wasmtime/runtime/component/component.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
use crate::component::matching::InstanceType;
use crate::component::types;
use crate::component::InstanceExportLookup;
use crate::prelude::*;
use crate::runtime::vm::component::ComponentRuntimeInfo;
use crate::runtime::vm::{
CompiledModuleId, VMArrayCallFunction, VMFuncRef, VMFunctionBody, VMWasmCallFunction,
};
use crate::{
code::CodeObject, code_memory::CodeMemory, type_registry::TypeCollection, Engine, Module,
ResourcesRequired,
};
use crate::{FuncType, ValType};
use alloc::sync::Arc;
use core::any::Any;
use core::mem;
use core::ops::Range;
use core::ptr::NonNull;
#[cfg(feature = "std")]
use std::path::Path;
use wasmtime_environ::component::{
AllCallFunc, CompiledComponentInfo, ComponentArtifacts, ComponentTypes, Export, ExportIndex,
GlobalInitializer, InstantiateModule, NameMapNoIntern, StaticModuleIndex, TrampolineIndex,
TypeComponentIndex, TypeDef, VMComponentOffsets,
};
use wasmtime_environ::{FunctionLoc, HostPtr, ObjectKind, PrimaryMap};
/// A compiled WebAssembly Component.
///
/// This structure represents a compiled component that is ready to be
/// instantiated. This owns a region of virtual memory which contains executable
/// code compiled from a WebAssembly binary originally. This is the analog of
/// [`Module`](crate::Module) in the component embedding API.
///
/// A [`Component`] can be turned into an
/// [`Instance`](crate::component::Instance) through a
/// [`Linker`](crate::component::Linker). [`Component`]s are safe to share
/// across threads. The compilation model of a component is the same as that of
/// [a module](crate::Module) which is to say:
///
/// * Compilation happens synchronously during [`Component::new`].
/// * The result of compilation can be saved into storage with
/// [`Component::serialize`].
/// * A previously compiled artifact can be parsed with
/// [`Component::deserialize`].
/// * No compilation happens at runtime for a component — everything is done
/// by the time [`Component::new`] returns.
///
/// ## Components and `Clone`
///
/// Using `clone` on a `Component` is a cheap operation. It will not create an
/// entirely new component, but rather just a new reference to the existing
/// component. In other words it's a shallow copy, not a deep copy.
///
/// ## Examples
///
/// For example usage see the documentation of [`Module`](crate::Module) as
/// [`Component`] has the same high-level API.
#[derive(Clone)]
pub struct Component {
inner: Arc<ComponentInner>,
}
struct ComponentInner {
/// Unique id for this component within this process.
///
/// Note that this is repurposing ids for modules intentionally as there
/// shouldn't be an issue overlapping them.
id: CompiledModuleId,
/// The engine that this component belongs to.
engine: Engine,
/// Component type index
ty: TypeComponentIndex,
/// Core wasm modules that the component defined internally, indexed by the
/// compile-time-assigned `ModuleUpvarIndex`.
static_modules: PrimaryMap<StaticModuleIndex, Module>,
/// Code-related information such as the compiled artifact, type
/// information, etc.
///
/// Note that the `Arc` here is used to share this allocation with internal
/// modules.
code: Arc<CodeObject>,
/// Metadata produced during compilation.
info: CompiledComponentInfo,
/// A cached handle to the `wasmtime::FuncType` for the canonical ABI's
/// `realloc`, to avoid the need to look up types in the registry and take
/// locks when calling `realloc` via `TypedFunc::call_raw`.
realloc_func_type: Arc<dyn Any + Send + Sync>,
}
pub(crate) struct AllCallFuncPointers {
pub wasm_call: NonNull<VMWasmCallFunction>,
pub array_call: VMArrayCallFunction,
}
impl Component {
/// Compiles a new WebAssembly component from the in-memory list of bytes
/// provided.
