twox_hash/
thirty_two.rs

1use crate::UnalignedBuffer;
2use core::{cmp, hash::Hasher};
3
4#[cfg(feature = "serialize")]
5use serde::{Deserialize, Serialize};
6
7const CHUNK_SIZE: usize = 16;
8
9pub const PRIME_1: u32 = 2_654_435_761;
10pub const PRIME_2: u32 = 2_246_822_519;
11pub const PRIME_3: u32 = 3_266_489_917;
12pub const PRIME_4: u32 = 668_265_263;
13pub const PRIME_5: u32 = 374_761_393;
14
15#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
16#[derive(Copy, Clone, PartialEq)]
17struct XxCore {
18    v1: u32,
19    v2: u32,
20    v3: u32,
21    v4: u32,
22}
23
24/// Calculates the 32-bit hash. Care should be taken when using this
25/// hash.
26///
27/// Although this struct implements `Hasher`, it only calculates a
28/// 32-bit number, leaving the upper bits as 0. This means it is
29/// unlikely to be correct to use this in places like a `HashMap`.
30#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
31#[derive(Debug, Copy, Clone, PartialEq)]
32pub struct XxHash32 {
33    total_len: u64,
34    seed: u32,
35    core: XxCore,
36    #[cfg_attr(feature = "serialize", serde(flatten))]
37    buffer: Buffer,
38}
39
40impl XxCore {
41    fn with_seed(seed: u32) -> XxCore {
42        XxCore {
43            v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
44            v2: seed.wrapping_add(PRIME_2),
45            v3: seed,
46            v4: seed.wrapping_sub(PRIME_1),
47        }
48    }
49
50    #[inline(always)]
51    fn ingest_chunks<I>(&mut self, values: I)
52    where
53        I: IntoIterator<Item = [u32; 4]>,
54    {
55        #[inline(always)]
56        fn ingest_one_number(mut current_value: u32, mut value: u32) -> u32 {
57            value = value.wrapping_mul(PRIME_2);
58            current_value = current_value.wrapping_add(value);
59            current_value = current_value.rotate_left(13);
60            current_value.wrapping_mul(PRIME_1)
61        }
62
63        // By drawing these out, we can avoid going back and forth to
64        // memory. It only really helps for large files, when we need
65        // to iterate multiple times here.
66
67        let mut v1 = self.v1;
68        let mut v2 = self.v2;
69        let mut v3 = self.v3;
70        let mut v4 = self.v4;
71
72        for [n1, n2, n3, n4] in values {
73            v1 = ingest_one_number(v1, n1.to_le());
74            v2 = ingest_one_number(v2, n2.to_le());
75            v3 = ingest_one_number(v3, n3.to_le());
76            v4 = ingest_one_number(v4, n4.to_le());
77        }
78
79        self.v1 = v1;
80        self.v2 = v2;
81        self.v3 = v3;
82        self.v4 = v4;
83    }
84
85    #[inline(always)]
86    fn finish(&self) -> u32 {
87        // The original code pulls out local vars for v[1234]
88        // here. Performance tests did not show that to be effective
89        // here, presumably because this method is not called in a
90        // tight loop.
91
92        #[allow(unknown_lints, clippy::needless_late_init)] // keeping things parallel
93        let mut hash;
94
95        hash = self.v1.rotate_left(1);
96        hash = hash.wrapping_add(self.v2.rotate_left(7));
97        hash = hash.wrapping_add(self.v3.rotate_left(12));
98        hash = hash.wrapping_add(self.v4.rotate_left(18));
99
100        hash
101    }
102}
103
104impl core::fmt::Debug for XxCore {
105    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
106        write!(
107            f,
108            "XxCore {{ {:016x} {:016x} {:016x} {:016x} }}",
109            self.v1, self.v2, self.v3, self.v4
110        )
111    }
112}
113
114#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
115#[derive(Debug, Copy, Clone, Default, PartialEq)]
116#[repr(align(4))]
117#[cfg_attr(feature = "serialize", serde(transparent))]
118struct AlignToU32<T>(T);
119
120#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
121#[derive(Debug, Copy, Clone, Default, PartialEq)]
122struct Buffer {
123    #[cfg_attr(feature = "serialize", serde(rename = "buffer"))]
124    data: AlignToU32<[u8; CHUNK_SIZE]>,
125    #[cfg_attr(feature = "serialize", serde(rename = "buffer_usage"))]
126    len: usize,
127}
128
129impl Buffer {
130    fn data(&self) -> &[u8] {
131        &self.data.0[..self.len]
132    }
133
134    /// Consumes as much of the parameter as it can, returning the unused part.
