1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
use crate::Stream;

use std::borrow::Borrow;
use std::future::poll_fn;
use std::hash::Hash;
use std::pin::Pin;
use std::task::{ready, Context, Poll};

/// Combine many streams into one, indexing each source stream with a unique
/// key.
///
/// `StreamMap` is similar to [`StreamExt::merge`] in that it combines source
/// streams into a single merged stream that yields values in the order that
/// they arrive from the source streams. However, `StreamMap` has a lot more
/// flexibility in usage patterns.
///
/// `StreamMap` can:
///
/// * Merge an arbitrary number of streams.
/// * Track which source stream the value was received from.
/// * Handle inserting and removing streams from the set of managed streams at
///   any point during iteration.
///
/// All source streams held by `StreamMap` are indexed using a key. This key is
/// included with the value when a source stream yields a value. The key is also
/// used to remove the stream from the `StreamMap` before the stream has
/// completed streaming.
///
/// # `Unpin`
///
/// Because the `StreamMap` API moves streams during runtime, both streams and
/// keys must be `Unpin`. In order to insert a `!Unpin` stream into a
/// `StreamMap`, use [`pin!`] to pin the stream to the stack or [`Box::pin`] to
/// pin the stream in the heap.
///
/// # Implementation
///
/// `StreamMap` is backed by a `Vec<(K, V)>`. There is no guarantee that this
/// internal implementation detail will persist in future versions, but it is
/// important to know the runtime implications. In general, `StreamMap` works
/// best with a "smallish" number of streams as all entries are scanned on
/// insert, remove, and polling. In cases where a large number of streams need
/// to be merged, it may be advisable to use tasks sending values on a shared
/// [`mpsc`] channel.
///
/// # Notes
///
/// `StreamMap` removes finished streams automatically, without alerting the user.
/// In some scenarios, the caller would want to know on closed streams.
/// To do this, use [`StreamNotifyClose`] as a wrapper to your stream.
/// It will return None when the stream is closed.
///
/// [`StreamExt::merge`]: crate::StreamExt::merge
/// [`mpsc`]: https://docs.rs/tokio/1.0/tokio/sync/mpsc/index.html
/// [`pin!`]: https://docs.rs/tokio/1.0/tokio/macro.pin.html
/// [`Box::pin`]: std::boxed::Box::pin
/// [`StreamNotifyClose`]: crate::StreamNotifyClose
///
/// # Examples
///
/// Merging two streams, then remove them after receiving the first value
///
/// ```
/// use tokio_stream::{StreamExt, StreamMap, Stream};
/// use tokio::sync::mpsc;
/// use std::pin::Pin;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx1, mut rx1) = mpsc::channel::<usize>(10);
///     let (tx2, mut rx2) = mpsc::channel::<usize>(10);
///
///     // Convert the channels to a `Stream`.
///     let rx1 = Box::pin(async_stream::stream! {
///           while let Some(item) = rx1.recv().await {
///               yield item;
///           }
///     }) as Pin<Box<dyn Stream<Item = usize> + Send>>;
///
///     let rx2 = Box::pin(async_stream::stream! {
///           while let Some(item) = rx2.recv().await {
///               yield item;
///           }
///     }) as Pin<Box<dyn Stream<Item = usize> + Send>>;
///
///     tokio::spawn(async move {
///         tx1.send(1).await.unwrap();
///
///         // This value will never be received. The send may or may not return
///         // `Err` depending on if the remote end closed first or not.
///         let _ = tx1.send(2).await;
///     });
///
///     tokio::spawn(async move {
///         tx2.send(3).await.unwrap();
///         let _ = tx2.send(4).await;
///     });
///
///     let mut map = StreamMap::new();
///
///     // Insert both streams
///     map.insert("one", rx1);
///     map.insert("two", rx2);
///
///     // Read twice
///     for _ in 0..2 {
///         let (key, val) = map.next().await.unwrap();
///
///         if key == "one" {
///             assert_eq!(val, 1);
///         } else {
///             assert_eq!(val, 3);
///         }
///
///         // Remove the stream to prevent reading the next value
///         map.remove(key);
///     }
/// }
/// ```
///
/// This example models a read-only client to a chat system with channels. The
/// client sends commands to join and leave channels. `StreamMap` is used to
/// manage active channel subscriptions.
///
/// For simplicity, messages are displayed with `println!`, but they could be
/// sent to the client over a socket.
///
/// ```no_run
/// use tokio_stream::{Stream, StreamExt, StreamMap};
///
/// enum Command {
///     Join(String),
///     Leave(String),
/// }
///
/// fn commands() -> impl Stream<Item = Command> {
///     // Streams in user commands by parsing `stdin`.
/// # tokio_stream::pending()
/// }
///
/// // Join a channel, returns a stream of messages received on the channel.
/// fn join(channel: &str) -> impl Stream<Item = String> + Unpin {
///     // left as an exercise to the reader
/// # tokio_stream::pending()
/// }
///
/// #[tokio::main]
/// async fn main() {
///     let mut channels = StreamMap::new();
///
///     // Input commands (join / leave channels).
///     let cmds = commands();
///     tokio::pin!(cmds);
///
///     loop {
///         tokio::select! {
///             Some(cmd) = cmds.next() => {
///                 match cmd {
///                     Command::Join(chan) => {
///                         // Join the channel and add it to the `channels`
///                         // stream map
///                         let msgs = join(&chan);
///                         channels.insert(chan, msgs);
///                     }
///                     Command::Leave(chan) => {
///                         channels.remove(&chan);
///                     }
///                 }
///             }
///             Some((chan, msg)) = channels.next() => {
///                 // Received a message, display it on stdout with the channel
///                 // it originated from.
///                 println!("{}: {}", chan, msg);
///             }
///             // Both the `commands` stream and the `channels` stream are
///             // complete. There is no more work to do, so leave the loop.
///             else => break,
///         }
///     }
/// }
/// ```
///
/// Using `StreamNotifyClose` to handle closed streams with `StreamMap`.
///
/// ```
/// use tokio_stream::{StreamExt, StreamMap, StreamNotifyClose};
///
/// #[tokio::main]
/// async fn main() {
///     let mut map = StreamMap::new();
///     let stream = StreamNotifyClose::new(tokio_stream::iter(vec![0, 1]));
///     let stream2 = StreamNotifyClose::new(tokio_stream::iter(vec![0, 1]));
///     map.insert(0, stream);
///     map.insert(1, stream2);
///     while let Some((key, val)) = map.next().await {
///         match val {
///             Some(val) => println!("got {val:?} from stream {key:?}"),
///             None => println!("stream {key:?} closed"),
///         }
///     }
/// }
/// ```

