1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
use super::operators::{Frame, OperatorValidator, OperatorValidatorAllocations};
use crate::{BinaryReader, Result, ValType, VisitOperator};
use crate::{FunctionBody, ModuleArity, Operator, WasmFeatures, WasmModuleResources};
/// Resources necessary to perform validation of a function.
///
/// This structure is created by
/// [`Validator::code_section_entry`](crate::Validator::code_section_entry) and
/// is created per-function in a WebAssembly module. This structure is suitable
/// for sending to other threads while the original
/// [`Validator`](crate::Validator) continues processing other functions.
#[derive(Debug)]
pub struct FuncToValidate<T> {
/// Reusable, heap allocated resources to drive the Wasm validation.
pub resources: T,
/// The core Wasm function index being validated.
pub index: u32,
/// The core Wasm type index of the function being validated,
/// defining the results and parameters to the function.
pub ty: u32,
/// The Wasm features enabled to validate the function.
pub features: WasmFeatures,
}
impl<T: WasmModuleResources> FuncToValidate<T> {
/// Converts this [`FuncToValidate`] into a [`FuncValidator`] using the
/// `allocs` provided.
///
/// This method, in conjunction with [`FuncValidator::into_allocations`],
/// provides a means to reuse allocations across validation of each
/// individual function. Note that it is also sufficient to call this
/// method with `Default::default()` if no prior allocations are
/// available.
///
/// # Panics
///
/// If a `FuncToValidate` was created with an invalid `ty` index then this
/// function will panic.
pub fn into_validator(self, allocs: FuncValidatorAllocations) -> FuncValidator<T> {
let FuncToValidate {
resources,
index,
ty,
features,
} = self;
let validator =
OperatorValidator::new_func(ty, 0, &features, &resources, allocs.0).unwrap();
FuncValidator {
validator,
resources,
index,
}
}
}
/// Validation context for a WebAssembly function.
///
/// This is a finalized validator which is ready to process a [`FunctionBody`].
/// This is created from the [`FuncToValidate::into_validator`] method.
pub struct FuncValidator<T> {
validator: OperatorValidator,
resources: T,
index: u32,
}
/// External handle to the internal allocations used during function validation.
///
/// This is created with either the `Default` implementation or with
/// [`FuncValidator::into_allocations`]. It is then passed as an argument to
/// [`FuncToValidate::into_validator`] to provide a means of reusing allocations
/// between each function.
#[derive(Default)]
pub struct FuncValidatorAllocations(OperatorValidatorAllocations);
impl<T: WasmModuleResources> FuncValidator<T> {
/// Convenience function to validate an entire function's body.
///
/// You may not end up using this in final implementations because you'll
/// often want to interleave validation with parsing.
pub fn validate(&mut self, body: &FunctionBody<'_>) -> Result<()> {
let mut reader = body.get_binary_reader();
self.read_locals(&mut reader)?;
#[cfg(feature = "features")]
{
reader.set_features(self.validator.features);
}
while !reader.eof() {
// In a debug build, verify that the validator's pops and pushes to and from
// the operand stack match the operator's arity.
#[cfg(debug_assertions)]
let (pop_push_snapshot, arity) = (
self.validator.pop_push_count,
reader
.clone()
.read_operator()?
.operator_arity(&self.visitor(reader.original_position())),
);
reader.visit_operator(&mut self.visitor(reader.original_position()))??;
#[cfg(debug_assertions)]
{
let (params, results) = arity.ok_or(format_err!(
reader.original_position(),
"could not calculate operator arity"
))?;
let pop_count = self.validator.pop_push_count.0 - pop_push_snapshot.0;
let push_count = self.validator.pop_push_count.1 - pop_push_snapshot.1;
if pop_count != params || push_count != results {
panic!("arity mismatch in validation. Expecting {} operands popped, {} pushed, but got {} popped, {} pushed.",
params, results, pop_count, push_count);
}
}
}
self.finish(reader.original_position())
}
/// Reads the local definitions from the given `BinaryReader`, often sourced
/// from a `FunctionBody`.
