wasmtime/
engine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
use crate::prelude::*;
#[cfg(feature = "runtime")]
use crate::runtime::type_registry::TypeRegistry;
#[cfg(feature = "runtime")]
use crate::runtime::vm::GcRuntime;
use crate::sync::OnceLock;
use crate::Config;
use alloc::sync::Arc;
use core::sync::atomic::{AtomicU64, Ordering};
#[cfg(any(feature = "cranelift", feature = "winch"))]
use object::write::{Object, StandardSegment};
use object::SectionKind;
#[cfg(feature = "std")]
use std::path::Path;
use wasmparser::WasmFeatures;
use wasmtime_environ::obj;
use wasmtime_environ::{FlagValue, ObjectKind, Tunables};

mod serialization;

/// An `Engine` which is a global context for compilation and management of wasm
/// modules.
///
/// An engine can be safely shared across threads and is a cheap cloneable
/// handle to the actual engine. The engine itself will be deallocated once all
/// references to it have gone away.
///
/// Engines store global configuration preferences such as compilation settings,
/// enabled features, etc. You'll likely only need at most one of these for a
/// program.
///
/// ## Engines and `Clone`
///
/// Using `clone` on an `Engine` is a cheap operation. It will not create an
/// entirely new engine, but rather just a new reference to the existing engine.
/// In other words it's a shallow copy, not a deep copy.
///
/// ## Engines and `Default`
///
/// You can create an engine with default configuration settings using
/// `Engine::default()`. Be sure to consult the documentation of [`Config`] for
/// default settings.
#[derive(Clone)]
pub struct Engine {
    inner: Arc<EngineInner>,
}

struct EngineInner {
    config: Config,
    features: WasmFeatures,
    tunables: Tunables,
    #[cfg(any(feature = "cranelift", feature = "winch"))]
    compiler: Box<dyn wasmtime_environ::Compiler>,
    #[cfg(feature = "runtime")]
    allocator: Box<dyn crate::runtime::vm::InstanceAllocator + Send + Sync>,
    #[cfg(feature = "runtime")]
    gc_runtime: Arc<dyn GcRuntime>,
    #[cfg(feature = "runtime")]
    profiler: Box<dyn crate::profiling_agent::ProfilingAgent>,
    #[cfg(feature = "runtime")]
    signatures: TypeRegistry,
    #[cfg(feature = "runtime")]
    epoch: AtomicU64,

    /// One-time check of whether the compiler's settings, if present, are
    /// compatible with the native host.
    #[cfg(any(feature = "cranelift", feature = "winch"))]
    compatible_with_native_host: OnceLock<Result<(), String>>,
}

impl Default for Engine {
    fn default() -> Engine {
        Engine::new(&Config::default()).unwrap()
    }
}

impl Engine {
    /// Creates a new [`Engine`] with the specified compilation and
    /// configuration settings.
    ///
    /// # Errors
    ///
    /// This method can fail if the `config` is invalid or some
    /// configurations are incompatible.
    ///
    /// For example, feature `reference_types` will need to set
    /// the compiler setting `enable_safepoints` and `unwind_info`
    /// to `true`, but explicitly disable these two compiler settings
    /// will cause errors.
    pub fn new(config: &Config) -> Result<Engine> {
        let config = config.clone();
        let (tunables, features) = config.validate()?;

        #[cfg(feature = "runtime")]
        if tunables.signals_based_traps {
            // Ensure that crate::runtime::vm's signal handlers are
            // configured. This is the per-program initialization required for
            // handling traps, such as configuring signals, vectored exception
            // handlers, etc.
            crate::runtime::vm::init_traps(config.macos_use_mach_ports);
            #[cfg(feature = "debug-builtins")]
            crate::runtime::vm::debug_builtins::ensure_exported();
        }

        #[cfg(any(feature = "cranelift", feature = "winch"))]
        let (config, compiler) = config.build_compiler(&tunables, features)?;

