1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
//! Types relating to type information provided by validation.
use super::core::Module;
#[cfg(feature = "component-model")]
use crate::validator::component::ComponentState;
#[cfg(feature = "component-model")]
use crate::validator::component_types::{ComponentTypeAlloc, ComponentTypeList};
use crate::{collections::map::Entry, AbstractHeapType};
use crate::{prelude::*, CompositeInnerType};
use crate::{
Export, ExternalKind, GlobalType, Import, Matches, MemoryType, PackedIndex, RecGroup, RefType,
Result, SubType, TableType, TypeRef, UnpackedIndex, ValType, WithRecGroup,
};
use crate::{HeapType, ValidatorId};
use alloc::sync::Arc;
use core::ops::{Deref, DerefMut, Index, Range};
use core::{hash::Hash, mem};
/// A trait shared by all type identifiers.
///
/// Any id that can be used to get a type from a `Types`.
//
// Or, internally, from a `TypeList`.
pub trait TypeIdentifier: core::fmt::Debug + Copy + Eq + Sized + 'static {
/// The data pointed to by this type of id.
type Data: TypeData<Id = Self>;
/// Create a type id from an index.
#[doc(hidden)]
fn from_index(index: u32) -> Self;
/// Get a shared reference to the list where this id's type data is stored
/// within.
#[doc(hidden)]
fn list(types: &TypeList) -> &SnapshotList<Self::Data>;
/// Get an exclusive reference to the list where this id's type data is
/// stored within.
#[doc(hidden)]
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data>;
/// The raw index of this id.
#[doc(hidden)]
fn index(&self) -> usize;
}
/// A trait shared by all types within a `Types`.
///
/// This is the data that can be retreived by indexing with the associated
/// [`TypeIdentifier`].
pub trait TypeData: core::fmt::Debug {
/// The identifier for this type data.
type Id: TypeIdentifier<Data = Self>;
/// Get the info for this type.
#[doc(hidden)]
fn type_info(&self, types: &TypeList) -> TypeInfo;
}
macro_rules! define_type_id {
($name:ident, $data:ty, $($list:ident).*, $type_str:expr) => {
#[doc = "Represents a unique identifier for a "]
#[doc = $type_str]
#[doc = " type known to a [`crate::Validator`]."]
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)] // Use fixed field layout to ensure minimal size.
pub struct $name {
/// The index into the associated list of types.
index: u32,
}
impl TypeIdentifier for $name {
type Data = $data;
fn from_index(index: u32) -> Self {
$name { index }
}
fn list(types: &TypeList) -> &SnapshotList<Self::Data> {
&types.$($list).*
}
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data> {
&mut types.$($list).*
}
fn index(&self) -> usize {
usize::try_from(self.index).unwrap()
}
}
// The size of type IDs was seen to have a large-ish impact in #844, so
// this assert ensures that it stays relatively small.
const _: () = {
assert!(core::mem::size_of::<$name>() <= 4);
};
};
}
pub(crate) use define_type_id;
/// Represents a unique identifier for a core type type known to a
/// [`crate::Validator`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(C)]
pub struct CoreTypeId {
index: u32,
}
const _: () = {
assert!(core::mem::size_of::<CoreTypeId>() <= 4);
};
impl TypeIdentifier for CoreTypeId {
type Data = SubType;
fn from_index(index: u32) -> Self {
CoreTypeId { index }
}
fn list(types: &TypeList) -> &SnapshotList<Self::Data> {
&types.core_types
}
fn list_mut(types: &mut TypeList) -> &mut SnapshotList<Self::Data> {
&mut types.core_types
}
fn index(&self) -> usize {
usize::try_from(self.index).unwrap()
}
}
impl TypeData for SubType {
type Id = CoreTypeId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
// TODO(#1036): calculate actual size for func, array, struct.
let size = 1 + match &self.composite_type.inner {
CompositeInnerType::Func(ty) => 1 + (ty.params().len() + ty.results().len()) as u32,
CompositeInnerType::Array(_) => 2,
CompositeInnerType::Struct(ty) => 1 + 2 * ty.fields.len() as u32,
CompositeInnerType::Cont(_) => 1,
};
TypeInfo::core(size)
}
}
define_type_id!(
RecGroupId,
Range<CoreTypeId>,
rec_group_elements,
"recursion group"
);
impl TypeData for Range<CoreTypeId> {
type Id = RecGroupId;
fn type_info(&self, _types: &TypeList) -> TypeInfo {
let size = self.end.index() - self.start.index();
TypeInfo::core(u32::try_from(size).unwrap())
}
}
/// Metadata about a type and its transitive structure.
