wasmtime/
engine.rs

1use crate::Config;
2use crate::prelude::*;
3#[cfg(feature = "runtime")]
4pub use crate::runtime::code_memory::CustomCodeMemory;
5#[cfg(feature = "runtime")]
6use crate::runtime::type_registry::TypeRegistry;
7#[cfg(feature = "runtime")]
8use crate::runtime::vm::GcRuntime;
9use alloc::sync::Arc;
10use core::ptr::NonNull;
11#[cfg(target_has_atomic = "64")]
12use core::sync::atomic::{AtomicU64, Ordering};
13#[cfg(any(feature = "cranelift", feature = "winch"))]
14use object::write::{Object, StandardSegment};
15#[cfg(feature = "std")]
16use std::{fs::File, path::Path};
17use wasmparser::WasmFeatures;
18use wasmtime_environ::{FlagValue, ObjectKind, TripleExt, Tunables};
19
20mod serialization;
21
22/// An `Engine` which is a global context for compilation and management of wasm
23/// modules.
24///
25/// An engine can be safely shared across threads and is a cheap cloneable
26/// handle to the actual engine. The engine itself will be deallocated once all
27/// references to it have gone away.
28///
29/// Engines store global configuration preferences such as compilation settings,
30/// enabled features, etc. You'll likely only need at most one of these for a
31/// program.
32///
33/// ## Engines and `Clone`
34///
35/// Using `clone` on an `Engine` is a cheap operation. It will not create an
36/// entirely new engine, but rather just a new reference to the existing engine.
37/// In other words it's a shallow copy, not a deep copy.
38///
39/// ## Engines and `Default`
40///
41/// You can create an engine with default configuration settings using
42/// `Engine::default()`. Be sure to consult the documentation of [`Config`] for
43/// default settings.
44#[derive(Clone)]
45pub struct Engine {
46    inner: Arc<EngineInner>,
47}
48
49struct EngineInner {
50    config: Config,
51    features: WasmFeatures,
52    tunables: Tunables,
53    #[cfg(any(feature = "cranelift", feature = "winch"))]
54    compiler: Box<dyn wasmtime_environ::Compiler>,
55    #[cfg(feature = "runtime")]
56    allocator: Box<dyn crate::runtime::vm::InstanceAllocator + Send + Sync>,
57    #[cfg(feature = "runtime")]
58    gc_runtime: Option<Arc<dyn GcRuntime>>,
59    #[cfg(feature = "runtime")]
60    profiler: Box<dyn crate::profiling_agent::ProfilingAgent>,
61    #[cfg(feature = "runtime")]
62    signatures: TypeRegistry,
63    #[cfg(all(feature = "runtime", target_has_atomic = "64"))]
64    epoch: AtomicU64,
65
66    /// One-time check of whether the compiler's settings, if present, are
67    /// compatible with the native host.
68    compatible_with_native_host: crate::sync::OnceLock<Result<(), String>>,
69}
70
71impl core::fmt::Debug for Engine {
72    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
73        f.debug_tuple("Engine")
74            .field(&Arc::as_ptr(&self.inner))
75            .finish()
76    }
77}
78
79impl Default for Engine {
80    fn default() -> Engine {
81        Engine::new(&Config::default()).unwrap()
82    }
83}
84
85impl Engine {
86    /// Creates a new [`Engine`] with the specified compilation and
87    /// configuration settings.
88    ///
89    /// # Errors
90    ///
91    /// This method can fail if the `config` is invalid or some
92    /// configurations are incompatible.
93    ///
94    /// For example, feature `reference_types` will need to set
95    /// the compiler setting `unwind_info` to `true`, but explicitly
96    /// disable these two compiler settings will cause errors.
97    pub fn new(config: &Config) -> Result<Engine> {
98        let config = config.clone();
99        let (tunables, features) = config.validate()?;
100
101        #[cfg(feature = "runtime")]
102        if tunables.signals_based_traps {
103            // Ensure that crate::runtime::vm's signal handlers are
104            // configured. This is the per-program initialization required for
105            // handling traps, such as configuring signals, vectored exception
106            // handlers, etc.