///
/// This function will automatically advance the `BinaryReader` forward,
/// leaving reading operators up to the caller afterwards.
pub fn read_locals(&mut self, reader: &mut BinaryReader<'_>) -> Result<()> {
for _ in 0..reader.read_var_u32()? {
let offset = reader.original_position();
let cnt = reader.read()?;
let ty = reader.read()?;
self.define_locals(offset, cnt, ty)?;
}
Ok(())
}
/// Defines locals into this validator.
///
/// This should be used if the application is already reading local
/// definitions and there's no need to re-parse the function again.
pub fn define_locals(&mut self, offset: usize, count: u32, ty: ValType) -> Result<()> {
self.validator
.define_locals(offset, count, ty, &self.resources)
}
/// Validates the next operator in a function.
///
/// This functions is expected to be called once-per-operator in a
/// WebAssembly function. Each operator's offset in the original binary and
/// the operator itself are passed to this function to provide more useful
/// error messages.
pub fn op(&mut self, offset: usize, operator: &Operator<'_>) -> Result<()> {
self.visitor(offset).visit_operator(operator)
}
/// Get the operator visitor for the next operator in the function.
///
/// The returned visitor is intended to visit just one instruction at the `offset`.
///
/// # Example
///
/// ```
/// # use wasmparser::{WasmModuleResources, FuncValidator, FunctionBody, Result};
/// pub fn validate<R>(validator: &mut FuncValidator<R>, body: &FunctionBody<'_>) -> Result<()>
/// where R: WasmModuleResources
/// {
/// let mut operator_reader = body.get_binary_reader();
/// while !operator_reader.eof() {
/// let mut visitor = validator.visitor(operator_reader.original_position());
/// operator_reader.visit_operator(&mut visitor)??;
/// }
/// validator.finish(operator_reader.original_position())
/// }
/// ```
pub fn visitor<'this, 'a: 'this>(
&'this mut self,
offset: usize,
) -> impl VisitOperator<'a, Output = Result<()>> + ModuleArity + 'this {
self.validator.with_resources(&self.resources, offset)
}
/// Function that must be called after the last opcode has been processed.
///
/// This will validate that the function was properly terminated with the
/// `end` opcode. If this function is not called then the function will not
/// be properly validated.
///
/// The `offset` provided to this function will be used as a position for an
/// error if validation fails.
pub fn finish(&mut self, offset: usize) -> Result<()> {
self.validator.finish(offset)
}
/// Returns the Wasm features enabled for this validator.
pub fn features(&self) -> &WasmFeatures {
&self.validator.features
}
/// Returns the underlying module resources that this validator is using.
pub fn resources(&self) -> &T {
&self.resources
}
/// The index of the function within the module's function index space that
/// is being validated.
pub fn index(&self) -> u32 {
self.index
}
/// Returns the number of defined local variables in the function.
pub fn len_locals(&self) -> u32 {
self.validator.locals.len_locals()
}
/// Returns the type of the local variable at the given `index` if any.
pub fn get_local_type(&self, index: u32) -> Option<ValType> {
self.validator.locals.get(index)
}
/// Get the current height of the operand stack.
///
/// This returns the height of the whole operand stack for this function,
/// not just for the current control frame.
pub fn operand_stack_height(&self) -> u32 {
self.validator.operand_stack_height() as u32
}
/// Returns the optional value type of the value operand at the given
/// `depth` from the top of the operand stack.
///
/// - Returns `None` if the `depth` is out of bounds.
/// - Returns `Some(None)` if there is a value with unknown type
/// at the given `depth`.
///
/// # Note
///
/// A `depth` of 0 will refer to the last operand on the stack.
pub fn get_operand_type(&self, depth: usize) -> Option<Option<ValType>> {
self.validator.peek_operand_at(depth)
}
/// Returns the number of frames on the control flow stack.