///
/// Currently contains two properties:
///
/// * The "size" of a type - a proxy to the recursive size of a type if
/// everything in the type were unique (e.g. no shared references). Not an
/// approximation of runtime size, but instead of type-complexity size if
/// someone were to visit each element of the type individually. For example
/// `u32` has size 1 and `(list u32)` has size 2 (roughly). Used to prevent
/// massive trees of types.
///
/// * Whether or not a type contains a "borrow" transitively inside of it. For
/// example `(borrow $t)` and `(list (borrow $t))` both contain borrows, but
/// `(list u32)` does not. Used to validate that component function results do
/// not contain borrows.
///
/// Currently this is represented as a compact 32-bit integer to ensure that
/// `TypeId`, which this is stored in, remains relatively small. The maximum
/// type size allowed in wasmparser is 1M at this time which is 20 bits of
/// information, and then one more bit is used for whether or not a borrow is
/// used. Currently this uses the low 24 bits for the type size and the MSB for
/// the borrow bit.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
// Only public because it shows up in a public trait's `doc(hidden)` method.
#[doc(hidden)]
pub struct TypeInfo(u32);
impl TypeInfo {
/// Creates a new blank set of type information.
///
/// Defaults to size 1 to ensure that this consumes space in the final type
/// structure.
pub(crate) fn new() -> TypeInfo {
TypeInfo::_new(1, false)
}
/// Creates a new blank set of information about a leaf "borrow" type which
/// has size 1.
#[cfg(feature = "component-model")]
pub(crate) fn borrow() -> TypeInfo {
TypeInfo::_new(1, true)
}
/// Creates type information corresponding to a core type of the `size`
/// specified, meaning no borrows are contained within.
pub(crate) fn core(size: u32) -> TypeInfo {
TypeInfo::_new(size, false)
}
fn _new(size: u32, contains_borrow: bool) -> TypeInfo {
assert!(size < (1 << 24));
TypeInfo(size | ((contains_borrow as u32) << 31))
}
/// Combines another set of type information into this one, for example if
/// this is a record which has `other` as a field.
///
/// Updates the size of `self` and whether or not this type contains a
/// borrow based on whether `other` contains a borrow.
///
/// Returns an error if the type size would exceed this crate's static limit
/// of a type size.
#[cfg(feature = "component-model")]
pub(crate) fn combine(&mut self, other: TypeInfo, offset: usize) -> Result<()> {
*self = TypeInfo::_new(
super::combine_type_sizes(self.size(), other.size(), offset)?,
self.contains_borrow() || other.contains_borrow(),
);
Ok(())
}
pub(crate) fn size(&self) -> u32 {
self.0 & 0xffffff
}
#[cfg(feature = "component-model")]
pub(crate) fn contains_borrow(&self) -> bool {
(self.0 >> 31) != 0
}
}
/// The entity type for imports and exports of a module.
#[derive(Debug, Clone, Copy)]
pub enum EntityType {
/// The entity is a function.
Func(CoreTypeId),
/// The entity is a table.
Table(TableType),
/// The entity is a memory.
Memory(MemoryType),
/// The entity is a global.
Global(GlobalType),
/// The entity is a tag.
Tag(CoreTypeId),
}
impl EntityType {
#[cfg(feature = "component-model")]
pub(crate) fn desc(&self) -> &'static str {
match self {
Self::Func(_) => "func",
Self::Table(_) => "table",
Self::Memory(_) => "memory",
Self::Global(_) => "global",
Self::Tag(_) => "tag",
}
}
pub(crate) fn info(&self, types: &TypeList) -> TypeInfo {
match self {
Self::Func(id) | Self::Tag(id) => types[*id].type_info(types),
Self::Table(_) | Self::Memory(_) | Self::Global(_) => TypeInfo::new(),
}
}
}
#[allow(clippy::large_enum_variant)]
pub(super) enum TypesKind {
Module(Arc<Module>),
#[cfg(feature = "component-model")]
Component(ComponentState),
}
/// Represents the types known to a [`crate::Validator`] once validation has completed.
///
/// The type information is returned via the [`crate::Validator::end`] method.
pub struct Types {
id: ValidatorId,
pub(super) list: TypeList,
pub(super) kind: TypesKind,
}
#[derive(Clone, Copy)]
pub(super) enum TypesRefKind<'a> {
Module(&'a Module),
#[cfg(feature = "component-model")]
Component(&'a ComponentState),
}
/// Represents the types known to a [`crate::Validator`] during validation.
///
/// Retrieved via the [`crate::Validator::types`] method.