        Ok(Engine {
            inner: Arc::new(EngineInner {
                #[cfg(any(feature = "cranelift", feature = "winch"))]
                compiler,
                #[cfg(feature = "runtime")]
                allocator: config.build_allocator(&tunables)?,
                #[cfg(feature = "runtime")]
                gc_runtime: config.build_gc_runtime()?,
                #[cfg(feature = "runtime")]
                profiler: config.build_profiler()?,
                #[cfg(feature = "runtime")]
                signatures: TypeRegistry::new(),
                #[cfg(feature = "runtime")]
                epoch: AtomicU64::new(0),
                #[cfg(any(feature = "cranelift", feature = "winch"))]
                compatible_with_native_host: OnceLock::new(),
                config,
                tunables,
                features,
            }),
        })
    }

    /// Returns the configuration settings that this engine is using.
    #[inline]
    pub fn config(&self) -> &Config {
        &self.inner.config
    }

    #[inline]
    pub(crate) fn features(&self) -> WasmFeatures {
        self.inner.features
    }

    pub(crate) fn run_maybe_parallel<
        A: Send,
        B: Send,
        E: Send,
        F: Fn(A) -> Result<B, E> + Send + Sync,
    >(
        &self,
        input: Vec<A>,
        f: F,
    ) -> Result<Vec<B>, E> {
        if self.config().parallel_compilation {
            #[cfg(feature = "parallel-compilation")]
            {
                use rayon::prelude::*;
                return input
                    .into_par_iter()
                    .map(|a| f(a))
                    .collect::<Result<Vec<B>, E>>();
            }
        }

        // In case the parallel-compilation feature is disabled or the parallel_compilation config
        // was turned off dynamically fallback to the non-parallel version.
        input
            .into_iter()
            .map(|a| f(a))
            .collect::<Result<Vec<B>, E>>()
    }

    /// Take a weak reference to this engine.
    pub fn weak(&self) -> EngineWeak {
        EngineWeak {
            inner: Arc::downgrade(&self.inner),
        }
    }

    pub(crate) fn tunables(&self) -> &Tunables {
        &self.inner.tunables
    }

    /// Returns whether the engine `a` and `b` refer to the same configuration.
    #[inline]
    pub fn same(a: &Engine, b: &Engine) -> bool {
        Arc::ptr_eq(&a.inner, &b.inner)
    }

    /// Returns whether the engine is configured to support async functions.
    #[cfg(feature = "async")]
    #[inline]
    pub fn is_async(&self) -> bool {
        self.config().async_support
    }

    /// Detects whether the bytes provided are a precompiled object produced by
    /// Wasmtime.
    ///
    /// This function will inspect the header of `bytes` to determine if it
    /// looks like a precompiled core wasm module or a precompiled component.
    /// This does not validate the full structure or guarantee that
    /// deserialization will succeed, instead it helps higher-levels of the
    /// stack make a decision about what to do next when presented with the
    /// `bytes` as an input module.
    ///
    /// If the `bytes` looks like a precompiled object previously produced by
    /// [`Module::serialize`](crate::Module::serialize),
    /// [`Component::serialize`](crate::component::Component::serialize),
    /// [`Engine::precompile_module`], or [`Engine::precompile_component`], then
    /// this will return `Some(...)` indicating so. Otherwise `None` is
    /// returned.
    pub fn detect_precompiled(&self, bytes: &[u8]) -> Option<Precompiled> {
        serialization::detect_precompiled_bytes(bytes)
    }

    /// Like [`Engine::detect_precompiled`], but performs the detection on a file.
    #[cfg(feature = "std")]
    pub fn detect_precompiled_file(&self, path: impl AsRef<Path>) -> Result<Option<Precompiled>> {
        serialization::detect_precompiled_file(path)
    }

    /// Returns the target triple which this engine is compiling code for
    /// and/or running code for.
    pub(crate) fn target(&self) -> target_lexicon::Triple {
        // If a compiler is configured, use that target.
        #[cfg(any(feature = "cranelift", feature = "winch"))]
        return self.compiler().triple().clone();

        // ... otherwise it's the native target
        #[cfg(not(any(feature = "cranelift", feature = "winch")))]
        return target_lexicon::Triple::host();
    }