107            #[cfg(has_native_signals)]
108            crate::runtime::vm::init_traps(config.macos_use_mach_ports);
109            if !cfg!(miri) {
110                #[cfg(all(has_host_compiler_backend, feature = "debug-builtins"))]
111                crate::runtime::vm::debug_builtins::init();
112            }
113        }
114
115        #[cfg(any(feature = "cranelift", feature = "winch"))]
116        let (config, compiler) = config.build_compiler(&tunables, features)?;
117
118        Ok(Engine {
119            inner: Arc::new(EngineInner {
120                #[cfg(any(feature = "cranelift", feature = "winch"))]
121                compiler,
122                #[cfg(feature = "runtime")]
123                allocator: {
124                    let allocator = config.build_allocator(&tunables)?;
125                    #[cfg(feature = "gc")]
126                    {
127                        let mem_ty = tunables.gc_heap_memory_type();
128                        allocator.validate_memory(&mem_ty).context(
129                            "instance allocator cannot support configured GC heap memory",
130                        )?;
131                    }
132                    allocator
133                },
134                #[cfg(feature = "runtime")]
135                gc_runtime: config.build_gc_runtime()?,
136                #[cfg(feature = "runtime")]
137                profiler: config.build_profiler()?,
138                #[cfg(feature = "runtime")]
139                signatures: TypeRegistry::new(),
140                #[cfg(all(feature = "runtime", target_has_atomic = "64"))]
141                epoch: AtomicU64::new(0),
142                compatible_with_native_host: Default::default(),
143                config,
144                tunables,
145                features,
146            }),
147        })
148    }
149
150    /// Returns the configuration settings that this engine is using.
151    #[inline]
152    pub fn config(&self) -> &Config {
153        &self.inner.config
154    }
155
156    #[inline]
157    pub(crate) fn features(&self) -> WasmFeatures {
158        self.inner.features
159    }
160
161    pub(crate) fn run_maybe_parallel<
162        A: Send,
163        B: Send,
164        E: Send,
165        F: Fn(A) -> Result<B, E> + Send + Sync,
166    >(
167        &self,
168        input: Vec<A>,
169        f: F,
170    ) -> Result<Vec<B>, E> {
171        if self.config().parallel_compilation {
172            #[cfg(feature = "parallel-compilation")]
173            {
174                use rayon::prelude::*;
175                // If we collect into Result<Vec<B>, E> directly, the returned error is not
176                // deterministic, because any error could be returned early. So we first materialize
177                // all results in order and then return the first error deterministically, or Ok(_).
178                return input
179                    .into_par_iter()
180                    .map(|a| f(a))
181                    .collect::<Vec<Result<B, E>>>()
182                    .into_iter()
183                    .collect::<Result<Vec<B>, E>>();
184            }
185        }
186
187        // In case the parallel-compilation feature is disabled or the parallel_compilation config
188        // was turned off dynamically fallback to the non-parallel version.
189        input
190            .into_iter()
191            .map(|a| f(a))
192            .collect::<Result<Vec<B>, E>>()
193    }
194
195    #[cfg(any(feature = "cranelift", feature = "winch"))]
196    pub(crate) fn run_maybe_parallel_mut<
197        T: Send,
198        E: Send,
199        F: Fn(&mut T) -> Result<(), E> + Send + Sync,
200    >(
201        &self,
202        input: &mut [T],
203        f: F,
204    ) -> Result<(), E> {
205        if self.config().parallel_compilation {
206            #[cfg(feature = "parallel-compilation")]
207            {
208                use rayon::prelude::*;
209                // If we collect into `Result<(), E>` directly, the returned
210                // error is not deterministic, because any error could be
211                // returned early. So we first materialize all results in order
212                // and then return the first error deterministically, or
213                // `Ok(_)`.
214                return input
215                    .into_par_iter()
216                    .map(|a| f(a))
217                    .collect::<Vec<Result<(), E>>>()
218                    .into_iter()
219                    .collect::<Result<(), E>>();
220            }
221        }
222
223        // In case the parallel-compilation feature is disabled or the
224        // parallel_compilation config was turned off dynamically fallback to
225        // the non-parallel version.
226        input.into_iter().map(|a| f(a)).collect::<Result<(), E>>()
227    }
228
229    /// Take a weak reference to this engine.
230    pub fn weak(&self) -> EngineWeak {
231        EngineWeak {
232            inner: Arc::downgrade(&self.inner),
233        }
234    }
235
236    #[inline]
237    pub(crate) fn tunables(&self) -> &Tunables {
238        &self.inner.tunables
239    }
240
241    /// Returns whether the engine `a` and `b` refer to the same configuration.
242    #[inline]
243    pub fn same(a: &Engine, b: &Engine) -> bool {
244        Arc::ptr_eq(&a.inner, &b.inner)
245    }
246
247    /// Returns whether the engine is configured to support async functions.
248    #[cfg(feature = "async")]
249    #[inline]
250    pub fn is_async(&self) -> bool {
251        self.config().async_support
252    }
253
254    /// Detects whether the bytes provided are a precompiled object produced by
255    /// Wasmtime.
256    ///
257    /// This function will inspect the header of `bytes` to determine if it
258    /// looks like a precompiled core wasm module or a precompiled component.
259    /// This does not validate the full structure or guarantee that
260    /// deserialization will succeed, instead it helps higher-levels of the
261    /// stack make a decision about what to do next when presented with the
262    /// `bytes` as an input module.