135    fn consume<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
136        let to_use = cmp::min(self.available(), data.len());
137        let (data, remaining) = data.split_at(to_use);
138        self.data.0[self.len..][..to_use].copy_from_slice(data);
139        self.len += to_use;
140        remaining
141    }
142
143    fn set_data(&mut self, data: &[u8]) {
144        debug_assert!(self.is_empty());
145        debug_assert!(data.len() < CHUNK_SIZE);
146        self.data.0[..data.len()].copy_from_slice(data);
147        self.len = data.len();
148    }
149
150    fn available(&self) -> usize {
151        CHUNK_SIZE - self.len
152    }
153
154    fn is_empty(&self) -> bool {
155        self.len == 0
156    }
157
158    fn is_full(&self) -> bool {
159        self.len == CHUNK_SIZE
160    }
161}
162
163impl XxHash32 {
164    /// Constructs the hash with an initial seed
165    pub fn with_seed(seed: u32) -> XxHash32 {
166        XxHash32 {
167            total_len: 0,
168            seed,
169            core: XxCore::with_seed(seed),
170            buffer: Buffer::default(),
171        }
172    }
173
174    pub(crate) fn write(&mut self, bytes: &[u8]) {
175        let remaining = self.maybe_consume_bytes(bytes);
176        if !remaining.is_empty() {
177            let mut remaining = UnalignedBuffer::new(remaining);
178            self.core.ingest_chunks(&mut remaining);
179            self.buffer.set_data(remaining.remaining());
180        }
181        self.total_len += bytes.len() as u64;
182    }
183
184    // Consume bytes and try to make `self.buffer` empty.
185    // If there are not enough bytes, `self.buffer` can be non-empty, and this
186    // function returns an empty slice.
187    fn maybe_consume_bytes<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
188        if self.buffer.is_empty() {
189            data
190        } else {
191            let data = self.buffer.consume(data);
192            if self.buffer.is_full() {
193                let mut u32s = UnalignedBuffer::new(self.buffer.data());
194                self.core.ingest_chunks(&mut u32s);
195                debug_assert!(u32s.remaining().is_empty());
196                self.buffer.len = 0;
197            }
198            data
199        }
200    }
201
202    pub(crate) fn finish(&self) -> u32 {
203        let mut hash = if self.total_len >= CHUNK_SIZE as u64 {
204            // We have processed at least one full chunk
205            self.core.finish()
206        } else {
207            self.seed.wrapping_add(PRIME_5)
208        };
209
210        hash = hash.wrapping_add(self.total_len as u32);
211
212        let mut buffered_u32s = UnalignedBuffer::<u32>::new(self.buffer.data());
213        for buffered_u32 in &mut buffered_u32s {
214            let k1 = buffered_u32.to_le().wrapping_mul(PRIME_3);
215            hash = hash.wrapping_add(k1);
216            hash = hash.rotate_left(17);
217            hash = hash.wrapping_mul(PRIME_4);
218        }
219
220        let buffered_u8s = buffered_u32s.remaining();
221        for &buffered_u8 in buffered_u8s {
222            let k1 = u32::from(buffered_u8).wrapping_mul(PRIME_5);
223            hash = hash.wrapping_add(k1);
224            hash = hash.rotate_left(11);
225            hash = hash.wrapping_mul(PRIME_1);
226        }
227
228        // The final intermixing
229        hash ^= hash >> 15;
230        hash = hash.wrapping_mul(PRIME_2);
231        hash ^= hash >> 13;
232        hash = hash.wrapping_mul(PRIME_3);
233        hash ^= hash >> 16;
234
235        hash
236    }
237
238    pub fn seed(&self) -> u32 {
239        self.seed
240    }
241
242    /// Get the total number of bytes hashed, truncated to 32 bits.
243    /// For the full 64-bit byte count, use `total_len_64`
244    pub fn total_len(&self) -> u32 {
245        self.total_len as u32
246    }
247
248    /// Get the total number of bytes hashed.