///
/// The `bytes` provided can either be the binary or text format of a
/// [WebAssembly component]. Note that the text format requires the `wat`
/// feature of this crate to be enabled. This API does not support
/// streaming compilation.
///
/// This function will synchronously validate the entire component,
/// including all core modules, and then compile all components, modules,
/// etc., found within the provided bytes.
///
/// [WebAssembly component]: https://github.com/WebAssembly/component-model/blob/main/design/mvp/Binary.md
///
/// # Errors
///
/// This function may fail and return an error. Errors may include
/// situations such as:
///
/// * The binary provided could not be decoded because it's not a valid
/// WebAssembly binary
/// * The WebAssembly binary may not validate (e.g. contains type errors)
/// * Implementation-specific limits were exceeded with a valid binary (for
/// example too many locals)
/// * The wasm binary may use features that are not enabled in the
/// configuration of `engine`
/// * If the `wat` feature is enabled and the input is text, then it may be
/// rejected if it fails to parse.
///
/// The error returned should contain full information about why compilation
/// failed.
///
/// # Examples
///
/// The `new` function can be invoked with a in-memory array of bytes:
///
/// ```no_run
/// # use wasmtime::*;
/// # use wasmtime::component::Component;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// # let wasm_bytes: Vec<u8> = Vec::new();
/// let component = Component::new(&engine, &wasm_bytes)?;
/// # Ok(())
/// # }
/// ```
///
/// Or you can also pass in a string to be parsed as the wasm text
/// format:
///
/// ```
/// # use wasmtime::*;
/// # use wasmtime::component::Component;
/// # fn main() -> anyhow::Result<()> {
/// # let engine = Engine::default();
/// let component = Component::new(&engine, "(component (core module))")?;
/// # Ok(())
/// # }
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub fn new(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Component> {
crate::CodeBuilder::new(engine)
.wasm_binary_or_text(bytes.as_ref(), None)?
.compile_component()
}
/// Compiles a new WebAssembly component from a wasm file on disk pointed
/// to by `file`.
///
/// This is a convenience function for reading the contents of `file` on
/// disk and then calling [`Component::new`].
#[cfg(all(feature = "std", any(feature = "cranelift", feature = "winch")))]
pub fn from_file(engine: &Engine, file: impl AsRef<Path>) -> Result<Component> {
crate::CodeBuilder::new(engine)
.wasm_binary_or_text_file(file.as_ref())?
.compile_component()
}
/// Compiles a new WebAssembly component from the in-memory wasm image
/// provided.
///
/// This function is the same as [`Component::new`] except that it does not
/// accept the text format of WebAssembly. Even if the `wat` feature
/// is enabled an error will be returned here if `binary` is the text
/// format.
///
/// For more information on semantics and errors see [`Component::new`].
#[cfg(any(feature = "cranelift", feature = "winch"))]
pub fn from_binary(engine: &Engine, binary: &[u8]) -> Result<Component> {
crate::CodeBuilder::new(engine)
.wasm_binary(binary, None)?
.compile_component()
}
/// Same as [`Module::deserialize`], but for components.
///
/// Note that the bytes referenced here must contain contents previously
/// produced by [`Engine::precompile_component`] or
/// [`Component::serialize`].
///
/// For more information see the [`Module::deserialize`] method.
///
/// # Unsafety
///
/// The unsafety of this method is the same as that of the
/// [`Module::deserialize`] method.
///
/// [`Module::deserialize`]: crate::Module::deserialize
pub unsafe fn deserialize(engine: &Engine, bytes: impl AsRef<[u8]>) -> Result<Component> {
let code = engine.load_code_bytes(bytes.as_ref(), ObjectKind::Component)?;
Component::from_parts(engine, code, None)
}
/// Same as [`Module::deserialize_file`], but for components.
///
/// Note that the file referenced here must contain contents previously
/// produced by [`Engine::precompile_component`] or
/// [`Component::serialize`].
///
/// For more information see the [`Module::deserialize_file`] method.