263    ///
264    /// If the `bytes` looks like a precompiled object previously produced by
265    /// [`Module::serialize`](crate::Module::serialize),
266    /// [`Component::serialize`](crate::component::Component::serialize),
267    /// [`Engine::precompile_module`], or [`Engine::precompile_component`], then
268    /// this will return `Some(...)` indicating so. Otherwise `None` is
269    /// returned.
270    pub fn detect_precompiled(bytes: &[u8]) -> Option<Precompiled> {
271        serialization::detect_precompiled_bytes(bytes)
272    }
273
274    /// Like [`Engine::detect_precompiled`], but performs the detection on a file.
275    #[cfg(feature = "std")]
276    pub fn detect_precompiled_file(path: impl AsRef<Path>) -> Result<Option<Precompiled>> {
277        serialization::detect_precompiled_file(path)
278    }
279
280    /// Returns the target triple which this engine is compiling code for
281    /// and/or running code for.
282    pub(crate) fn target(&self) -> target_lexicon::Triple {
283        return self.config().compiler_target();
284    }
285
286    /// Verify that this engine's configuration is compatible with loading
287    /// modules onto the native host platform.
288    ///
289    /// This method is used as part of `Module::new` to ensure that this
290    /// engine can indeed load modules for the configured compiler (if any).
291    /// Note that if cranelift is disabled this trivially returns `Ok` because
292    /// loaded serialized modules are checked separately.
293    pub(crate) fn check_compatible_with_native_host(&self) -> Result<()> {
294        self.inner
295            .compatible_with_native_host
296            .get_or_init(|| self._check_compatible_with_native_host())
297            .clone()
298            .map_err(anyhow::Error::msg)
299    }
300
301    fn _check_compatible_with_native_host(&self) -> Result<(), String> {
302        use target_lexicon::Triple;
303
304        let host = Triple::host();
305        let target = self.config().compiler_target();
306
307        let target_matches_host = || {
308            // If the host target and target triple match, then it's valid
309            // to run results of compilation on this host.
310            if host == target {
311                return true;
312            }
313
314            // If there's a mismatch and the target is a compatible pulley
315            // target, then that's also ok to run.
316            if cfg!(feature = "pulley")
317                && target.is_pulley()
318                && target.pointer_width() == host.pointer_width()
319                && target.endianness() == host.endianness()
320            {
321                return true;
322            }
323
324            // ... otherwise everything else is considered not a match.
325            false
326        };
327
328        if !target_matches_host() {
329            return Err(format!(
330                "target '{target}' specified in the configuration does not match the host"
331            ));
332        }
333
334        #[cfg(any(feature = "cranelift", feature = "winch"))]
335        {
336            let compiler = self.compiler();
337            // Also double-check all compiler settings
338            for (key, value) in compiler.flags().iter() {
339                self.check_compatible_with_shared_flag(key, value)?;
340            }
341            for (key, value) in compiler.isa_flags().iter() {
342                self.check_compatible_with_isa_flag(key, value)?;
343            }
344        }
345
346        // Double-check that this configuration isn't requesting capabilities
347        // that this build of Wasmtime doesn't support.
348        if !cfg!(has_native_signals) && self.tunables().signals_based_traps {
349            return Err("signals-based-traps disabled at compile time -- cannot be enabled".into());
350        }
351        if !cfg!(has_virtual_memory) && self.tunables().memory_init_cow {
352            return Err("virtual memory disabled at compile time -- cannot enable CoW".into());
353        }
354        if !cfg!(target_has_atomic = "64") && self.tunables().epoch_interruption {
355            return Err("epochs currently require 64-bit atomics".into());
356        }
357
358        // Double-check that the host's float ABI matches Cranelift's float ABI.
359        // See `Config::x86_float_abi_ok` for some more
360        // information.
361        if target == target_lexicon::triple!("x86_64-unknown-none")
362            && self.config().x86_float_abi_ok != Some(true)
363        {
364            return Err("\
365the x86_64-unknown-none target by default uses a soft-float ABI that is \
366incompatible with Cranelift and Wasmtime -- use \
367`Config::x86_float_abi_ok` to disable this check and see more \
368information about this check\
369"
370            .into());
371        }
372
373        Ok(())
374    }
375
376    /// Checks to see whether the "shared flag", something enabled for
377    /// individual compilers, is compatible with the native host platform.
378    ///
379    /// This is used both when validating an engine's compilation settings are
380    /// compatible with the host as well as when deserializing modules from
381    /// disk to ensure they're compatible with the current host.
382    ///
383    /// Note that most of the settings here are not configured by users that
384    /// often. While theoretically possible via `Config` methods the more
385    /// interesting flags are the ISA ones below. Typically the values here
386    /// represent global configuration for wasm features. Settings here
387    /// currently rely on the compiler informing us of all settings, including
388    /// those disabled. Settings then fall in a few buckets:
389    ///
390    /// * Some settings must be enabled, such as `preserve_frame_pointers`.