    /// Verify that this engine's configuration is compatible with loading
    /// modules onto the native host platform.
    ///
    /// This method is used as part of `Module::new` to ensure that this
    /// engine can indeed load modules for the configured compiler (if any).
    /// Note that if cranelift is disabled this trivially returns `Ok` because
    /// loaded serialized modules are checked separately.
    pub(crate) fn check_compatible_with_native_host(&self) -> Result<()> {
        #[cfg(any(feature = "cranelift", feature = "winch"))]
        {
            self.inner
                .compatible_with_native_host
                .get_or_init(|| self._check_compatible_with_native_host())
                .clone()
                .map_err(anyhow::Error::msg)
        }
        #[cfg(not(any(feature = "cranelift", feature = "winch")))]
        {
            Ok(())
        }
    }

    fn _check_compatible_with_native_host(&self) -> Result<(), String> {
        #[cfg(any(feature = "cranelift", feature = "winch"))]
        {
            let compiler = self.compiler();

            // Check to see that the config's target matches the host
            let target = compiler.triple();
            if *target != target_lexicon::Triple::host() {
                return Err(format!(
                    "target '{target}' specified in the configuration does not match the host"
                ));
            }

            // Also double-check all compiler settings
            for (key, value) in compiler.flags().iter() {
                self.check_compatible_with_shared_flag(key, value)?;
            }
            for (key, value) in compiler.isa_flags().iter() {
                self.check_compatible_with_isa_flag(key, value)?;
            }
        }
        Ok(())
    }

    /// Checks to see whether the "shared flag", something enabled for
    /// individual compilers, is compatible with the native host platform.
    ///
    /// This is used both when validating an engine's compilation settings are
    /// compatible with the host as well as when deserializing modules from
    /// disk to ensure they're compatible with the current host.
    ///
    /// Note that most of the settings here are not configured by users that
    /// often. While theoretically possible via `Config` methods the more
    /// interesting flags are the ISA ones below. Typically the values here
    /// represent global configuration for wasm features. Settings here
    /// currently rely on the compiler informing us of all settings, including
    /// those disabled. Settings then fall in a few buckets:
    ///
    /// * Some settings must be enabled, such as `preserve_frame_pointers`.
    /// * Some settings must have a particular value, such as
    ///   `libcall_call_conv`.
    /// * Some settings do not matter as to their value, such as `opt_level`.
    pub(crate) fn check_compatible_with_shared_flag(
        &self,
        flag: &str,
        value: &FlagValue,
    ) -> Result<(), String> {
        let target = self.target();
        let ok = match flag {
            // These settings must all have be enabled, since their value
            // can affect the way the generated code performs or behaves at
            // runtime.
            "libcall_call_conv" => *value == FlagValue::Enum("isa_default".into()),
            "preserve_frame_pointers" => *value == FlagValue::Bool(true),
            "enable_probestack" => *value == FlagValue::Bool(crate::config::probestack_supported(target.architecture)),
            "probestack_strategy" => *value == FlagValue::Enum("inline".into()),

            // Features wasmtime doesn't use should all be disabled, since
            // otherwise if they are enabled it could change the behavior of
            // generated code.
            "enable_llvm_abi_extensions" => *value == FlagValue::Bool(false),
            "enable_pinned_reg" => *value == FlagValue::Bool(false),
            "use_colocated_libcalls" => *value == FlagValue::Bool(false),
            "use_pinned_reg_as_heap_base" => *value == FlagValue::Bool(false),

            // If reference types (or anything that depends on reference types,
            // like typed function references and GC) are enabled this must be
            // enabled, otherwise this setting can have any value.
            "enable_safepoints" => {
                if self.features().contains(WasmFeatures::REFERENCE_TYPES) {
                    *value == FlagValue::Bool(true)
                } else {
                    return Ok(())
                }
            }

            // Windows requires unwind info as part of its ABI.
            "unwind_info" => {
                if target.operating_system == target_lexicon::OperatingSystem::Windows {
                    *value == FlagValue::Bool(true)
                } else {
                    return Ok(())
                }
            }