///
/// This returns the height of the whole control stack for this function,
/// not just for the current control frame.
pub fn control_stack_height(&self) -> u32 {
self.validator.control_stack_height() as u32
}
/// Returns a shared reference to the control flow [`Frame`] of the
/// control flow stack at the given `depth` if any.
///
/// Returns `None` if the `depth` is out of bounds.
///
/// # Note
///
/// A `depth` of 0 will refer to the last frame on the stack.
pub fn get_control_frame(&self, depth: usize) -> Option<&Frame> {
self.validator.get_frame(depth)
}
/// Consumes this validator and returns the underlying allocations that
/// were used during the validation process.
///
/// The returned value here can be paired with
/// [`FuncToValidate::into_validator`] to reuse the allocations already
/// created by this validator.
pub fn into_allocations(self) -> FuncValidatorAllocations {
FuncValidatorAllocations(self.validator.into_allocations())
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::types::CoreTypeId;
use crate::{HeapType, RefType};
struct EmptyResources(crate::SubType);
impl Default for EmptyResources {
fn default() -> Self {
EmptyResources(crate::SubType {
supertype_idx: None,
is_final: true,
composite_type: crate::CompositeType {
inner: crate::CompositeInnerType::Func(crate::FuncType::new([], [])),
shared: false,
},
})
}
}
impl WasmModuleResources for EmptyResources {
fn table_at(&self, _at: u32) -> Option<crate::TableType> {
todo!()
}
fn memory_at(&self, _at: u32) -> Option<crate::MemoryType> {
todo!()
}
fn tag_at(&self, _at: u32) -> Option<&crate::FuncType> {
todo!()
}
fn global_at(&self, _at: u32) -> Option<crate::GlobalType> {
todo!()
}
fn sub_type_at(&self, _type_idx: u32) -> Option<&crate::SubType> {
Some(&self.0)
}
fn sub_type_at_id(&self, _id: CoreTypeId) -> &crate::SubType {
todo!()
}
fn type_id_of_function(&self, _at: u32) -> Option<CoreTypeId> {
todo!()
}
fn type_index_of_function(&self, _at: u32) -> Option<u32> {
todo!()
}
fn check_heap_type(&self, _t: &mut HeapType, _offset: usize) -> Result<()> {
Ok(())
}
fn top_type(&self, _heap_type: &HeapType) -> HeapType {
todo!()
}
fn element_type_at(&self, _at: u32) -> Option<crate::RefType> {
todo!()
}
fn is_subtype(&self, _t1: ValType, _t2: ValType) -> bool {
todo!()
}
fn is_shared(&self, _ty: RefType) -> bool {
todo!()
}
fn element_count(&self) -> u32 {
todo!()
}
fn data_count(&self) -> Option<u32> {
todo!()
}
fn is_function_referenced(&self, _idx: u32) -> bool {
todo!()
}
}
#[test]
fn operand_stack_height() {
let mut v = FuncToValidate {
index: 0,
ty: 0,
resources: EmptyResources::default(),
features: Default::default(),
}
.into_validator(Default::default());
// Initially zero values on the stack.
assert_eq!(v.operand_stack_height(), 0);
// Pushing a constant value makes use have one value on the stack.
assert!(v.op(0, &Operator::I32Const { value: 0 }).is_ok());
assert_eq!(v.operand_stack_height(), 1);
// Entering a new control block does not affect the stack height.
assert!(v
.op(
1,
&Operator::Block {
blockty: crate::BlockType::Empty
}
)
.is_ok());
assert_eq!(v.operand_stack_height(), 1);
// Pushing another constant value makes use have two values on the stack.
assert!(v.op(2, &Operator::I32Const { value: 99 }).is_ok());
assert_eq!(v.operand_stack_height(), 2);
}
}