391    /// * Some settings must have a particular value, such as
392    ///   `libcall_call_conv`.
393    /// * Some settings do not matter as to their value, such as `opt_level`.
394    pub(crate) fn check_compatible_with_shared_flag(
395        &self,
396        flag: &str,
397        value: &FlagValue,
398    ) -> Result<(), String> {
399        let target = self.target();
400        let ok = match flag {
401            // These settings must all have be enabled, since their value
402            // can affect the way the generated code performs or behaves at
403            // runtime.
404            "libcall_call_conv" => *value == FlagValue::Enum("isa_default"),
405            "preserve_frame_pointers" => *value == FlagValue::Bool(true),
406            "enable_probestack" => *value == FlagValue::Bool(true),
407            "probestack_strategy" => *value == FlagValue::Enum("inline"),
408            "enable_multi_ret_implicit_sret" => *value == FlagValue::Bool(true),
409
410            // Features wasmtime doesn't use should all be disabled, since
411            // otherwise if they are enabled it could change the behavior of
412            // generated code.
413            "enable_llvm_abi_extensions" => *value == FlagValue::Bool(false),
414            "enable_pinned_reg" => *value == FlagValue::Bool(false),
415            "use_colocated_libcalls" => *value == FlagValue::Bool(false),
416            "use_pinned_reg_as_heap_base" => *value == FlagValue::Bool(false),
417
418            // Windows requires unwind info as part of its ABI.
419            "unwind_info" => {
420                if target.operating_system == target_lexicon::OperatingSystem::Windows {
421                    *value == FlagValue::Bool(true)
422                } else {
423                    return Ok(())
424                }
425            }
426
427            // stack switch model must match the current OS
428            "stack_switch_model" => {
429                if self.features().contains(WasmFeatures::STACK_SWITCHING) {
430                    use target_lexicon::OperatingSystem;
431                    let expected =
432                    match target.operating_system  {
433                        OperatingSystem::Windows => "update_windows_tib",
434                        OperatingSystem::Linux
435                        | OperatingSystem::MacOSX(_)
436                        | OperatingSystem::Darwin(_)  => "basic",
437                        _ => { return Err(String::from("stack-switching feature not supported on this platform")); }
438                    };
439                    *value == FlagValue::Enum(expected)
440                } else {
441                    return Ok(())
442                }
443            }
444
445            // These settings don't affect the interface or functionality of
446            // the module itself, so their configuration values shouldn't
447            // matter.
448            "enable_heap_access_spectre_mitigation"
449            | "enable_table_access_spectre_mitigation"
450            | "enable_nan_canonicalization"
451            | "enable_float"
452            | "enable_verifier"
453            | "enable_pcc"
454            | "regalloc_checker"
455            | "regalloc_verbose_logs"
456            | "regalloc_algorithm"
457            | "is_pic"
458            | "bb_padding_log2_minus_one"
459            | "log2_min_function_alignment"
460            | "machine_code_cfg_info"
461            | "tls_model" // wasmtime doesn't use tls right now
462            | "opt_level" // opt level doesn't change semantics
463            | "enable_alias_analysis" // alias analysis-based opts don't change semantics
464            | "probestack_size_log2" // probestack above asserted disabled
465            | "regalloc" // shouldn't change semantics
466            | "enable_incremental_compilation_cache_checks" // shouldn't change semantics
467            | "enable_atomics" => return Ok(()),
468
469            // Everything else is unknown and needs to be added somewhere to
470            // this list if encountered.
471            _ => {
472                return Err(format!("unknown shared setting {flag:?} configured to {value:?}"))
473            }
474        };
475
476        if !ok {
477            return Err(format!(
478                "setting {flag:?} is configured to {value:?} which is not supported",
479            ));
480        }
481        Ok(())
482    }
483
484    /// Same as `check_compatible_with_native_host` except used for ISA-specific
485    /// flags. This is used to test whether a configured ISA flag is indeed
486    /// available on the host platform itself.
487    pub(crate) fn check_compatible_with_isa_flag(
488        &self,
489        flag: &str,
490        value: &FlagValue,
491    ) -> Result<(), String> {
492        match value {
493            // ISA flags are used for things like CPU features, so if they're
494            // disabled then it's compatible with the native host.
495            FlagValue::Bool(false) => return Ok(()),
496
497            // Fall through below where we test at runtime that features are
498            // available.
499            FlagValue::Bool(true) => {}
500
501            // Pulley's pointer_width must match the host.