#[derive(Clone, Copy)]
pub struct TypesRef<'a> {
id: ValidatorId,
pub(super) list: &'a TypeList,
pub(super) kind: TypesRefKind<'a>,
}
impl<'a> TypesRef<'a> {
pub(crate) fn from_module(id: ValidatorId, types: &'a TypeList, module: &'a Module) -> Self {
Self {
id,
list: types,
kind: TypesRefKind::Module(module),
}
}
#[cfg(feature = "component-model")]
pub(crate) fn from_component(
id: ValidatorId,
types: &'a TypeList,
component: &'a ComponentState,
) -> Self {
Self {
id,
list: types,
kind: TypesRefKind::Component(component),
}
}
/// Get the id of the validator that these types are associated with.
#[inline]
pub fn id(&self) -> ValidatorId {
self.id
}
/// Gets a type based on its type id.
///
/// Returns `None` if the type id is unknown.
pub fn get<T>(&self, id: T) -> Option<&'a T::Data>
where
T: TypeIdentifier,
{
self.list.get(id)
}
/// Get the id of the rec group that the given type id was defined within.
pub fn rec_group_id_of(&self, id: CoreTypeId) -> RecGroupId {
self.list.rec_group_id_of(id)
}
/// Get the types within a rec group.
pub fn rec_group_elements(&self, id: RecGroupId) -> impl ExactSizeIterator<Item = CoreTypeId> {
let range = &self.list.rec_group_elements[id];
(range.start.index..range.end.index).map(|index| CoreTypeId { index })
}
/// Get the super type of the given type id, if any.
pub fn supertype_of(&self, id: CoreTypeId) -> Option<CoreTypeId> {
self.list.supertype_of(id)
}
/// Gets a core WebAssembly type id from a type index.
///
/// Note that this is not to be confused with
/// [`TypesRef::component_type_at`] which gets a component type from its
/// index, nor [`TypesRef::core_type_at_in_component`] which is for
/// learning about core types in components.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn core_type_at_in_module(&self, index: u32) -> CoreTypeId {
match &self.kind {
TypesRefKind::Module(module) => module.types[index as usize].into(),
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => panic!("use `core_type_at_in_component` instead"),
}
}
/// Returns the number of core types defined so far.
///
/// Note that this is only for core modules, for components you should use
/// [`TypesRef::core_type_count_in_component`] instead.
pub fn core_type_count_in_module(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.types.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => 0,
}
}
/// Gets the type of a table at the given table index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn table_at(&self, index: u32) -> TableType {
let tables = match &self.kind {
TypesRefKind::Module(module) => &module.tables,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => &component.core_tables,
};
tables[index as usize]
}
/// Returns the number of tables defined so far.
pub fn table_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.tables.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => component.core_tables.len() as u32,
}
}
/// Gets the type of a memory at the given memory index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn memory_at(&self, index: u32) -> MemoryType {
let memories = match &self.kind {
TypesRefKind::Module(module) => &module.memories,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => &component.core_memories,
};
memories[index as usize]
}
/// Returns the number of memories defined so far.
pub fn memory_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.memories.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => component.core_memories.len() as u32,
}
}
/// Gets the type of a global at the given global index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn global_at(&self, index: u32) -> GlobalType {
let globals = match &self.kind {
TypesRefKind::Module(module) => &module.globals,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => &component.core_globals,
};
globals[index as usize]
}
/// Returns the number of globals defined so far.
pub fn global_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.globals.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => component.core_globals.len() as u32,
}
}
/// Gets the type of a tag at the given tag index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn tag_at(&self, index: u32) -> CoreTypeId {
let tags = match &self.kind {
TypesRefKind::Module(module) => &module.tags,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => &component.core_tags,
};
tags[index as usize]
}
/// Returns the number of tags defined so far.
pub fn tag_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.tags.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => component.core_tags.len() as u32,
}
}
/// Gets the type of a core function at the given function index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn core_function_at(&self, index: u32) -> CoreTypeId {
match &self.kind {
TypesRefKind::Module(module) => module.types[module.functions[index as usize] as usize],
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => component.core_funcs[index as usize],
}
}
/// Gets the count of core functions defined so far.
///
/// Note that this includes imported functions, defined functions, and for
/// components lowered/aliased functions.
pub fn function_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.functions.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(component) => component.core_funcs.len() as u32,
}
}
/// Gets the type of an element segment at the given element segment index.
