, Some(vec![4]));
/// // last element in the stream
/// assert_eq!(chunk_stream.next().await, Some(vec![5]));
/// }
/// ```
#[cfg(feature = "time")]
#[cfg_attr(docsrs, doc(cfg(feature = "time")))]
#[track_caller]
fn chunks_timeout(self, max_size: usize, duration: Duration) -> ChunksTimeout<Self>
where
Self: Sized,
{
assert!(max_size > 0, "`max_size` must be non-zero.");
ChunksTimeout::new(self, max_size, duration)
}
/// Turns the stream into a peekable stream, whose next element can be peeked at without being
/// consumed.
/// ```rust
/// use tokio_stream::{self as stream, StreamExt};
///
/// #[tokio::main]
/// # async fn _unused() {}
/// # #[tokio::main(flavor = "current_thread", start_paused = true)]
/// async fn main() {
/// let iter = vec![1, 2, 3, 4].into_iter();
/// let mut stream = stream::iter(iter).peekable();
///
/// assert_eq!(*stream.peek().await.unwrap(), 1);
/// assert_eq!(*stream.peek().await.unwrap(), 1);
/// assert_eq!(stream.next().await.unwrap(), 1);
/// assert_eq!(*stream.peek().await.unwrap(), 2);
/// }
/// ```
fn peekable(self) -> Peekable<Self>
where
Self: Sized,
{
Peekable::new(self)
}
}
impl<St: ?Sized> StreamExt for St where St: Stream {}
/// Merge the size hints from two streams.
fn merge_size_hints(
(left_low, left_high): (usize, Option<usize>),
(right_low, right_high): (usize, Option<usize>),
) -> (usize, Option<usize>) {
let low = left_low.saturating_add(right_low);
let high = match (left_high, right_high) {
(Some(h1), Some(h2)) => h1.checked_add(h2),
_ => None,
};
(low, high)
}