///
/// # Unsafety
///
/// The unsafety of this method is the same as that of the
/// [`Module::deserialize_file`] method.
///
/// [`Module::deserialize_file`]: crate::Module::deserialize_file
#[cfg(feature = "std")]
pub unsafe fn deserialize_file(engine: &Engine, path: impl AsRef<Path>) -> Result<Component> {
let code = engine.load_code_file(path.as_ref(), ObjectKind::Component)?;
Component::from_parts(engine, code, None)
}
/// Returns the type of this component as a [`types::Component`].
///
/// This method enables runtime introspection of the type of a component
/// before instantiation, if necessary.
///
/// ## Component types and Resources
///
/// An important point to note here is that the precise type of imports and
/// exports of a component change when it is instantiated with respect to
/// resources. For example a [`Component`] represents an un-instantiated
/// component meaning that its imported resources are represented as abstract
/// resource types. These abstract types are not equal to any other
/// component's types.
///
/// For example:
///
/// ```
/// # use wasmtime::Engine;
/// # use wasmtime::component::Component;
/// # use wasmtime::component::types::ComponentItem;
/// # fn main() -> wasmtime::Result<()> {
/// # let engine = Engine::default();
/// let a = Component::new(&engine, r#"
/// (component (import "x" (type (sub resource))))
/// "#)?;
/// let b = Component::new(&engine, r#"
/// (component (import "x" (type (sub resource))))
/// "#)?;
///
/// let (_, a_ty) = a.component_type().imports(&engine).next().unwrap();
/// let (_, b_ty) = b.component_type().imports(&engine).next().unwrap();
///
/// let a_ty = match a_ty {
/// ComponentItem::Resource(ty) => ty,
/// _ => unreachable!(),
/// };
/// let b_ty = match b_ty {
/// ComponentItem::Resource(ty) => ty,
/// _ => unreachable!(),
/// };
/// assert!(a_ty != b_ty);
/// # Ok(())
/// # }
/// ```
///
/// Additionally, however, these abstract types are "substituted" during
/// instantiation meaning that a component type will appear to have changed
/// once it is instantiated.
///
/// ```
/// # use wasmtime::{Engine, Store};
/// # use wasmtime::component::{Component, Linker, ResourceType};
/// # use wasmtime::component::types::ComponentItem;
/// # fn main() -> wasmtime::Result<()> {
/// # let engine = Engine::default();
/// // Here this component imports a resource and then exports it as-is
/// // which means that the export is equal to the import.
/// let a = Component::new(&engine, r#"
/// (component
/// (import "x" (type $x (sub resource)))
/// (export "x" (type $x))
/// )
/// "#)?;
///
/// let (_, import) = a.component_type().imports(&engine).next().unwrap();
/// let (_, export) = a.component_type().exports(&engine).next().unwrap();
///
/// let import = match import {
/// ComponentItem::Resource(ty) => ty,
/// _ => unreachable!(),
/// };
/// let export = match export {
/// ComponentItem::Resource(ty) => ty,
/// _ => unreachable!(),
/// };
/// assert_eq!(import, export);
///
/// // However after instantiation the resource type "changes"
/// let mut store = Store::new(&engine, ());
/// let mut linker = Linker::new(&engine);
/// linker.root().resource("x", ResourceType::host::<()>(), |_, _| Ok(()))?;
/// let instance = linker.instantiate(&mut store, &a)?;
/// let instance_ty = instance.get_resource(&mut store, "x").unwrap();
///
/// // Here `instance_ty` is not the same as either `import` or `export`,
/// // but it is equal to what we provided as an import.