249    pub fn total_len_64(&self) -> u64 {
250        self.total_len
251    }
252}
253
254impl Default for XxHash32 {
255    fn default() -> XxHash32 {
256        XxHash32::with_seed(0)
257    }
258}
259
260impl Hasher for XxHash32 {
261    fn finish(&self) -> u64 {
262        u64::from(XxHash32::finish(self))
263    }
264
265    fn write(&mut self, bytes: &[u8]) {
266        XxHash32::write(self, bytes)
267    }
268}
269
270#[cfg(feature = "std")]
271pub use crate::std_support::thirty_two::RandomXxHashBuilder32;
272
273#[cfg(test)]
274mod test {
275    use super::{RandomXxHashBuilder32, XxHash32};
276    use std::collections::HashMap;
277    use std::hash::BuildHasherDefault;
278    use std::prelude::v1::*;
279
280    #[test]
281    fn ingesting_byte_by_byte_is_equivalent_to_large_chunks() {
282        let bytes: Vec<_> = (0..32).map(|_| 0).collect();
283
284        let mut byte_by_byte = XxHash32::with_seed(0);
285        for byte in bytes.chunks(1) {
286            byte_by_byte.write(byte);
287        }
288
289        let mut one_chunk = XxHash32::with_seed(0);
290        one_chunk.write(&bytes);
291
292        assert_eq!(byte_by_byte.core, one_chunk.core);
293    }
294
295    #[test]
296    fn hash_of_nothing_matches_c_implementation() {
297        let mut hasher = XxHash32::with_seed(0);
298        hasher.write(&[]);
299        assert_eq!(hasher.finish(), 0x02cc_5d05);
300    }
301
302    #[test]
303    fn hash_of_single_byte_matches_c_implementation() {
304        let mut hasher = XxHash32::with_seed(0);
305        hasher.write(&[42]);
306        assert_eq!(hasher.finish(), 0xe0fe_705f);
307    }
308
309    #[test]
310    fn hash_of_multiple_bytes_matches_c_implementation() {
311        let mut hasher = XxHash32::with_seed(0);
312        hasher.write(b"Hello, world!\0");
313        assert_eq!(hasher.finish(), 0x9e5e_7e93);
314    }
315
316    #[test]
317    fn hash_of_multiple_chunks_matches_c_implementation() {
318        let bytes: Vec<_> = (0..100).collect();
319        let mut hasher = XxHash32::with_seed(0);
320        hasher.write(&bytes);
321        assert_eq!(hasher.finish(), 0x7f89_ba44);
322    }
323
324    #[test]
325    fn hash_with_different_seed_matches_c_implementation() {
326        let mut hasher = XxHash32::with_seed(0x42c9_1977);
327        hasher.write(&[]);
328        assert_eq!(hasher.finish(), 0xd6bf_8459);
329    }
330
331    #[test]
332    fn hash_with_different_seed_and_multiple_chunks_matches_c_implementation() {
333        let bytes: Vec<_> = (0..100).collect();
334        let mut hasher = XxHash32::with_seed(0x42c9_1977);
335        hasher.write(&bytes);
336        assert_eq!(hasher.finish(), 0x6d2f_6c17);
337    }
338
339    #[test]
340    fn can_be_used_in_a_hashmap_with_a_default_seed() {
341        let mut hash: HashMap<_, _, BuildHasherDefault<XxHash32>> = Default::default();
342        hash.insert(42, "the answer");
343        assert_eq!(hash.get(&42), Some(&"the answer"));
344    }
345
346    #[test]
347    fn can_be_used_in_a_hashmap_with_a_random_seed() {
348        let mut hash: HashMap<_, _, RandomXxHashBuilder32> = Default::default();
349        hash.insert(42, "the answer");
350        assert_eq!(hash.get(&42), Some(&"the answer"));
351    }
352
353    #[cfg(feature = "serialize")]
354    type TestResult<T = ()> = Result<T, Box<dyn std::error::Error>>;
355
356    #[cfg(feature = "serialize")]
357    #[test]
358    fn test_serialization_cycle() -> TestResult {
359        let mut hasher = XxHash32::with_seed(0);
360        hasher.write(b"Hello, world!\0");
361        hasher.finish();
362
363        let serialized = serde_json::to_string(&hasher)?;
364        let unserialized: XxHash32 = serde_json::from_str(&serialized)?;
365        assert_eq!(hasher, unserialized);
366        Ok(())
367    }
368
369    #[cfg(feature = "serialize")]
370    #[test]
371    fn test_serialization_stability() -> TestResult {
372        let mut hasher = XxHash32::with_seed(0);
373        hasher.write(b"Hello, world!\0");
374        hasher.finish();
375
376        let serialized = r#"{
377            "total_len": 14,
378            "seed": 0,
379            "core": {
380              "v1": 606290984,
381              "v2": 2246822519,
382              "v3": 0,
383              "v4": 1640531535
384            },
385            "buffer": [
386              72,  101, 108, 108, 111, 44, 32, 119,
387              111, 114, 108, 100, 33,  0,  0,  0
388            ],
389            "buffer_usage": 14
390        }"#;
391
392        let unserialized: XxHash32 = serde_json::from_str(serialized).unwrap();
393        assert_eq!(hasher, unserialized);
394        Ok(())
395    }
396
397    // This test validates wraparound/truncation behavior for very large inputs
398    // of a 32-bit hash, but runs very slowly in the normal "cargo test"
399    // build config since it hashes 4.3GB of data. It runs reasonably quick
400    // under "cargo test --release".
401    /*
402    #[test]
403    fn len_overflow_32bit() {
404        // Hash 4.3 billion (4_300_000_000) bytes, which overflows a u32.
405        let bytes200: Vec<u8> = (0..200).collect();
406        let mut hasher = XxHash32::with_seed(0);
407        for _ in 0..(4_300_000_000u64 / 200u64) {
408            hasher.write(&bytes200);
409        }
410        assert_eq!(hasher.total_len_64(), 0x0000_0001_004c_cb00);
411        assert_eq!(hasher.total_len(), 0x004c_cb00);
412        // retult is tested against the C implementation
413        assert_eq!(hasher.finish(), 0x1522_4ca7);
414    }
415    */
416}