1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
/* Copyright 2019 Mozilla Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
use crate::{
types::CoreTypeId, BinaryReaderError, FuncType, GlobalType, HeapType, MemoryType, RefType,
SubType, TableType, ValType, WasmFeatures,
};
/// Types that qualify as Wasm validation database.
///
/// # Note
///
/// The `wasmparser` crate provides a builtin validation framework but allows
/// users of this crate to also feed the parsed Wasm into their own data
/// structure while parsing and also validate at the same time without
/// the need of an additional parsing or validation step or copying data around.
pub trait WasmModuleResources {
/// Returns the table at given index if any.
///
/// The table element type must be canonicalized.
fn table_at(&self, at: u32) -> Option<TableType>;
/// Returns the linear memory at given index.
fn memory_at(&self, at: u32) -> Option<MemoryType>;
/// Returns the tag at given index.
///
/// The tag's function type must be canonicalized.
fn tag_at(&self, at: u32) -> Option<&FuncType>;
/// Returns the global variable at given index.
///
/// The global's value type must be canonicalized.
fn global_at(&self, at: u32) -> Option<GlobalType>;
/// Returns the `SubType` associated with the given type index.
///
/// The sub type must be canonicalized.
fn sub_type_at(&self, type_index: u32) -> Option<&SubType>;
/// Returns the `SubType` associated with the given core type id.
fn sub_type_at_id(&self, id: CoreTypeId) -> &SubType;
/// Returns the type ID associated with the given function index.
fn type_id_of_function(&self, func_idx: u32) -> Option<CoreTypeId>;
/// Returns the type index associated with the given function index.
fn type_index_of_function(&self, func_index: u32) -> Option<u32>;
/// Returns the element type at the given index.
///
/// The `RefType` must be canonicalized.
fn element_type_at(&self, at: u32) -> Option<RefType>;
/// Is `a` a subtype of `b`?
fn is_subtype(&self, a: ValType, b: ValType) -> bool;
/// Is the given reference type `shared`?
///
/// While abstract heap types do carry along a `shared` flag, concrete heap
/// types do not. This function resolves those concrete heap types to
/// determine `shared`-ness.
fn is_shared(&self, ty: RefType) -> bool;
/// Check and canonicalize a value type.
///
/// This will validate that `t` is valid under the `features` provided and
/// then additionally validate the structure of `t`. For example any type
/// references that `t` makes are validated and canonicalized.
fn check_value_type(
&self,
t: &mut ValType,
features: &WasmFeatures,
offset: usize,
) -> Result<(), BinaryReaderError> {
features
.check_value_type(*t)
.map_err(|s| BinaryReaderError::new(s, offset))?;
match t {
ValType::Ref(r) => self.check_ref_type(r, offset),
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => Ok(()),
}
}
/// Check and canonicalize a reference type.
fn check_ref_type(
&self,
ref_type: &mut RefType,
offset: usize,
) -> Result<(), BinaryReaderError> {
let is_nullable = ref_type.is_nullable();
let mut heap_ty = ref_type.heap_type();
self.check_heap_type(&mut heap_ty, offset)?;
*ref_type = RefType::new(is_nullable, heap_ty).unwrap();
Ok(())
}
/// Checks that a `HeapType` is valid and then additionally place it in its
/// canonical form.
///
/// Similar to `check_value_type` but for heap types.
fn check_heap_type(
&self,
heap_type: &mut HeapType,
offset: usize,
) -> Result<(), BinaryReaderError>;
/// Get the top type for the given heap type.
fn top_type(&self, heap_type: &HeapType) -> HeapType;
/// Returns the number of elements.
fn element_count(&self) -> u32;
/// Returns the number of bytes in the Wasm data section.
fn data_count(&self) -> Option<u32>;
/// Returns whether the function index is referenced in the module anywhere
/// outside of the start/function sections.
fn is_function_referenced(&self, idx: u32) -> bool;
}
impl<T> WasmModuleResources for &'_ T
where
T: ?Sized + WasmModuleResources,
{
fn table_at(&self, at: u32) -> Option<TableType> {
T::table_at(self, at)
}
fn memory_at(&self, at: u32) -> Option<MemoryType> {
T::memory_at(self, at)
}
fn tag_at(&self, at: u32) -> Option<&FuncType> {
T::tag_at(self, at)
}
fn global_at(&self, at: u32) -> Option<GlobalType> {
T::global_at(self, at)
}
fn sub_type_at(&self, at: u32) -> Option<&SubType> {
T::sub_type_at(self, at)
}
fn sub_type_at_id(&self, at: CoreTypeId) -> &SubType {
T::sub_type_at_id(self, at)
}
fn type_id_of_function(&self, func_idx: u32) -> Option<CoreTypeId> {
T::type_id_of_function(self, func_idx)
}
fn type_index_of_function(&self, func_idx: u32) -> Option<u32> {
T::type_index_of_function(self, func_idx)
}
fn check_heap_type(&self, t: &mut HeapType, offset: usize) -> Result<(), BinaryReaderError> {
T::check_heap_type(self, t, offset)
}
fn top_type(&self, heap_type: &HeapType) -> HeapType {
T::top_type(self, heap_type)
}
fn element_type_at(&self, at: u32) -> Option<RefType> {
T::element_type_at(self, at)
}
fn is_subtype(&self, a: ValType, b: ValType) -> bool {
T::is_subtype(self, a, b)
}
fn is_shared(&self, ty: RefType) -> bool {
T::is_shared(self, ty)
}
fn element_count(&self) -> u32 {
T::element_count(self)
}
fn data_count(&self) -> Option<u32> {
T::data_count(self)
}
fn is_function_referenced(&self, idx: u32) -> bool {
T::is_function_referenced(self, idx)
}
}
impl<T> WasmModuleResources for alloc::sync::Arc<T>
where
T: WasmModuleResources,
{
fn table_at(&self, at: u32) -> Option<TableType> {
T::table_at(self, at)
}
fn memory_at(&self, at: u32) -> Option<MemoryType> {
T::memory_at(self, at)
}
fn tag_at(&self, at: u32) -> Option<&FuncType> {
T::tag_at(self, at)
}
fn global_at(&self, at: u32) -> Option<GlobalType> {
T::global_at(self, at)
}
fn sub_type_at(&self, type_idx: u32) -> Option<&SubType> {
T::sub_type_at(self, type_idx)
}
fn sub_type_at_id(&self, id: CoreTypeId) -> &SubType {
T::sub_type_at_id(self, id)
}
fn type_id_of_function(&self, func_idx: u32) -> Option<CoreTypeId> {
T::type_id_of_function(self, func_idx)
}
fn type_index_of_function(&self, func_idx: u32) -> Option<u32> {
T::type_index_of_function(self, func_idx)
}
fn check_heap_type(&self, t: &mut HeapType, offset: usize) -> Result<(), BinaryReaderError> {
T::check_heap_type(self, t, offset)
}
fn top_type(&self, heap_type: &HeapType) -> HeapType {
T::top_type(self, heap_type)
}
fn element_type_at(&self, at: u32) -> Option<RefType> {
T::element_type_at(self, at)
}
fn is_subtype(&self, a: ValType, b: ValType) -> bool {
T::is_subtype(self, a, b)
}
fn is_shared(&self, ty: RefType) -> bool {
T::is_shared(self, ty)
}
fn element_count(&self) -> u32 {
T::element_count(self)
}
fn data_count(&self) -> Option<u32> {
T::data_count(self)
}
fn is_function_referenced(&self, idx: u32) -> bool {
T::is_function_referenced(self, idx)
}
}