/// assert!(instance_ty != import);
/// assert!(instance_ty != export);
/// assert!(instance_ty == ResourceType::host::<()>());
/// # Ok(())
/// # }
/// ```
///
/// Finally, each instantiation of an exported resource from a component is
/// considered "fresh" for all instantiations meaning that different
/// instantiations will have different exported resource types:
///
/// ```
/// # use wasmtime::{Engine, Store};
/// # use wasmtime::component::{Component, Linker};
/// # fn main() -> wasmtime::Result<()> {
/// # let engine = Engine::default();
/// let a = Component::new(&engine, r#"
/// (component
/// (type $x (resource (rep i32)))
/// (export "x" (type $x))
/// )
/// "#)?;
///
/// let mut store = Store::new(&engine, ());
/// let linker = Linker::new(&engine);
/// let instance1 = linker.instantiate(&mut store, &a)?;
/// let instance2 = linker.instantiate(&mut store, &a)?;
///
/// let x1 = instance1.get_resource(&mut store, "x").unwrap();
/// let x2 = instance2.get_resource(&mut store, "x").unwrap();
///
/// // Despite these two resources being the same export of the same
/// // component they come from two different instances meaning that their
/// // types will be unique.
/// assert!(x1 != x2);
/// # Ok(())
/// # }
/// ```
pub fn component_type(&self) -> types::Component {
self.with_uninstantiated_instance_type(|ty| types::Component::from(self.inner.ty, ty))
}
fn with_uninstantiated_instance_type<R>(&self, f: impl FnOnce(&InstanceType<'_>) -> R) -> R {
let resources = Arc::new(PrimaryMap::new());
f(&InstanceType {
types: self.types(),
resources: &resources,
})
}
/// Final assembly step for a component from its in-memory representation.
///
/// If the `artifacts` are specified as `None` here then they will be
/// deserialized from `code_memory`.
pub(crate) fn from_parts(
engine: &Engine,
code_memory: Arc<CodeMemory>,
artifacts: Option<ComponentArtifacts>,
) -> Result<Component> {
let ComponentArtifacts {
ty,
info,
types,
static_modules,
} = match artifacts {
Some(artifacts) => artifacts,
None => postcard::from_bytes(code_memory.wasmtime_info()).err2anyhow()?,
};
// Validate that the component can be used with the current instance
// allocator.
engine.allocator().validate_component(
&info.component,
&VMComponentOffsets::new(HostPtr, &info.component),
&|module_index| &static_modules[module_index].module,
)?;
// Create a signature registration with the `Engine` for all trampolines
// and core wasm types found within this component, both for the
// component and for all included core wasm modules.
let signatures = TypeCollection::new_for_module(engine, types.module_types());
// Assemble the `CodeObject` artifact which is shared by all core wasm
// modules as well as the final component.
let types = Arc::new(types);
let code = Arc::new(CodeObject::new(code_memory, signatures, types.into()));
// Convert all information about static core wasm modules into actual
// `Module` instances by converting each `CompiledModuleInfo`, the
// `types` type information, and the code memory to a runtime object.
let static_modules = static_modules
.into_iter()
.map(|(_, info)| Module::from_parts_raw(engine, code.clone(), info, false))
.collect::<Result<_>>()?;
let realloc_func_type = Arc::new(FuncType::new(
engine,
[ValType::I32, ValType::I32, ValType::I32, ValType::I32],
[ValType::I32],
)) as _;
Ok(Component {
inner: Arc::new(ComponentInner {
id: CompiledModuleId::new(),
engine: engine.clone(),
ty,
static_modules,
code,
info,
realloc_func_type,
}),
})
}
pub(crate) fn ty(&self) -> TypeComponentIndex {
self.inner.ty
}
pub(crate) fn env_component(&self) -> &wasmtime_environ::component::Component {
&self.inner.info.component
}
pub(crate) fn static_module(&self, idx: StaticModuleIndex) -> &Module {
&self.inner.static_modules[idx]
}
#[inline]
pub(crate) fn types(&self) -> &Arc<ComponentTypes> {
self.inner.component_types()
}
pub(crate) fn signatures(&self) -> &TypeCollection {
self.inner.code.signatures()
}
pub(crate) fn text(&self) -> &[u8] {
self.inner.code.code_memory().text()
}
pub(crate) fn trampoline_ptrs(&self, index: TrampolineIndex) -> AllCallFuncPointers {
let AllCallFunc {
wasm_call,
array_call,
} = &self.inner.info.trampolines[index];
AllCallFuncPointers {
wasm_call: self.func(wasm_call).cast(),
array_call: unsafe {
mem::transmute::<NonNull<VMFunctionBody>, VMArrayCallFunction>(
self.func(array_call),
)
},
}
}
fn func(&self, loc: &FunctionLoc) -> NonNull<VMFunctionBody> {
let text = self.text();
let trampoline = &text[loc.start as usize..][..loc.length as usize];
NonNull::new(trampoline.as_ptr() as *mut VMFunctionBody).unwrap()
}
pub(crate) fn code_object(&self) -> &Arc<CodeObject> {
&self.inner.code
}
/// Same as [`Module::serialize`], except for a component.