#[derive(Debug)]
pub struct StreamMap<K, V> {
    /// Streams stored in the map
    entries: Vec<(K, V)>,
}

impl<K, V> StreamMap<K, V> {
    /// An iterator visiting all key-value pairs in arbitrary order.
    ///
    /// The iterator element type is `&'a (K, V)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    ///
    /// map.insert("a", pending::<i32>());
    /// map.insert("b", pending());
    /// map.insert("c", pending());
    ///
    /// for (key, stream) in map.iter() {
    ///     println!("({}, {:?})", key, stream);
    /// }
    /// ```
    pub fn iter(&self) -> impl Iterator<Item = &(K, V)> {
        self.entries.iter()
    }

    /// An iterator visiting all key-value pairs mutably in arbitrary order.
    ///
    /// The iterator element type is `&'a mut (K, V)`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    ///
    /// map.insert("a", pending::<i32>());
    /// map.insert("b", pending());
    /// map.insert("c", pending());
    ///
    /// for (key, stream) in map.iter_mut() {
    ///     println!("({}, {:?})", key, stream);
    /// }
    /// ```
    pub fn iter_mut(&mut self) -> impl Iterator<Item = &mut (K, V)> {
        self.entries.iter_mut()
    }

    /// Creates an empty `StreamMap`.
    ///
    /// The stream map is initially created with a capacity of `0`, so it will
    /// not allocate until it is first inserted into.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, Pending};
    ///
    /// let map: StreamMap<&str, Pending<()>> = StreamMap::new();
    /// ```
    pub fn new() -> StreamMap<K, V> {
        StreamMap { entries: vec![] }
    }

    /// Creates an empty `StreamMap` with the specified capacity.
    ///
    /// The stream map will be able to hold at least `capacity` elements without
    /// reallocating. If `capacity` is 0, the stream map will not allocate.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, Pending};
    ///
    /// let map: StreamMap<&str, Pending<()>> = StreamMap::with_capacity(10);
    /// ```
    pub fn with_capacity(capacity: usize) -> StreamMap<K, V> {
        StreamMap {
            entries: Vec::with_capacity(capacity),
        }
    }