///
/// # Panics
///
/// This will panic if the `index` provided is out of bounds.
pub fn element_at(&self, index: u32) -> RefType {
match &self.kind {
TypesRefKind::Module(module) => module.element_types[index as usize],
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => {
panic!("no elements on a component")
}
}
}
/// Returns the number of elements defined so far.
pub fn element_count(&self) -> u32 {
match &self.kind {
TypesRefKind::Module(module) => module.element_types.len() as u32,
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => 0,
}
}
/// Gets the entity type for the given import.
pub fn entity_type_from_import(&self, import: &Import) -> Option<EntityType> {
match &self.kind {
TypesRefKind::Module(module) => Some(match import.ty {
TypeRef::Func(idx) => EntityType::Func(*module.types.get(idx as usize)?),
TypeRef::Table(ty) => EntityType::Table(ty),
TypeRef::Memory(ty) => EntityType::Memory(ty),
TypeRef::Global(ty) => EntityType::Global(ty),
TypeRef::Tag(ty) => EntityType::Tag(*module.types.get(ty.func_type_idx as usize)?),
}),
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => None,
}
}
/// Gets the entity type from the given export.
pub fn entity_type_from_export(&self, export: &Export) -> Option<EntityType> {
match &self.kind {
TypesRefKind::Module(module) => Some(match export.kind {
ExternalKind::Func => EntityType::Func(
module.types[*module.functions.get(export.index as usize)? as usize],
),
ExternalKind::Table => {
EntityType::Table(*module.tables.get(export.index as usize)?)
}
ExternalKind::Memory => {
EntityType::Memory(*module.memories.get(export.index as usize)?)
}
ExternalKind::Global => {
EntityType::Global(*module.globals.get(export.index as usize)?)
}
ExternalKind::Tag => EntityType::Tag(
module.types[*module.functions.get(export.index as usize)? as usize],
),
}),
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => None,
}
}
/// Returns an iterator over the core wasm imports found.
///
/// Returns `None` if this type information is for a component.
pub fn core_imports(
&self,
) -> Option<impl Iterator<Item = (&'a str, &'a str, EntityType)> + 'a> {
match &self.kind {
TypesRefKind::Module(module) => Some(
module
.imports
.iter()
.flat_map(|((m, n), t)| t.iter().map(move |t| (m.as_str(), n.as_str(), *t))),
),
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => None,
}
}
/// Returns an iterator over the core wasm exports found.
///
/// Returns `None` if this type information is for a component.
pub fn core_exports(&self) -> Option<impl Iterator<Item = (&'a str, EntityType)> + 'a> {
match &self.kind {
TypesRefKind::Module(module) => {
Some(module.exports.iter().map(|(n, t)| (n.as_str(), *t)))
}
#[cfg(feature = "component-model")]
TypesRefKind::Component(_) => None,
}
}
}
impl<T> Index<T> for TypesRef<'_>
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, index: T) -> &Self::Output {
&self.list[index]
}
}
impl Types {
pub(crate) fn from_module(id: ValidatorId, types: TypeList, module: Arc<Module>) -> Self {
Self {
id,
list: types,
kind: TypesKind::Module(module),
}
}
#[cfg(feature = "component-model")]
pub(crate) fn from_component(
id: ValidatorId,
types: TypeList,
component: ComponentState,
) -> Self {
Self {
id,
list: types,
kind: TypesKind::Component(component),
}
}
/// Return a [`TypesRef`] through which types can be inspected.
pub fn as_ref(&self) -> TypesRef<'_> {
TypesRef {
id: self.id,
list: &self.list,
kind: match &self.kind {
TypesKind::Module(module) => TypesRefKind::Module(module),
#[cfg(feature = "component-model")]
TypesKind::Component(component) => TypesRefKind::Component(component),
},
}
}
}
impl<T> Index<T> for Types
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, id: T) -> &Self::Output {
&self.list[id]
}
}
/// This is a type which mirrors a subset of the `Vec<T>` API, but is intended
/// to be able to be cheaply snapshotted and cloned.
///
/// When each module's code sections start we "commit" the current list of types
/// in the global list of types. This means that the temporary `cur` vec here is
/// pushed onto `snapshots` and wrapped up in an `Arc`. At that point we clone
/// this entire list (which is then O(modules), not O(types in all modules)) and
/// pass out as a context to each function validator.
///
/// Otherwise, though, this type behaves as if it were a large `Vec<T>`, but
/// it's represented by lists of contiguous chunks.
//
// Only public because it shows up in a public trait's `doc(hidden)` method.
#[doc(hidden)]
#[derive(Debug)]
pub struct SnapshotList<T> {
// All previous snapshots, the "head" of the list that this type represents.
// The first entry in this pair is the starting index for all elements
// contained in the list, and the second element is the list itself. Note
// the `Arc` wrapper around sub-lists, which makes cloning time for this
// `SnapshotList` O(snapshots) rather than O(snapshots_total), which for
// us in this context means the number of modules, not types.