///
/// Note that the artifact produced here must be passed to
/// [`Component::deserialize`] and is not compatible for use with
/// [`Module`].
///
/// [`Module::serialize`]: crate::Module::serialize
/// [`Module`]: crate::Module
pub fn serialize(&self) -> Result<Vec<u8>> {
Ok(self.code_object().code_memory().mmap().to_vec())
}
pub(crate) fn runtime_info(&self) -> Arc<dyn ComponentRuntimeInfo> {
self.inner.clone()
}
/// Creates a new `VMFuncRef` with all fields filled out for the destructor
/// specified.
///
/// The `dtor`'s own `VMFuncRef` won't have `wasm_call` filled out but this
/// component may have `resource_drop_wasm_to_native_trampoline` filled out
/// if necessary in which case it's filled in here.
pub(crate) fn resource_drop_func_ref(&self, dtor: &crate::func::HostFunc) -> VMFuncRef {
// Host functions never have their `wasm_call` filled in at this time.
assert!(dtor.func_ref().wasm_call.is_none());
// Note that if `resource_drop_wasm_to_native_trampoline` is not present
// then this can't be called by the component, so it's ok to leave it
// blank.
let wasm_call = self
.inner
.info
.resource_drop_wasm_to_array_trampoline
.as_ref()
.map(|i| self.func(i).cast());
VMFuncRef {
wasm_call,
..*dtor.func_ref()
}
}
/// Returns a summary of the resources required to instantiate this
/// [`Component`][crate::component::Component].
///
/// Note that when a component imports and instantiates another component or
/// core module, we cannot determine ahead of time how many resources
/// instantiating this component will require, and therefore this method
/// will return `None` in these scenarios.
///
/// Potential uses of the returned information:
///
/// * Determining whether your pooling allocator configuration supports
/// instantiating this component.
///
/// * Deciding how many of which `Component` you want to instantiate within
/// a fixed amount of resources, e.g. determining whether to create 5
/// instances of component X or 10 instances of component Y.
///
/// # Example
///
/// ```
/// # fn main() -> wasmtime::Result<()> {
/// use wasmtime::{Config, Engine, component::Component};
///
/// let mut config = Config::new();
/// config.wasm_multi_memory(true);
/// config.wasm_component_model(true);
/// let engine = Engine::new(&config)?;
///
/// let component = Component::new(&engine, &r#"
/// (component
/// ;; Define a core module that uses two memories.
/// (core module $m
/// (memory 1)
/// (memory 6)
/// )
///
/// ;; Instantiate that core module three times.
/// (core instance $i1 (instantiate (module $m)))
/// (core instance $i2 (instantiate (module $m)))
/// (core instance $i3 (instantiate (module $m)))
/// )
/// "#)?;
///
/// let resources = component.resources_required()
/// .expect("this component does not import any core modules or instances");
///
/// // Instantiating the component will require allocating two memories per
/// // core instance, and there are three instances, so six total memories.
/// assert_eq!(resources.num_memories, 6);
/// assert_eq!(resources.max_initial_memory_size, Some(6));
///
/// // The component doesn't need any tables.