    /// Returns an iterator visiting all keys in arbitrary order.
    ///
    /// The iterator element type is `&'a K`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    ///
    /// map.insert("a", pending::<i32>());
    /// map.insert("b", pending());
    /// map.insert("c", pending());
    ///
    /// for key in map.keys() {
    ///     println!("{}", key);
    /// }
    /// ```
    pub fn keys(&self) -> impl Iterator<Item = &K> {
        self.iter().map(|(k, _)| k)
    }

    /// An iterator visiting all values in arbitrary order.
    ///
    /// The iterator element type is `&'a V`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    ///
    /// map.insert("a", pending::<i32>());
    /// map.insert("b", pending());
    /// map.insert("c", pending());
    ///
    /// for stream in map.values() {
    ///     println!("{:?}", stream);
    /// }
    /// ```
    pub fn values(&self) -> impl Iterator<Item = &V> {
        self.iter().map(|(_, v)| v)
    }

    /// An iterator visiting all values mutably in arbitrary order.
    ///
    /// The iterator element type is `&'a mut V`.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    ///
    /// map.insert("a", pending::<i32>());
    /// map.insert("b", pending());
    /// map.insert("c", pending());
    ///
    /// for stream in map.values_mut() {
    ///     println!("{:?}", stream);
    /// }
    /// ```
    pub fn values_mut(&mut self) -> impl Iterator<Item = &mut V> {
        self.iter_mut().map(|(_, v)| v)
    }

    /// Returns the number of streams the map can hold without reallocating.
    ///
    /// This number is a lower bound; the `StreamMap` might be able to hold
    /// more, but is guaranteed to be able to hold at least this many.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, Pending};
    ///
    /// let map: StreamMap<i32, Pending<()>> = StreamMap::with_capacity(100);
    /// assert!(map.capacity() >= 100);
    /// ```
    pub fn capacity(&self) -> usize {
        self.entries.capacity()
    }

    /// Returns the number of streams in the map.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut a = StreamMap::new();
    /// assert_eq!(a.len(), 0);
    /// a.insert(1, pending::<i32>());
    /// assert_eq!(a.len(), 1);
    /// ```
    pub fn len(&self) -> usize {
        self.entries.len()
    }

    /// Returns `true` if the map contains no elements.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut a = StreamMap::new();
    /// assert!(a.is_empty());
    /// a.insert(1, pending::<i32>());
    /// assert!(!a.is_empty());
    /// ```
    pub fn is_empty(&self) -> bool {
        self.entries.is_empty()
    }

    /// Clears the map, removing all key-stream pairs. Keeps the allocated
    /// memory for reuse.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut a = StreamMap::new();
    /// a.insert(1, pending::<i32>());
    /// a.clear();
    /// assert!(a.is_empty());
    /// ```
    pub fn clear(&mut self) {
        self.entries.clear();
    }

    /// Insert a key-stream pair into the map.
    ///
    /// If the map did not have this key present, `None` is returned.
    ///
    /// If the map did have this key present, the new `stream` replaces the old
    /// one and the old stream is returned.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    ///
    /// assert!(map.insert(37, pending::<i32>()).is_none());
    /// assert!(!map.is_empty());
    ///
    /// map.insert(37, pending());
    /// assert!(map.insert(37, pending()).is_some());
    /// ```
    pub fn insert(&mut self, k: K, stream: V) -> Option<V>
    where
        K: Hash + Eq,
    {
        let ret = self.remove(&k);
        self.entries.push((k, stream));

        ret
    }

    /// Removes a key from the map, returning the stream at the key if the key was previously in the map.
    ///
    /// The key may be any borrowed form of the map's key type, but `Hash` and
    /// `Eq` on the borrowed form must match those for the key type.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    /// map.insert(1, pending::<i32>());
    /// assert!(map.remove(&1).is_some());
    /// assert!(map.remove(&1).is_none());
    /// ```
    pub fn remove<Q>(&mut self, k: &Q) -> Option<V>
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        for i in 0..self.entries.len() {
            if self.entries[i].0.borrow() == k {
                return Some(self.entries.swap_remove(i).1);
            }
        }