502            FlagValue::Enum("pointer32") => {
503                return if cfg!(target_pointer_width = "32") {
504                    Ok(())
505                } else {
506                    Err("wrong host pointer width".to_string())
507                };
508            }
509            FlagValue::Enum("pointer64") => {
510                return if cfg!(target_pointer_width = "64") {
511                    Ok(())
512                } else {
513                    Err("wrong host pointer width".to_string())
514                };
515            }
516
517            // Only `bool` values are supported right now, other settings would
518            // need more support here.
519            _ => {
520                return Err(format!(
521                    "isa-specific feature {flag:?} configured to unknown value {value:?}"
522                ));
523            }
524        }
525
526        let host_feature = match flag {
527            // aarch64 features to detect
528            "has_lse" => "lse",
529            "has_pauth" => "paca",
530            "has_fp16" => "fp16",
531
532            // aarch64 features which don't need detection
533            // No effect on its own.
534            "sign_return_address_all" => return Ok(()),
535            // The pointer authentication instructions act as a `NOP` when
536            // unsupported, so it is safe to enable them.
537            "sign_return_address" => return Ok(()),
538            // No effect on its own.
539            "sign_return_address_with_bkey" => return Ok(()),
540            // The `BTI` instruction acts as a `NOP` when unsupported, so it
541            // is safe to enable it regardless of whether the host supports it
542            // or not.
543            "use_bti" => return Ok(()),
544
545            // s390x features to detect
546            "has_vxrs_ext2" => "vxrs_ext2",
547            "has_vxrs_ext3" => "vxrs_ext3",
548            "has_mie3" => "mie3",
549            "has_mie4" => "mie4",
550
551            // x64 features to detect
552            "has_cmpxchg16b" => "cmpxchg16b",
553            "has_sse3" => "sse3",
554            "has_ssse3" => "ssse3",
555            "has_sse41" => "sse4.1",
556            "has_sse42" => "sse4.2",
557            "has_popcnt" => "popcnt",
558            "has_avx" => "avx",
559            "has_avx2" => "avx2",
560            "has_fma" => "fma",
561            "has_bmi1" => "bmi1",
562            "has_bmi2" => "bmi2",
563            "has_avx512bitalg" => "avx512bitalg",
564            "has_avx512dq" => "avx512dq",
565            "has_avx512f" => "avx512f",
566            "has_avx512vl" => "avx512vl",
567            "has_avx512vbmi" => "avx512vbmi",
568            "has_lzcnt" => "lzcnt",
569
570            // pulley features
571            "big_endian" if cfg!(target_endian = "big") => return Ok(()),
572            "big_endian" if cfg!(target_endian = "little") => {
573                return Err("wrong host endianness".to_string());
574            }
575
576            _ => {
577                // FIXME: should enumerate risc-v features and plumb them
578                // through to the `detect_host_feature` function.
579                if cfg!(target_arch = "riscv64") && flag != "not_a_flag" {
580                    return Ok(());
581                }
582                return Err(format!(
583                    "don't know how to test for target-specific flag {flag:?} at runtime"
584                ));
585            }
586        };
587
588        let detect = match self.config().detect_host_feature {
589            Some(detect) => detect,
590            None => {
591                return Err(format!(
592                    "cannot determine if host feature {host_feature:?} is \
593                     available at runtime, configure a probing function with \
594                     `Config::detect_host_feature`"
595                ));
596            }
597        };
598
599        match detect(host_feature) {
600            Some(true) => Ok(()),
601            Some(false) => Err(format!(
602                "compilation setting {flag:?} is enabled, but not \
603                 available on the host",
604            )),
605            None => Err(format!(
606                "failed to detect if target-specific flag {host_feature:?} is \
607                 available at runtime (compile setting {flag:?})"
608            )),
609        }
610    }
611
612    /// Returns whether this [`Engine`] is configured to execute with Pulley,
613    /// Wasmtime's interpreter.
614    ///
615    /// Note that Pulley is the default for host platforms that do not have a
616    /// Cranelift backend to support them. For example at the time of this
617    /// writing 32-bit x86 is not supported in Cranelift so the
618    /// `i686-unknown-linux-gnu` target would by default return `true` here.
619    pub fn is_pulley(&self) -> bool {
620        self.target().is_pulley()
621    }
622}
623
624#[cfg(any(feature = "cranelift", feature = "winch"))]
625impl Engine {
626    pub(crate) fn compiler(&self) -> &dyn wasmtime_environ::Compiler {
627        &*self.inner.compiler
628    }
629
630    /// Ahead-of-time (AOT) compiles a WebAssembly module.
631    ///
632    /// The `bytes` provided must be in one of two formats:
633    ///
634    /// * A [binary-encoded][binary] WebAssembly module. This is always supported.
635    /// * A [text-encoded][text] instance of the WebAssembly text format.
636    ///   This is only supported when the `wat` feature of this crate is enabled.