//
// Note that this list is sorted least-to-greatest in order of the index for
// binary searching.
snapshots: Vec<Arc<Snapshot<T>>>,
// This is the total length of all lists in the `snapshots` array.
snapshots_total: usize,
// The current list of types for the current snapshot that are being built.
cur: Vec<T>,
}
#[derive(Debug)]
struct Snapshot<T> {
prior_types: usize,
items: Vec<T>,
}
impl<T> SnapshotList<T> {
/// Same as `<&[T]>::get`
pub(crate) fn get(&self, index: usize) -> Option<&T> {
// Check to see if this index falls on our local list
if index >= self.snapshots_total {
return self.cur.get(index - self.snapshots_total);
}
// ... and failing that we do a binary search to figure out which bucket
// it's in. Note the `i-1` in the `Err` case because if we don't find an
// exact match the type is located in the previous bucket.
let i = match self
.snapshots
.binary_search_by_key(&index, |snapshot| snapshot.prior_types)
{
Ok(i) => i,
Err(i) => i - 1,
};
let snapshot = &self.snapshots[i];
Some(&snapshot.items[index - snapshot.prior_types])
}
/// Same as `Vec::push`
pub(crate) fn push(&mut self, val: T) {
self.cur.push(val);
}
/// Same as `<[T]>::len`
pub(crate) fn len(&self) -> usize {
self.cur.len() + self.snapshots_total
}
/// Same as `Vec::truncate` but can only truncate uncommitted elements.
#[cfg(feature = "component-model")]
pub(crate) fn truncate(&mut self, len: usize) {
assert!(len >= self.snapshots_total);
self.cur.truncate(len - self.snapshots_total);
}
/// Commits previously pushed types into this snapshot vector, and returns a
/// clone of this list.
///
/// The returned `SnapshotList` can be used to access all the same types as
/// this list itself. This list also is not changed (from an external
/// perspective) and can continue to access all the same types.
pub(crate) fn commit(&mut self) -> SnapshotList<T> {
// If the current chunk has new elements, commit them in to an
// `Arc`-wrapped vector in the snapshots list. Note the `shrink_to_fit`
// ahead of time to hopefully keep memory usage lower than it would
// otherwise be.
let len = self.cur.len();
if len > 0 {
self.cur.shrink_to_fit();
self.snapshots.push(Arc::new(Snapshot {
prior_types: self.snapshots_total,
items: mem::take(&mut self.cur),
}));
self.snapshots_total += len;
}
SnapshotList {
snapshots: self.snapshots.clone(),
snapshots_total: self.snapshots_total,
cur: Vec::new(),
}
}
}
impl<T> Index<usize> for SnapshotList<T> {
type Output = T;
#[inline]
fn index(&self, index: usize) -> &T {
self.get(index).unwrap()
}
}
impl<T, U> Index<U> for SnapshotList<T>
where
U: TypeIdentifier<Data = T>,
{
type Output = T;
#[inline]
fn index(&self, id: U) -> &T {
self.get(id.index()).unwrap()
}
}
impl<T> Default for SnapshotList<T> {
fn default() -> SnapshotList<T> {
SnapshotList {
snapshots: Vec::new(),
snapshots_total: 0,
cur: Vec::new(),
}
}
}
/// A snapshot list of types.
///
/// Note that the snapshot lists below do not correspond with index spaces. Many
/// different kinds of types are in the same index space (e.g. all of the
/// component model's {component, instance, defined, func} types are in the same
/// index space). However, we store each of them in their own type-specific
/// snapshot list and give each of them their own identifier type.
#[derive(Default, Debug)]
// Only public because it shows up in a public trait's `doc(hidden)` method.
#[doc(hidden)]
pub struct TypeList {
// Core Wasm types.
//
// A primary map from `CoreTypeId` to `SubType`.
pub(super) core_types: SnapshotList<SubType>,
// The id of each core Wasm type's rec group.
//
// A secondary map from `CoreTypeId` to `RecGroupId`.
pub(super) core_type_to_rec_group: SnapshotList<RecGroupId>,
// The supertype of each core type.
//
// A secondary map from `CoreTypeId` to `Option<CoreTypeId>`.
pub(super) core_type_to_supertype: SnapshotList<Option<CoreTypeId>>,
// The subtyping depth of each core type. We use `u8::MAX` as a sentinel for
// an uninitialized entry.
//
// A secondary map from `CoreTypeId` to `u8`.
pub(super) core_type_to_depth: Option<IndexMap<CoreTypeId, u8>>,
// A primary map from `RecGroupId` to the range of the rec group's elements
// within `core_types`.
pub(super) rec_group_elements: SnapshotList<Range<CoreTypeId>>,
// A hash map from rec group elements to their canonical `RecGroupId`.