/// assert_eq!(resources.num_tables, 0);
/// assert_eq!(resources.max_initial_table_size, None);
/// # Ok(()) }
/// ```
pub fn resources_required(&self) -> Option<ResourcesRequired> {
let mut resources = ResourcesRequired {
num_memories: 0,
max_initial_memory_size: None,
num_tables: 0,
max_initial_table_size: None,
};
for init in &self.env_component().initializers {
match init {
GlobalInitializer::InstantiateModule(inst) => match inst {
InstantiateModule::Static(index, _) => {
let module = self.static_module(*index);
resources.add(&module.resources_required());
}
InstantiateModule::Import(_, _) => {
// We can't statically determine the resources required
// to instantiate this component.
return None;
}
},
GlobalInitializer::LowerImport { .. }
| GlobalInitializer::ExtractMemory(_)
| GlobalInitializer::ExtractRealloc(_)
| GlobalInitializer::ExtractPostReturn(_)
| GlobalInitializer::Resource(_) => {}
}
}
Some(resources)
}
/// Returns the range, in the host's address space, that this module's
/// compiled code resides at.
///
/// For more information see
/// [`Module::image_range`](crate::Module::image_range).
pub fn image_range(&self) -> Range<*const u8> {
self.inner.code.code_memory().mmap().image_range()
}
/// Force initialization of copy-on-write images to happen here-and-now
/// instead of when they're requested during first instantiation.
///
/// When [copy-on-write memory
/// initialization](crate::Config::memory_init_cow) is enabled then Wasmtime
/// will lazily create the initialization image for a component. This method
/// can be used to explicitly dictate when this initialization happens.
///
/// Note that this largely only matters on Linux when memfd is used.
/// Otherwise the copy-on-write image typically comes from disk and in that
/// situation the creation of the image is trivial as the image is always
/// sourced from disk. On Linux, though, when memfd is used a memfd is
/// created and the initialization image is written to it.
///
/// Also note that this method is not required to be called, it's available
/// as a performance optimization if required but is otherwise handled
/// automatically.
pub fn initialize_copy_on_write_image(&self) -> Result<()> {
for (_, module) in self.inner.static_modules.iter() {
module.initialize_copy_on_write_image()?;
}
Ok(())
}
/// Looks up a specific export of this component by `name` optionally nested
/// within the `instance` provided.
///
/// This method is primarily used to acquire a [`ComponentExportIndex`]
/// which can be used with [`Instance`](crate::component::Instance) when
/// looking up exports. Export lookup with [`ComponentExportIndex`] can
/// skip string lookups at runtime and instead use a more efficient
/// index-based lookup.
///
/// This method takes a few arguments:
///
/// * `engine` - the engine that was used to compile this component.
/// * `instance` - an optional "parent instance" for the export being looked
/// up. If this is `None` then the export is looked up on the root of the
/// component itself, and otherwise the export is looked up on the
/// `instance` specified. Note that `instance` must have come from a
/// previous invocation of this method.
/// * `name` - the name of the export that's being looked up.
///
/// If the export is located then two values are returned: a
/// [`types::ComponentItem`] which enables introspection about the type of
/// the export and a [`ComponentExportIndex`]. The index returned notably
/// implements the [`InstanceExportLookup`] trait which enables using it
/// with [`Instance::get_func`](crate::component::Instance::get_func) for
/// example.
///
/// # Examples
///
/// ```
/// use wasmtime::{Engine, Store};
/// use wasmtime::component::{Component, Linker};
/// use wasmtime::component::types::ComponentItem;
///
/// # fn main() -> wasmtime::Result<()> {
/// let engine = Engine::default();
/// let component = Component::new(
/// &engine,
/// r#"
/// (component
/// (core module $m
/// (func (export "f"))
/// )
/// (core instance $i (instantiate $m))
/// (func (export "f")
/// (canon lift (core func $i "f")))
/// )
/// "#,
/// )?;
///
/// // Perform a lookup of the function "f" before instantiaton.