637    ///   If this is supplied then the text format will be parsed before validation.
638    ///   Note that the `wat` feature is enabled by default.
639    ///
640    /// This method may be used to compile a module for use with a different target
641    /// host. The output of this method may be used with
642    /// [`Module::deserialize`](crate::Module::deserialize) on hosts compatible
643    /// with the [`Config`](crate::Config) associated with this [`Engine`].
644    ///
645    /// The output of this method is safe to send to another host machine for later
646    /// execution. As the output is already a compiled module, translation and code
647    /// generation will be skipped and this will improve the performance of constructing
648    /// a [`Module`](crate::Module) from the output of this method.
649    ///
650    /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
651    /// [text]: https://webassembly.github.io/spec/core/text/index.html
652    pub fn precompile_module(&self, bytes: &[u8]) -> Result<Vec<u8>> {
653        crate::CodeBuilder::new(self)
654            .wasm_binary_or_text(bytes, None)?
655            .compile_module_serialized()
656    }
657
658    /// Same as [`Engine::precompile_module`] except for a
659    /// [`Component`](crate::component::Component)
660    #[cfg(feature = "component-model")]
661    pub fn precompile_component(&self, bytes: &[u8]) -> Result<Vec<u8>> {
662        crate::CodeBuilder::new(self)
663            .wasm_binary_or_text(bytes, None)?
664            .compile_component_serialized()
665    }
666
667    /// Produces a blob of bytes by serializing the `engine`'s configuration data to
668    /// be checked, perhaps in a different process, with the `check_compatible`
669    /// method below.
670    ///
671    /// The blob of bytes is inserted into the object file specified to become part
672    /// of the final compiled artifact.
673    pub(crate) fn append_compiler_info(&self, obj: &mut Object<'_>) {
674        serialization::append_compiler_info(self, obj, &serialization::Metadata::new(&self))
675    }
676
677    #[cfg(any(feature = "cranelift", feature = "winch"))]
678    pub(crate) fn append_bti(&self, obj: &mut Object<'_>) {
679        let section = obj.add_section(
680            obj.segment_name(StandardSegment::Data).to_vec(),
681            wasmtime_environ::obj::ELF_WASM_BTI.as_bytes().to_vec(),
682            object::SectionKind::ReadOnlyData,
683        );
684        let contents = if self.compiler().is_branch_protection_enabled() {
685            1
686        } else {
687            0
688        };
689        obj.append_section_data(section, &[contents], 1);
690    }
691}
692
693/// Return value from the [`Engine::detect_precompiled`] API.
694#[derive(PartialEq, Eq, Copy, Clone, Debug)]
695pub enum Precompiled {
696    /// The input bytes look like a precompiled core wasm module.
697    Module,
698    /// The input bytes look like a precompiled wasm component.
699    Component,
700}
701
702#[cfg(feature = "runtime")]
703impl Engine {
704    /// Eagerly initialize thread-local functionality shared by all [`Engine`]s.
705    ///
706    /// Wasmtime's implementation on some platforms may involve per-thread
707    /// setup that needs to happen whenever WebAssembly is invoked. This setup
708    /// can take on the order of a few hundred microseconds, whereas the
709    /// overhead of calling WebAssembly is otherwise on the order of a few
710    /// nanoseconds. This setup cost is paid once per-OS-thread. If your
711    /// application is sensitive to the latencies of WebAssembly function
712    /// calls, even those that happen first on a thread, then this function
713    /// can be used to improve the consistency of each call into WebAssembly
714    /// by explicitly frontloading the cost of the one-time setup per-thread.
715    ///
716    /// Note that this function is not required to be called in any embedding.
717    /// Wasmtime will automatically initialize thread-local-state as necessary
718    /// on calls into WebAssembly. This is provided for use cases where the
719    /// latency of WebAssembly calls are extra-important, which is not
720    /// necessarily true of all embeddings.
721    pub fn tls_eager_initialize() {
722        crate::runtime::vm::tls_eager_initialize();
723    }
724
725    /// Returns a [`PoolingAllocatorMetrics`](crate::PoolingAllocatorMetrics) if
726    /// this engine was configured with
727    /// [`InstanceAllocationStrategy::Pooling`](crate::InstanceAllocationStrategy::Pooling).