        None
    }

    /// Returns `true` if the map contains a stream for the specified key.
    ///
    /// The key may be any borrowed form of the map's key type, but `Hash` and
    /// `Eq` on the borrowed form must match those for the key type.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio_stream::{StreamMap, pending};
    ///
    /// let mut map = StreamMap::new();
    /// map.insert(1, pending::<i32>());
    /// assert_eq!(map.contains_key(&1), true);
    /// assert_eq!(map.contains_key(&2), false);
    /// ```
    pub fn contains_key<Q>(&self, k: &Q) -> bool
    where
        K: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        for i in 0..self.entries.len() {
            if self.entries[i].0.borrow() == k {
                return true;
            }
        }

        false
    }
}

impl<K, V> StreamMap<K, V>
where
    K: Unpin,
    V: Stream + Unpin,
{
    /// Polls the next value, includes the vec entry index
    fn poll_next_entry(&mut self, cx: &mut Context<'_>) -> Poll<Option<(usize, V::Item)>> {
        let start = self::rand::thread_rng_n(self.entries.len() as u32) as usize;
        let mut idx = start;

        for _ in 0..self.entries.len() {
            let (_, stream) = &mut self.entries[idx];

            match Pin::new(stream).poll_next(cx) {
                Poll::Ready(Some(val)) => return Poll::Ready(Some((idx, val))),
                Poll::Ready(None) => {
                    // Remove the entry
                    self.entries.swap_remove(idx);

                    // Check if this was the last entry, if so the cursor needs
                    // to wrap
                    if idx == self.entries.len() {
                        idx = 0;
                    } else if idx < start && start <= self.entries.len() {
                        // The stream being swapped into the current index has
                        // already been polled, so skip it.
                        idx = idx.wrapping_add(1) % self.entries.len();
                    }
                }
                Poll::Pending => {
                    idx = idx.wrapping_add(1) % self.entries.len();
                }
            }
        }

        // If the map is empty, then the stream is complete.
        if self.entries.is_empty() {
            Poll::Ready(None)
        } else {
            Poll::Pending
        }
    }
}

impl<K, V> Default for StreamMap<K, V> {
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> StreamMap<K, V>
where
    K: Clone + Unpin,
    V: Stream + Unpin,
{
    /// Receives multiple items on this [`StreamMap`], extending the provided `buffer`.
    ///
    /// This method returns the number of items that is appended to the `buffer`.
    ///
    /// Note that this method does not guarantee that exactly `limit` items
    /// are received. Rather, if at least one item is available, it returns
    /// as many items as it can up to the given limit. This method returns
    /// zero only if the `StreamMap` is empty (or if `limit` is zero).
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `next_many` is used as the event in a
    /// [`tokio::select!`](tokio::select) statement and some other branch
    /// completes first, it is guaranteed that no items were received on any of
    /// the underlying streams.
    pub async fn next_many(&mut self, buffer: &mut Vec<(K, V::Item)>, limit: usize) -> usize {
        poll_fn(|cx| self.poll_next_many(cx, buffer, limit)).await
    }

    /// Polls to receive multiple items on this `StreamMap`, extending the provided `buffer`.
    ///
    /// This method returns:
    /// * `Poll::Pending` if no items are available but the `StreamMap` is not empty.
    /// * `Poll::Ready(count)` where `count` is the number of items successfully received and
    ///   stored in `buffer`. This can be less than, or equal to, `limit`.
    /// * `Poll::Ready(0)` if `limit` is set to zero or when the `StreamMap` is empty.
    ///
    /// Note that this method does not guarantee that exactly `limit` items
    /// are received. Rather, if at least one item is available, it returns
    /// as many items as it can up to the given limit. This method returns
    /// zero only if the `StreamMap` is empty (or if `limit` is zero).
    pub fn poll_next_many(
        &mut self,
        cx: &mut Context<'_>,
        buffer: &mut Vec<(K, V::Item)>,
        limit: usize,
    ) -> Poll<usize> {
        if limit == 0 || self.entries.is_empty() {
            return Poll::Ready(0);
        }

        let mut added = 0;

        let start = self::rand::thread_rng_n(self.entries.len() as u32) as usize;
        let mut idx = start;

        while added < limit {
            // Indicates whether at least one stream returned a value when polled or not
            let mut should_loop = false;

            for _ in 0..self.entries.len() {
                let (_, stream) = &mut self.entries[idx];

                match Pin::new(stream).poll_next(cx) {
                    Poll::Ready(Some(val)) => {
                        added += 1;

                        let key = self.entries[idx].0.clone();
                        buffer.push((key, val));

                        should_loop = true;

                        idx = idx.wrapping_add(1) % self.entries.len();
                    }
                    Poll::Ready(None) => {
                        // Remove the entry
                        self.entries.swap_remove(idx);