            // These settings don't affect the interface or functionality of
            // the module itself, so their configuration values shouldn't
            // matter.
            "enable_heap_access_spectre_mitigation"
            | "enable_table_access_spectre_mitigation"
            | "enable_nan_canonicalization"
            | "enable_jump_tables"
            | "enable_float"
            | "enable_verifier"
            | "enable_pcc"
            | "regalloc_checker"
            | "regalloc_verbose_logs"
            | "is_pic"
            | "bb_padding_log2_minus_one"
            | "machine_code_cfg_info"
            | "tls_model" // wasmtime doesn't use tls right now
            | "stack_switch_model" // wasmtime doesn't use stack switching right now
            | "opt_level" // opt level doesn't change semantics
            | "enable_alias_analysis" // alias analysis-based opts don't change semantics
            | "probestack_size_log2" // probestack above asserted disabled
            | "regalloc" // shouldn't change semantics
            | "enable_incremental_compilation_cache_checks" // shouldn't change semantics
            | "enable_atomics" => return Ok(()),

            // Everything else is unknown and needs to be added somewhere to
            // this list if encountered.
            _ => {
                return Err(format!("unknown shared setting {flag:?} configured to {value:?}"))
            }
        };

        if !ok {
            return Err(format!(
                "setting {flag:?} is configured to {value:?} which is not supported",
            ));
        }
        Ok(())
    }

    /// Same as `check_compatible_with_native_host` except used for ISA-specific
    /// flags. This is used to test whether a configured ISA flag is indeed
    /// available on the host platform itself.
    pub(crate) fn check_compatible_with_isa_flag(
        &self,
        flag: &str,
        value: &FlagValue,
    ) -> Result<(), String> {
        match value {
            // ISA flags are used for things like CPU features, so if they're
            // disabled then it's compatible with the native host.
            FlagValue::Bool(false) => return Ok(()),

            // Fall through below where we test at runtime that features are
            // available.
            FlagValue::Bool(true) => {}

            // Only `bool` values are supported right now, other settings would
            // need more support here.
            _ => {
                return Err(format!(
                    "isa-specific feature {flag:?} configured to unknown value {value:?}"
                ))
            }
        }

        let host_feature = match flag {
            // aarch64 features to detect
            "has_lse" => "lse",
            "has_pauth" => "paca",
            "has_fp16" => "fp16",

            // aarch64 features which don't need detection
            // No effect on its own.
            "sign_return_address_all" => return Ok(()),
            // The pointer authentication instructions act as a `NOP` when
            // unsupported, so it is safe to enable them.
            "sign_return_address" => return Ok(()),
            // No effect on its own.
            "sign_return_address_with_bkey" => return Ok(()),
            // The `BTI` instruction acts as a `NOP` when unsupported, so it
            // is safe to enable it regardless of whether the host supports it
            // or not.
            "use_bti" => return Ok(()),

            // s390x features to detect
            "has_vxrs_ext2" => "vxrs_ext2",
            "has_mie2" => "mie2",

            // x64 features to detect
            "has_sse3" => "sse3",
            "has_ssse3" => "ssse3",
            "has_sse41" => "sse4.1",
            "has_sse42" => "sse4.2",
            "has_popcnt" => "popcnt",
            "has_avx" => "avx",
            "has_avx2" => "avx2",
            "has_fma" => "fma",
            "has_bmi1" => "bmi1",
            "has_bmi2" => "bmi2",
            "has_avx512bitalg" => "avx512bitalg",
            "has_avx512dq" => "avx512dq",
            "has_avx512f" => "avx512f",
            "has_avx512vl" => "avx512vl",
            "has_avx512vbmi" => "avx512vbmi",
            "has_lzcnt" => "lzcnt",

            _ => {
                // FIXME: should enumerate risc-v features and plumb them
                // through to the `detect_host_feature` function.
                if cfg!(target_arch = "riscv64") && flag != "not_a_flag" {
                    return Ok(());
                }
                return Err(format!(
                    "don't know how to test for target-specific flag {flag:?} at runtime"
                ));
            }
        };

        let detect = match self.config().detect_host_feature {
            Some(detect) => detect,
            None => {
                return Err(format!(
                    "cannot determine if host feature {host_feature:?} is \
                     available at runtime, configure a probing function with \
                     `Config::detect_host_feature`"
                ))
            }
        };

        match detect(host_feature) {
            Some(true) => Ok(()),
            Some(false) => Err(format!(
                "compilation setting {flag:?} is enabled, but not \
                 available on the host",
            )),
            None => Err(format!(
                "failed to detect if target-specific flag {flag:?} is \
                 available at runtime"
            )),
        }
    }
}