/// let (ty, export) = component.export_index(None, "f").unwrap();
/// assert!(matches!(ty, ComponentItem::ComponentFunc(_)));
///
/// // After instantiation use `export` to lookup the function in question
/// // which notably does not do a string lookup at runtime.
/// let mut store = Store::new(&engine, ());
/// let instance = Linker::new(&engine).instantiate(&mut store, &component)?;
/// let func = instance.get_typed_func::<(), ()>(&mut store, &export)?;
/// // ...
/// # Ok(())
/// # }
/// ```
pub fn export_index(
&self,
instance: Option<&ComponentExportIndex>,
name: &str,
) -> Option<(types::ComponentItem, ComponentExportIndex)> {
let info = self.env_component();
let index = self.lookup_export_index(instance, name)?;
let ty = match info.export_items[index] {
Export::Instance { ty, .. } => TypeDef::ComponentInstance(ty),
Export::LiftedFunction { ty, .. } => TypeDef::ComponentFunc(ty),
Export::ModuleStatic { ty, .. } | Export::ModuleImport { ty, .. } => {
TypeDef::Module(ty)
}
Export::Type(ty) => ty,
};
let item = self.with_uninstantiated_instance_type(|instance| {
types::ComponentItem::from(&self.inner.engine, &ty, instance)
});
Some((
item,
ComponentExportIndex {
id: self.inner.id,
index,
},
))
}
pub(crate) fn lookup_export_index(
&self,
instance: Option<&ComponentExportIndex>,
name: &str,
) -> Option<ExportIndex> {
let info = self.env_component();
let exports = match instance {
Some(idx) => {
if idx.id != self.inner.id {
return None;
}
match &info.export_items[idx.index] {
Export::Instance { exports, .. } => exports,
_ => return None,
}
}
None => &info.exports,
};
exports.get(name, &NameMapNoIntern).copied()
}
pub(crate) fn id(&self) -> CompiledModuleId {
self.inner.id
}
/// Returns the [`Engine`] that this [`Component`] was compiled by.
pub fn engine(&self) -> &Engine {
&self.inner.engine
}
}
/// A value which represents a known export of a component.
///
/// This is the return value of [`Component::export_index`] and implements the
/// [`InstanceExportLookup`] trait to work with lookups like
/// [`Instance::get_func`](crate::component::Instance::get_func).
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub struct ComponentExportIndex {
pub(crate) id: CompiledModuleId,
pub(crate) index: ExportIndex,
}
impl InstanceExportLookup for ComponentExportIndex {
fn lookup(&self, component: &Component) -> Option<ExportIndex> {
if component.inner.id == self.id {
Some(self.index)
} else {
None
}
}
}
impl ComponentRuntimeInfo for ComponentInner {
fn component(&self) -> &wasmtime_environ::component::Component {
&self.info.component
}
fn component_types(&self) -> &Arc<ComponentTypes> {
match self.code.types() {
crate::code::Types::Component(types) => types,
// The only creator of a `Component` is itself which uses the other
// variant, so this shouldn't be possible.
crate::code::Types::Module(_) => unreachable!(),
}
}
fn realloc_func_type(&self) -> &Arc<dyn Any + Send + Sync> {
&self.realloc_func_type
}
}
#[cfg(test)]
mod tests {
use crate::component::Component;
use crate::{Config, Engine};
use wasmtime_environ::MemoryInitialization;
#[test]
fn cow_on_by_default() {
let mut config = Config::new();
config.wasm_component_model(true);
let engine = Engine::new(&config).unwrap();
let component = Component::new(
&engine,
r#"
(component
(core module
(memory 1)
(data (i32.const 100) "abcd")
)
)
"#,
)
.unwrap();
for (_, module) in component.inner.static_modules.iter() {
let init = &module.env_module().memory_initialization;
assert!(matches!(init, MemoryInitialization::Static { .. }));
}
}
}