                        // Check if this was the last entry, if so the cursor needs
                        // to wrap
                        if idx == self.entries.len() {
                            idx = 0;
                        } else if idx < start && start <= self.entries.len() {
                            // The stream being swapped into the current index has
                            // already been polled, so skip it.
                            idx = idx.wrapping_add(1) % self.entries.len();
                        }
                    }
                    Poll::Pending => {
                        idx = idx.wrapping_add(1) % self.entries.len();
                    }
                }
            }

            if !should_loop {
                break;
            }
        }

        if added > 0 {
            Poll::Ready(added)
        } else if self.entries.is_empty() {
            Poll::Ready(0)
        } else {
            Poll::Pending
        }
    }
}

impl<K, V> Stream for StreamMap<K, V>
where
    K: Clone + Unpin,
    V: Stream + Unpin,
{
    type Item = (K, V::Item);

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        if let Some((idx, val)) = ready!(self.poll_next_entry(cx)) {
            let key = self.entries[idx].0.clone();
            Poll::Ready(Some((key, val)))
        } else {
            Poll::Ready(None)
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let mut ret = (0, Some(0));

        for (_, stream) in &self.entries {
            let hint = stream.size_hint();

            ret.0 += hint.0;

            match (ret.1, hint.1) {
                (Some(a), Some(b)) => ret.1 = Some(a + b),
                (Some(_), None) => ret.1 = None,
                _ => {}
            }
        }

        ret
    }
}

impl<K, V> FromIterator<(K, V)> for StreamMap<K, V>
where
    K: Hash + Eq,
{
    fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
        let iterator = iter.into_iter();
        let (lower_bound, _) = iterator.size_hint();
        let mut stream_map = Self::with_capacity(lower_bound);

        for (key, value) in iterator {
            stream_map.insert(key, value);
        }

        stream_map
    }
}

impl<K, V> Extend<(K, V)> for StreamMap<K, V> {
    fn extend<T>(&mut self, iter: T)
    where
        T: IntoIterator<Item = (K, V)>,
    {
        self.entries.extend(iter);
    }
}

mod rand {
    use std::cell::Cell;

    mod loom {
        #[cfg(not(loom))]
        pub(crate) mod rand {
            use std::collections::hash_map::RandomState;
            use std::hash::{BuildHasher, Hash, Hasher};
            use std::sync::atomic::AtomicU32;
            use std::sync::atomic::Ordering::Relaxed;

            static COUNTER: AtomicU32 = AtomicU32::new(1);

            pub(crate) fn seed() -> u64 {
                let rand_state = RandomState::new();

                let mut hasher = rand_state.build_hasher();

                // Hash some unique-ish data to generate some new state
                COUNTER.fetch_add(1, Relaxed).hash(&mut hasher);

                // Get the seed
                hasher.finish()
            }
        }

        #[cfg(loom)]
        pub(crate) mod rand {
            pub(crate) fn seed() -> u64 {
                1
            }
        }
    }

    /// Fast random number generate
    ///
    /// Implement `xorshift64+`: 2 32-bit `xorshift` sequences added together.
    /// Shift triplet `[17,7,16]` was calculated as indicated in Marsaglia's
    /// `Xorshift` paper: <https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf>
    /// This generator passes the SmallCrush suite, part of TestU01 framework:
    /// <http://simul.iro.umontreal.ca/testu01/tu01.html>
    #[derive(Debug)]
    pub(crate) struct FastRand {
        one: Cell<u32>,
        two: Cell<u32>,
    }

    impl FastRand {
        /// Initialize a new, thread-local, fast random number generator.
        pub(crate) fn new(seed: u64) -> FastRand {
            let one = (seed >> 32) as u32;
            let mut two = seed as u32;

            if two == 0 {
                // This value cannot be zero
                two = 1;
            }

            FastRand {
                one: Cell::new(one),
                two: Cell::new(two),
            }
        }

        pub(crate) fn fastrand_n(&self, n: u32) -> u32 {
            // This is similar to fastrand() % n, but faster.
            // See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
            let mul = (self.fastrand() as u64).wrapping_mul(n as u64);
            (mul >> 32) as u32
        }

        fn fastrand(&self) -> u32 {
            let mut s1 = self.one.get();
            let s0 = self.two.get();

            s1 ^= s1 << 17;
            s1 = s1 ^ s0 ^ s1 >> 7 ^ s0 >> 16;

            self.one.set(s0);
            self.two.set(s1);

            s0.wrapping_add(s1)
        }
    }

    // Used by `StreamMap`
    pub(crate) fn thread_rng_n(n: u32) -> u32 {
        thread_local! {
            static THREAD_RNG: FastRand = FastRand::new(loom::rand::seed());
        }

        THREAD_RNG.with(|rng| rng.fastrand_n(n))
    }
}