#[cfg(any(feature = "cranelift", feature = "winch"))]
impl Engine {
    pub(crate) fn compiler(&self) -> &dyn wasmtime_environ::Compiler {
        &*self.inner.compiler
    }

    /// Ahead-of-time (AOT) compiles a WebAssembly module.
    ///
    /// The `bytes` provided must be in one of two formats:
    ///
    /// * A [binary-encoded][binary] WebAssembly module. This is always supported.
    /// * A [text-encoded][text] instance of the WebAssembly text format.
    ///   This is only supported when the `wat` feature of this crate is enabled.
    ///   If this is supplied then the text format will be parsed before validation.
    ///   Note that the `wat` feature is enabled by default.
    ///
    /// This method may be used to compile a module for use with a different target
    /// host. The output of this method may be used with
    /// [`Module::deserialize`](crate::Module::deserialize) on hosts compatible
    /// with the [`Config`](crate::Config) associated with this [`Engine`].
    ///
    /// The output of this method is safe to send to another host machine for later
    /// execution. As the output is already a compiled module, translation and code
    /// generation will be skipped and this will improve the performance of constructing
    /// a [`Module`](crate::Module) from the output of this method.
    ///
    /// [binary]: https://webassembly.github.io/spec/core/binary/index.html
    /// [text]: https://webassembly.github.io/spec/core/text/index.html
    pub fn precompile_module(&self, bytes: &[u8]) -> Result<Vec<u8>> {
        crate::CodeBuilder::new(self)
            .wasm_binary_or_text(bytes, None)?
            .compile_module_serialized()
    }

    /// Same as [`Engine::precompile_module`] except for a
    /// [`Component`](crate::component::Component)
    #[cfg(feature = "component-model")]
    pub fn precompile_component(&self, bytes: &[u8]) -> Result<Vec<u8>> {
        crate::CodeBuilder::new(self)
            .wasm_binary_or_text(bytes, None)?
            .compile_component_serialized()
    }

    /// Produces a blob of bytes by serializing the `engine`'s configuration data to
    /// be checked, perhaps in a different process, with the `check_compatible`
    /// method below.
    ///
    /// The blob of bytes is inserted into the object file specified to become part
    /// of the final compiled artifact.
    pub(crate) fn append_compiler_info(&self, obj: &mut Object<'_>) {
        serialization::append_compiler_info(self, obj, &serialization::Metadata::new(&self))
    }

    #[cfg(any(feature = "cranelift", feature = "winch"))]
    pub(crate) fn append_bti(&self, obj: &mut Object<'_>) {
        let section = obj.add_section(
            obj.segment_name(StandardSegment::Data).to_vec(),
            obj::ELF_WASM_BTI.as_bytes().to_vec(),
            SectionKind::ReadOnlyData,
        );
        let contents = if self.compiler().is_branch_protection_enabled() {
            1
        } else {
            0
        };
        obj.append_section_data(section, &[contents], 1);
    }
}

/// Return value from the [`Engine::detect_precompiled`] API.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum Precompiled {
    /// The input bytes look like a precompiled core wasm module.
    Module,
    /// The input bytes look like a precompiled wasm component.
    Component,
}