728    #[cfg(feature = "pooling-allocator")]
729    pub fn pooling_allocator_metrics(&self) -> Option<crate::vm::PoolingAllocatorMetrics> {
730        crate::runtime::vm::PoolingAllocatorMetrics::new(self)
731    }
732
733    pub(crate) fn allocator(&self) -> &dyn crate::runtime::vm::InstanceAllocator {
734        self.inner.allocator.as_ref()
735    }
736
737    pub(crate) fn gc_runtime(&self) -> Option<&Arc<dyn GcRuntime>> {
738        self.inner.gc_runtime.as_ref()
739    }
740
741    pub(crate) fn profiler(&self) -> &dyn crate::profiling_agent::ProfilingAgent {
742        self.inner.profiler.as_ref()
743    }
744
745    #[cfg(all(feature = "cache", any(feature = "cranelift", feature = "winch")))]
746    pub(crate) fn cache(&self) -> Option<&wasmtime_cache::Cache> {
747        self.config().cache.as_ref()
748    }
749
750    pub(crate) fn signatures(&self) -> &TypeRegistry {
751        &self.inner.signatures
752    }
753
754    #[cfg(feature = "runtime")]
755    pub(crate) fn custom_code_memory(&self) -> Option<&Arc<dyn CustomCodeMemory>> {
756        self.config().custom_code_memory.as_ref()
757    }
758
759    #[cfg(target_has_atomic = "64")]
760    pub(crate) fn epoch_counter(&self) -> &AtomicU64 {
761        &self.inner.epoch
762    }
763
764    #[cfg(target_has_atomic = "64")]
765    pub(crate) fn current_epoch(&self) -> u64 {
766        self.epoch_counter().load(Ordering::Relaxed)
767    }
768
769    /// Increments the epoch.
770    ///
771    /// When using epoch-based interruption, currently-executing Wasm
772    /// code within this engine will trap or yield "soon" when the
773    /// epoch deadline is reached or exceeded. (The configuration, and
774    /// the deadline, are set on the `Store`.) The intent of the
775    /// design is for this method to be called by the embedder at some
776    /// regular cadence, for example by a thread that wakes up at some
777    /// interval, or by a signal handler.
778    ///
779    /// See [`Config::epoch_interruption`](crate::Config::epoch_interruption)
780    /// for an introduction to epoch-based interruption and pointers
781    /// to the other relevant methods.
782    ///
783    /// When performing `increment_epoch` in a separate thread, consider using
784    /// [`Engine::weak`] to hold an [`EngineWeak`](crate::EngineWeak) and
785    /// performing [`EngineWeak::upgrade`](crate::EngineWeak::upgrade) on each
786    /// tick, so that the epoch ticking thread does not keep an [`Engine`] alive
787    /// longer than any of its consumers.
788    ///
789    /// ## Signal Safety
790    ///
791    /// This method is signal-safe: it does not make any syscalls, and
792    /// performs only an atomic increment to the epoch value in
793    /// memory.
794    #[cfg(target_has_atomic = "64")]
795    pub fn increment_epoch(&self) {
796        self.inner.epoch.fetch_add(1, Ordering::Relaxed);
797    }
798
799    /// Returns a [`std::hash::Hash`] that can be used to check precompiled WebAssembly compatibility.
800    ///
801    /// The outputs of [`Engine::precompile_module`] and [`Engine::precompile_component`]
802    /// are compatible with a different [`Engine`] instance only if the two engines use
803    /// compatible [`Config`]s. If this Hash matches between two [`Engine`]s then binaries
804    /// from one are guaranteed to deserialize in the other.
805    #[cfg(any(feature = "cranelift", feature = "winch"))]
806    pub fn precompile_compatibility_hash(&self) -> impl std::hash::Hash + '_ {
807        crate::compile::HashedEngineCompileEnv(self)
808    }
809
810    /// Returns the required alignment for a code image, if we
811    /// allocate in a way that is not a system `mmap()` that naturally
812    /// aligns it.
813    fn required_code_alignment(&self) -> usize {
814        self.custom_code_memory()
815            .map(|c| c.required_alignment())
816            .unwrap_or(1)
817    }
818
819    /// Loads a `CodeMemory` from the specified in-memory slice, copying it to a
820    /// uniquely owned mmap.
821    ///
822    /// The `expected` marker here is whether the bytes are expected to be a
823    /// precompiled module or a component.
824    pub(crate) fn load_code_bytes(
825        &self,
826        bytes: &[u8],
827        expected: ObjectKind,
828    ) -> Result<Arc<crate::CodeMemory>> {
829        self.load_code(
830            crate::runtime::vm::MmapVec::from_slice_with_alignment(
831                bytes,
832                self.required_code_alignment(),
833            )?,
834            expected,
835        )
836    }
837
838    /// Loads a `CodeMemory` from the specified memory region without copying
839    ///
840    /// The `expected` marker here is whether the bytes are expected to be
841    /// a precompiled module or a component.  The `memory` provided is expected
842    /// to be a serialized module (.cwasm) generated by `[Module::serialize]`
843    /// or [`Engine::precompile_module] or their `Component` counterparts
844    /// [`Component::serialize`] or `[Engine::precompile_component]`.
845    ///
846    /// The memory provided is guaranteed to only be immutably by the runtime.