//
// This is `None` when a list is "committed" meaning that no more insertions
// can happen.
pub(super) canonical_rec_groups: Option<Map<RecGroup, RecGroupId>>,
#[cfg(feature = "component-model")]
pub(super) component: ComponentTypeList,
}
impl TypeList {
pub fn get<T>(&self, id: T) -> Option<&T::Data>
where
T: TypeIdentifier,
{
T::list(self).get(id.index())
}
pub fn push<T>(&mut self, ty: T) -> T::Id
where
T: TypeData,
{
let index = u32::try_from(T::Id::list(self).len()).unwrap();
let id = T::Id::from_index(index);
T::Id::list_mut(self).push(ty);
id
}
/// Intern the given recursion group (that has already been canonicalized)
/// and return its associated id and whether this was a new recursion group
/// or not.
pub fn intern_canonical_rec_group(&mut self, rec_group: RecGroup) -> (bool, RecGroupId) {
let canonical_rec_groups = self
.canonical_rec_groups
.as_mut()
.expect("cannot intern into a committed list");
let entry = match canonical_rec_groups.entry(rec_group) {
Entry::Occupied(e) => return (false, *e.get()),
Entry::Vacant(e) => e,
};
let rec_group_id = self.rec_group_elements.len();
let rec_group_id = u32::try_from(rec_group_id).unwrap();
let rec_group_id = RecGroupId::from_index(rec_group_id);
let start = self.core_types.len();
let start = u32::try_from(start).unwrap();
let start = CoreTypeId::from_index(start);
for ty in entry.key().types() {
debug_assert_eq!(self.core_types.len(), self.core_type_to_supertype.len());
debug_assert_eq!(self.core_types.len(), self.core_type_to_rec_group.len());
self.core_type_to_supertype
.push(ty.supertype_idx.map(|idx| match idx.unpack() {
UnpackedIndex::RecGroup(offset) => CoreTypeId::from_index(start.index + offset),
UnpackedIndex::Id(id) => id,
UnpackedIndex::Module(_) => unreachable!("in canonical form"),
}));
let mut ty = ty.clone();
ty.remap_indices(&mut |index| {
match index.unpack() {
UnpackedIndex::Id(_) => {}
UnpackedIndex::Module(_) => unreachable!(),
UnpackedIndex::RecGroup(offset) => {
*index = UnpackedIndex::Id(CoreTypeId::from_index(start.index + offset))
.pack()
.unwrap();
}
};
Ok(())
})
.expect("cannot fail");
self.core_types.push(ty);
self.core_type_to_rec_group.push(rec_group_id);
}
let end = self.core_types.len();
let end = u32::try_from(end).unwrap();
let end = CoreTypeId::from_index(end);
let range = start..end;
self.rec_group_elements.push(range.clone());
entry.insert(rec_group_id);
return (true, rec_group_id);
}
/// Helper for interning a sub type as a rec group; see
/// [`Self::intern_canonical_rec_group`].
pub fn intern_sub_type(&mut self, sub_ty: SubType, offset: usize) -> CoreTypeId {
let (_is_new, group_id) =
self.intern_canonical_rec_group(RecGroup::implicit(offset, sub_ty));
self[group_id].start
}
/// Get the `CoreTypeId` for a local index into a rec group.
pub fn rec_group_local_id(
&self,
rec_group: RecGroupId,
index: u32,
offset: usize,
) -> Result<CoreTypeId> {
let elems = &self[rec_group];
let len = elems.end.index() - elems.start.index();
let len = u32::try_from(len).unwrap();
if index < len {
let id = u32::try_from(elems.start.index()).unwrap() + index;
let id = CoreTypeId::from_index(id);
Ok(id)
} else {
bail!(
offset,
"unknown type {index}: type index out of rec group bounds"
)
}
}
/// Get the id of the rec group that the given type id was defined within.
pub fn rec_group_id_of(&self, id: CoreTypeId) -> RecGroupId {
self.core_type_to_rec_group[id.index()]
}
/// Get the super type of the given type id, if any.
pub fn supertype_of(&self, id: CoreTypeId) -> Option<CoreTypeId> {
self.core_type_to_supertype[id.index()]
}
/// Get the subtyping depth of the given type. A type without any supertype
/// has depth 0.
pub fn get_subtyping_depth(&self, id: CoreTypeId) -> u8 {
let depth = self
.core_type_to_depth
.as_ref()
.expect("cannot get subtype depth from a committed list")[id.index()];
debug_assert!(usize::from(depth) <= crate::limits::MAX_WASM_SUBTYPING_DEPTH);
depth
}
/// Set the subtyping depth of the given type. This may only be done once
/// per type.
pub fn set_subtyping_depth(&mut self, id: CoreTypeId, depth: u8) {
debug_assert!(usize::from(depth) <= crate::limits::MAX_WASM_SUBTYPING_DEPTH);
let map = self
.core_type_to_depth
.as_mut()
.expect("cannot set a subtype depth in a committed list");
debug_assert!(!map.contains_key(&id));
map.insert(id, depth);
}
/// Get the `CoreTypeId` for a canonicalized `PackedIndex`.