#[cfg(feature = "runtime")]
impl Engine {
    /// Eagerly initialize thread-local functionality shared by all [`Engine`]s.
    ///
    /// Wasmtime's implementation on some platforms may involve per-thread
    /// setup that needs to happen whenever WebAssembly is invoked. This setup
    /// can take on the order of a few hundred microseconds, whereas the
    /// overhead of calling WebAssembly is otherwise on the order of a few
    /// nanoseconds. This setup cost is paid once per-OS-thread. If your
    /// application is sensitive to the latencies of WebAssembly function
    /// calls, even those that happen first on a thread, then this function
    /// can be used to improve the consistency of each call into WebAssembly
    /// by explicitly frontloading the cost of the one-time setup per-thread.
    ///
    /// Note that this function is not required to be called in any embedding.
    /// Wasmtime will automatically initialize thread-local-state as necessary
    /// on calls into WebAssembly. This is provided for use cases where the
    /// latency of WebAssembly calls are extra-important, which is not
    /// necessarily true of all embeddings.
    pub fn tls_eager_initialize() {
        crate::runtime::vm::tls_eager_initialize();
    }

    pub(crate) fn allocator(&self) -> &dyn crate::runtime::vm::InstanceAllocator {
        self.inner.allocator.as_ref()
    }

    pub(crate) fn gc_runtime(&self) -> &Arc<dyn GcRuntime> {
        &self.inner.gc_runtime
    }

    pub(crate) fn profiler(&self) -> &dyn crate::profiling_agent::ProfilingAgent {
        self.inner.profiler.as_ref()
    }

    #[cfg(feature = "cache")]
    pub(crate) fn cache_config(&self) -> &wasmtime_cache::CacheConfig {
        &self.config().cache_config
    }

    pub(crate) fn signatures(&self) -> &TypeRegistry {
        &self.inner.signatures
    }

    pub(crate) fn epoch_counter(&self) -> &AtomicU64 {
        &self.inner.epoch
    }

    pub(crate) fn current_epoch(&self) -> u64 {
        self.epoch_counter().load(Ordering::Relaxed)
    }

    /// Increments the epoch.
    ///
    /// When using epoch-based interruption, currently-executing Wasm
    /// code within this engine will trap or yield "soon" when the
    /// epoch deadline is reached or exceeded. (The configuration, and
    /// the deadline, are set on the `Store`.) The intent of the
    /// design is for this method to be called by the embedder at some
    /// regular cadence, for example by a thread that wakes up at some
    /// interval, or by a signal handler.
    ///
    /// See [`Config::epoch_interruption`](crate::Config::epoch_interruption)
    /// for an introduction to epoch-based interruption and pointers
    /// to the other relevant methods.
    ///
    /// When performing `increment_epoch` in a separate thread, consider using
    /// [`Engine::weak`] to hold an [`EngineWeak`](crate::EngineWeak) and
    /// performing [`EngineWeak::upgrade`](crate::EngineWeak::upgrade) on each
    /// tick, so that the epoch ticking thread does not keep an [`Engine`] alive
    /// longer than any of its consumers.
    ///
    /// ## Signal Safety
    ///
    /// This method is signal-safe: it does not make any syscalls, and
    /// performs only an atomic increment to the epoch value in
    /// memory.
    pub fn increment_epoch(&self) {
        self.inner.epoch.fetch_add(1, Ordering::Relaxed);
    }

    /// Returns a [`std::hash::Hash`] that can be used to check precompiled WebAssembly compatibility.
    ///
    /// The outputs of [`Engine::precompile_module`] and [`Engine::precompile_component`]
    /// are compatible with a different [`Engine`] instance only if the two engines use
    /// compatible [`Config`]s. If this Hash matches between two [`Engine`]s then binaries
    /// from one are guaranteed to deserialize in the other.
    #[cfg(any(feature = "cranelift", feature = "winch"))]
    pub fn precompile_compatibility_hash(&self) -> impl std::hash::Hash + '_ {
        crate::compile::HashedEngineCompileEnv(self)
    }

    /// Executes `f1` and `f2` in parallel if parallel compilation is enabled at
    /// both runtime and compile time, otherwise runs them synchronously.
    #[allow(dead_code)] // only used for the component-model feature right now
    pub(crate) fn join_maybe_parallel<T, U>(
        &self,
        f1: impl FnOnce() -> T + Send,
        f2: impl FnOnce() -> U + Send,
    ) -> (T, U)
    where
        T: Send,
        U: Send,
    {
        if self.config().parallel_compilation {
            #[cfg(feature = "parallel-compilation")]
            return rayon::join(f1, f2);
        }
        (f1(), f2())
    }