847    ///
848    /// # Safety
849    ///
850    /// As there is no copy here, the runtime will be making direct readonly use
851    /// of the provided memory. As such, outside writes to this memory region
852    /// will result in undefined and likely very undesirable behavior.
853    pub(crate) unsafe fn load_code_raw(
854        &self,
855        memory: NonNull<[u8]>,
856        expected: ObjectKind,
857    ) -> Result<Arc<crate::CodeMemory>> {
858        // SAFETY: the contract of this function is the same as that of
859        // `from_raw`.
860        unsafe { self.load_code(crate::runtime::vm::MmapVec::from_raw(memory)?, expected) }
861    }
862
863    /// Like `load_code_bytes`, but creates a mmap from a file on disk.
864    #[cfg(feature = "std")]
865    pub(crate) fn load_code_file(
866        &self,
867        file: File,
868        expected: ObjectKind,
869    ) -> Result<Arc<crate::CodeMemory>> {
870        self.load_code(
871            crate::runtime::vm::MmapVec::from_file(file)
872                .with_context(|| "Failed to create file mapping".to_string())?,
873            expected,
874        )
875    }
876
877    pub(crate) fn load_code(
878        &self,
879        mmap: crate::runtime::vm::MmapVec,
880        expected: ObjectKind,
881    ) -> Result<Arc<crate::CodeMemory>> {
882        self.check_compatible_with_native_host()
883            .context("compilation settings are not compatible with the native host")?;
884
885        serialization::check_compatible(self, &mmap, expected)?;
886        let mut code = crate::CodeMemory::new(self, mmap)?;
887        code.publish()?;
888        Ok(Arc::new(code))
889    }
890
891    /// Unload process-related trap/signal handlers and destroy this engine.
892    ///
893    /// This method is not safe and is not widely applicable. It is not required
894    /// to be called and is intended for use cases such as unloading a dynamic
895    /// library from a process. It is difficult to invoke this method correctly
896    /// and it requires careful coordination to do so.
897    ///
898    /// # Panics
899    ///
900    /// This method will panic if this `Engine` handle is not the last remaining
901    /// engine handle.
902    ///
903    /// # Aborts
904    ///
905    /// This method will abort the process on some platforms in some situations
906    /// where unloading the handler cannot be performed and an unrecoverable
907    /// state is reached. For example on Unix platforms with signal handling
908    /// the process will be aborted if the current signal handlers are not
909    /// Wasmtime's.
910    ///
911    /// # Unsafety
912    ///
913    /// This method is not generally safe to call and has a number of
914    /// preconditions that must be met to even possibly be safe. Even with these
915    /// known preconditions met there may be other unknown invariants to uphold
916    /// as well.
917    ///
918    /// * There must be no other instances of `Engine` elsewhere in the process.
919    ///   Note that this isn't just copies of this `Engine` but it's any other
920    ///   `Engine` at all. This unloads global state that is used by all
921    ///   `Engine`s so this instance must be the last.
922    ///
923    /// * On Unix platforms no other signal handlers could have been installed
924    ///   for signals that Wasmtime catches. In this situation Wasmtime won't
925    ///   know how to restore signal handlers that Wasmtime possibly overwrote
926    ///   when Wasmtime was initially loaded. If possible initialize other
927    ///   libraries first and then initialize Wasmtime last (e.g. defer creating
928    ///   an `Engine`).
929    ///
930    /// * All existing threads which have used this DLL or copy of Wasmtime may
931    ///   no longer use this copy of Wasmtime. Per-thread state is not iterated
932    ///   and destroyed. Only future threads may use future instances of this
933    ///   Wasmtime itself.
934    ///
935    /// If other crashes are seen from using this method please feel free to
936    /// file an issue to update the documentation here with more preconditions
937    /// that must be met.
938    #[cfg(has_native_signals)]
939    pub unsafe fn unload_process_handlers(self) {
940        assert_eq!(Arc::weak_count(&self.inner), 0);
941        assert_eq!(Arc::strong_count(&self.inner), 1);
942
943        // SAFETY: the contract of this function is the same as `deinit_traps`.
944        #[cfg(not(miri))]
945        unsafe {
946            crate::runtime::vm::deinit_traps();
947        }
948    }
949}
950
951/// A weak reference to an [`Engine`].
952#[derive(Clone)]
953pub struct EngineWeak {
954    inner: alloc::sync::Weak<EngineInner>,
955}
956
957impl EngineWeak {
958    /// Upgrade this weak reference into an [`Engine`]. Returns `None` if
959    /// strong references (the [`Engine`] type itself) no longer exist.
960    pub fn upgrade(&self) -> Option<Engine> {
961        alloc::sync::Weak::upgrade(&self.inner).map(|inner| Engine { inner })
962    }
963}