///
/// Panics when given a non-canonicalized `PackedIndex`.
pub fn at_canonicalized_packed_index(
&self,
rec_group: RecGroupId,
index: PackedIndex,
offset: usize,
) -> Result<CoreTypeId> {
self.at_canonicalized_unpacked_index(rec_group, index.unpack(), offset)
}
/// Get the `CoreTypeId` for a canonicalized `UnpackedIndex`.
///
/// Panics when given a non-canonicalized `PackedIndex`.
pub fn at_canonicalized_unpacked_index(
&self,
rec_group: RecGroupId,
index: UnpackedIndex,
offset: usize,
) -> Result<CoreTypeId> {
match index {
UnpackedIndex::Module(_) => panic!("not canonicalized"),
UnpackedIndex::Id(id) => Ok(id),
UnpackedIndex::RecGroup(idx) => self.rec_group_local_id(rec_group, idx, offset),
}
}
/// Does `a` structurally match `b`?
pub fn matches(&self, a: CoreTypeId, b: CoreTypeId) -> bool {
let a = WithRecGroup::new(self, a);
let a = WithRecGroup::map(a, |a| &self[a]);
let b = WithRecGroup::new(self, b);
let b = WithRecGroup::map(b, |b| &self[b]);
Matches::matches(self, a, b)
}
/// Is `a == b` or was `a` declared (potentially transitively) to be a
/// subtype of `b`?
pub fn id_is_subtype(&self, mut a: CoreTypeId, b: CoreTypeId) -> bool {
loop {
if a == b {
return true;
}
// TODO: maintain supertype vectors and implement this check in O(1)
// instead of O(n) time.
a = match self.supertype_of(a) {
Some(a) => a,
None => return false,
};
}
}
/// Like `id_is_subtype` but for `RefType`s.
///
/// Both `a` and `b` must be canonicalized already.
pub fn reftype_is_subtype(&self, a: RefType, b: RefType) -> bool {
// NB: Don't need `RecGroupId`s since we are calling from outside of the
// rec group, and so any `PackedIndex`es we encounter have already been
// canonicalized to `CoreTypeId`s directly.
self.reftype_is_subtype_impl(a, None, b, None)
}
/// Implementation of `RefType` and `HeapType` subtyping.
///
/// Panics if we need rec groups but aren't given them. Rec groups only need
/// to be passed in when checking subtyping of `RefType`s that we encounter
/// while validating a rec group itself.
pub(crate) fn reftype_is_subtype_impl(
&self,
a: RefType,
a_group: Option<RecGroupId>,
b: RefType,
b_group: Option<RecGroupId>,
) -> bool {
if a == b && a_group == b_group {
return true;
}
if a.is_nullable() && !b.is_nullable() {
return false;
}
let core_type_id = |group: Option<RecGroupId>, index: UnpackedIndex| -> CoreTypeId {
if let Some(id) = index.as_core_type_id() {
id
} else {
self.at_canonicalized_unpacked_index(group.unwrap(), index, usize::MAX)
.expect("type references are checked during canonicalization")
}
};
let subtype = |group, index| -> &SubType {
let id = core_type_id(group, index);
&self[id]
};
use AbstractHeapType::*;
use CompositeInnerType as CT;
use HeapType as HT;
match (a.heap_type(), b.heap_type()) {
(a, b) if a == b => true,
(
HT::Abstract {
shared: a_shared,
ty: a_ty,
},
HT::Abstract {
shared: b_shared,
ty: b_ty,
},
) => a_shared == b_shared && a_ty.is_subtype_of(b_ty),
(HT::Concrete(a), HT::Abstract { shared, ty }) => {
let a_ty = &subtype(a_group, a).composite_type;
if a_ty.shared != shared {
return false;
}
match ty {
Any | Eq => matches!(a_ty.inner, CT::Array(_) | CT::Struct(_)),
Struct => matches!(a_ty.inner, CT::Struct(_)),
Array => matches!(a_ty.inner, CT::Array(_)),
Func => matches!(a_ty.inner, CT::Func(_)),
Cont => matches!(a_ty.inner, CT::Cont(_)),
// Nothing else matches. (Avoid full wildcard matches so
// that adding/modifying variants is easier in the future.)