    /// Loads a `CodeMemory` from the specified in-memory slice, copying it to a
    /// uniquely owned mmap.
    ///
    /// The `expected` marker here is whether the bytes are expected to be a
    /// precompiled module or a component.
    pub(crate) fn load_code_bytes(
        &self,
        bytes: &[u8],
        expected: ObjectKind,
    ) -> Result<Arc<crate::CodeMemory>> {
        self.load_code(crate::runtime::vm::MmapVec::from_slice(bytes)?, expected)
    }

    /// Like `load_code_bytes`, but creates a mmap from a file on disk.
    #[cfg(feature = "std")]
    pub(crate) fn load_code_file(
        &self,
        path: &Path,
        expected: ObjectKind,
    ) -> Result<Arc<crate::CodeMemory>> {
        self.load_code(
            crate::runtime::vm::MmapVec::from_file(path).with_context(|| {
                format!("failed to create file mapping for: {}", path.display())
            })?,
            expected,
        )
    }

    pub(crate) fn load_code(
        &self,
        mmap: crate::runtime::vm::MmapVec,
        expected: ObjectKind,
    ) -> Result<Arc<crate::CodeMemory>> {
        serialization::check_compatible(self, &mmap, expected)?;
        let mut code = crate::CodeMemory::new(mmap)?;
        code.publish()?;
        Ok(Arc::new(code))
    }

    /// Unload process-related trap/signal handlers and destroy this engine.
    ///
    /// This method is not safe and is not widely applicable. It is not required
    /// to be called and is intended for use cases such as unloading a dynamic
    /// library from a process. It is difficult to invoke this method correctly
    /// and it requires careful coordination to do so.
    ///
    /// # Panics
    ///
    /// This method will panic if this `Engine` handle is not the last remaining
    /// engine handle.
    ///
    /// # Aborts
    ///
    /// This method will abort the process on some platforms in some situations
    /// where unloading the handler cannot be performed and an unrecoverable
    /// state is reached. For example on Unix platforms with signal handling
    /// the process will be aborted if the current signal handlers are not
    /// Wasmtime's.
    ///
    /// # Unsafety
    ///
    /// This method is not generally safe to call and has a number of
    /// preconditions that must be met to even possibly be safe. Even with these
    /// known preconditions met there may be other unknown invariants to uphold
    /// as well.
    ///
    /// * There must be no other instances of `Engine` elsewhere in the process.
    ///   Note that this isn't just copies of this `Engine` but it's any other
    ///   `Engine` at all. This unloads global state that is used by all
    ///   `Engine`s so this instance must be the last.
    ///
    /// * On Unix platforms no other signal handlers could have been installed
    ///   for signals that Wasmtime catches. In this situation Wasmtime won't
    ///   know how to restore signal handlers that Wasmtime possibly overwrote
    ///   when Wasmtime was initially loaded. If possible initialize other
    ///   libraries first and then initialize Wasmtime last (e.g. defer creating
    ///   an `Engine`).
    ///
    /// * All existing threads which have used this DLL or copy of Wasmtime may
    ///   no longer use this copy of Wasmtime. Per-thread state is not iterated
    ///   and destroyed. Only future threads may use future instances of this
    ///   Wasmtime itself.
    ///
    /// If other crashes are seen from using this method please feel free to
    /// file an issue to update the documentation here with more preconditions
    /// that must be met.
    pub unsafe fn unload_process_handlers(self) {
        assert_eq!(Arc::weak_count(&self.inner), 0);
        assert_eq!(Arc::strong_count(&self.inner), 1);

        crate::runtime::vm::deinit_traps();
    }
}

/// A weak reference to an [`Engine`].
#[derive(Clone)]
pub struct EngineWeak {
    inner: alloc::sync::Weak<EngineInner>,
}

impl EngineWeak {
    /// Upgrade this weak reference into an [`Engine`]. Returns `None` if
    /// strong references (the [`Engine`] type itself) no longer exist.
    pub fn upgrade(&self) -> Option<Engine> {
        alloc::sync::Weak::upgrade(&self.inner).map(|inner| Engine { inner })
    }
}