Extern | Exn | I31 | None | NoFunc | NoExtern | NoExn | NoCont => false,
}
}
(HT::Abstract { shared, ty }, HT::Concrete(b)) => {
let b_ty = &subtype(b_group, b).composite_type;
if shared != b_ty.shared {
return false;
}
match ty {
None => matches!(b_ty.inner, CT::Array(_) | CT::Struct(_)),
NoFunc => matches!(b_ty.inner, CT::Func(_)),
NoCont => matches!(b_ty.inner, CT::Cont(_)),
// Nothing else matches. (Avoid full wildcard matches so
// that adding/modifying variants is easier in the future.)
Cont | Func | Extern | Exn | Any | Eq | Array | I31 | Struct | NoExtern
| NoExn => false,
}
}
(HT::Concrete(a), HT::Concrete(b)) => {
self.id_is_subtype(core_type_id(a_group, a), core_type_id(b_group, b))
}
}
}
/// Like `id_is_subtype` but for `RefType`s.
///
/// Both `a` and `b` must be canonicalized already.
pub fn valtype_is_subtype(&self, a: ValType, b: ValType) -> bool {
match (a, b) {
(a, b) if a == b => true,
(ValType::Ref(a), ValType::Ref(b)) => self.reftype_is_subtype(a, b),
(ValType::Ref(_), _)
| (ValType::I32, _)
| (ValType::I64, _)
| (ValType::F32, _)
| (ValType::F64, _)
| (ValType::V128, _) => false,
}
}
/// Is `ty` shared?
pub fn valtype_is_shared(&self, ty: ValType) -> bool {
match ty {
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => true,
ValType::Ref(rt) => self.reftype_is_shared(rt),
}
}
/// Is the reference type `ty` shared?
///
/// This is complicated by concrete heap types whose shared-ness must be
/// checked by looking at the type they point to.
pub fn reftype_is_shared(&self, ty: RefType) -> bool {
match ty.heap_type() {
HeapType::Abstract { shared, .. } => shared,
HeapType::Concrete(index) => {
self[index.as_core_type_id().unwrap()].composite_type.shared
}
}
}
/// Get the top type of the given heap type.
///
/// Concrete types must have had their indices canonicalized to core type
/// ids, otherwise this method will panic.
pub fn top_type(&self, heap_type: &HeapType) -> HeapType {
use AbstractHeapType::*;
match *heap_type {
HeapType::Concrete(idx) => {
let ty = &self[idx.as_core_type_id().unwrap()].composite_type;
let shared = ty.shared;
match ty.inner {
CompositeInnerType::Func(_) => HeapType::Abstract { shared, ty: Func },
CompositeInnerType::Array(_) | CompositeInnerType::Struct(_) => {
HeapType::Abstract { shared, ty: Any }
}
CompositeInnerType::Cont(_) => HeapType::Abstract { shared, ty: Cont },
}
}
HeapType::Abstract { shared, ty } => {
let ty = match ty {
Func | NoFunc => Func,
Extern | NoExtern => Extern,
Any | Eq | Struct | Array | I31 | None => Any,
Exn | NoExn => Exn,
Cont | NoCont => Cont,
};
HeapType::Abstract { shared, ty }
}
}
}
pub fn commit(&mut self) -> TypeList {
TypeList {
core_types: self.core_types.commit(),
core_type_to_rec_group: self.core_type_to_rec_group.commit(),
core_type_to_supertype: self.core_type_to_supertype.commit(),
core_type_to_depth: None,
rec_group_elements: self.rec_group_elements.commit(),
canonical_rec_groups: None,
#[cfg(feature = "component-model")]
component: self.component.commit(),
}
}
}
impl<T> Index<T> for TypeList
where
T: TypeIdentifier,
{
type Output = T::Data;
fn index(&self, id: T) -> &Self::Output {
let arena = T::list(self);
&arena[id.index()]
}
}
/// Thin wrapper around `TypeList` which provides an allocator of unique ids for
/// types contained within this list.
pub(crate) struct TypeAlloc {
list: TypeList,
#[cfg(feature = "component-model")]
pub(super) component_alloc: ComponentTypeAlloc,
}
impl Default for TypeAlloc {
fn default() -> TypeAlloc {
let mut ret = TypeAlloc {
list: TypeList::default(),
#[cfg(feature = "component-model")]
component_alloc: ComponentTypeAlloc::default(),
};
ret.list.core_type_to_depth = Some(Default::default());
ret.list.canonical_rec_groups = Some(Default::default());
ret
}
}
impl Deref for TypeAlloc {
type Target = TypeList;
fn deref(&self) -> &TypeList {
&self.list
}
}
impl DerefMut for TypeAlloc {
fn deref_mut(&mut self) -> &mut TypeList {
&mut self.list
}
}
impl<T> Index<T> for TypeAlloc
where
T: TypeIdentifier,
{
type Output = T::Data;
#[inline]
fn index(&self, id: T) -> &T::Data {
&self.list[id]
}
}