wasmtime/runtime/component/
func.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
use crate::component::instance::{Instance, InstanceData};
use crate::component::storage::storage_as_slice;
use crate::component::types::Type;
use crate::component::values::Val;
use crate::prelude::*;
use crate::runtime::vm::component::ResourceTables;
use crate::runtime::vm::{Export, ExportFunction};
use crate::store::{StoreOpaque, Stored};
use crate::{AsContext, AsContextMut, StoreContextMut, ValRaw};
use alloc::sync::Arc;
use core::mem::{self, MaybeUninit};
use core::ptr::NonNull;
use wasmtime_environ::component::{
    CanonicalOptions, ComponentTypes, CoreDef, InterfaceType, RuntimeComponentInstanceIndex,
    TypeFuncIndex, TypeTuple, MAX_FLAT_PARAMS, MAX_FLAT_RESULTS,
};

mod host;
mod options;
mod typed;
pub use self::host::*;
pub use self::options::*;
pub use self::typed::*;

#[repr(C)]
union ParamsAndResults<Params: Copy, Return: Copy> {
    params: Params,
    ret: Return,
}

/// A WebAssembly component function which can be called.
///
/// This type is the dual of [`wasmtime::Func`](crate::Func) for component
/// functions. An instance of [`Func`] represents a component function from a
/// component [`Instance`](crate::component::Instance). Like with
/// [`wasmtime::Func`](crate::Func) it's possible to call functions either
/// synchronously or asynchronously and either typed or untyped.
#[derive(Copy, Clone, Debug)]
pub struct Func(Stored<FuncData>);

#[doc(hidden)]
pub struct FuncData {
    export: ExportFunction,
    ty: TypeFuncIndex,
    types: Arc<ComponentTypes>,
    options: Options,
    instance: Instance,
    component_instance: RuntimeComponentInstanceIndex,
    post_return: Option<ExportFunction>,
    post_return_arg: Option<ValRaw>,
}

impl Func {
    pub(crate) fn from_lifted_func(
        store: &mut StoreOpaque,
        instance: &Instance,
        data: &InstanceData,
        ty: TypeFuncIndex,
        func: &CoreDef,
        options: &CanonicalOptions,
    ) -> Func {
        let export = match data.lookup_def(store, func) {
            Export::Function(f) => f,
            _ => unreachable!(),
        };
        let memory = options
            .memory
            .map(|i| NonNull::new(data.instance().runtime_memory(i)).unwrap());
        let realloc = options.realloc.map(|i| data.instance().runtime_realloc(i));
        let post_return = options.post_return.map(|i| {
            let func_ref = data.instance().runtime_post_return(i);
            ExportFunction { func_ref }
        });
        let component_instance = options.instance;
        let options = unsafe { Options::new(store.id(), memory, realloc, options.string_encoding) };
        Func(store.store_data_mut().insert(FuncData {
            export,
            options,
            ty,
            types: data.component_types().clone(),
            instance: *instance,
            component_instance,
            post_return,
            post_return_arg: None,
        }))
    }

    /// Attempt to cast this [`Func`] to a statically typed [`TypedFunc`] with
    /// the provided `Params` and `Return`.
    ///
    /// This function will perform a type-check at runtime that the [`Func`]
    /// takes `Params` as parameters and returns `Return`. If the type-check
    /// passes then a [`TypedFunc`] will be returned which can be used to
    /// invoke the function in an efficient, statically-typed, and ergonomic
    /// manner.
    ///
    /// The `Params` type parameter here is a tuple of the parameters to the
    /// function. A function which takes no arguments should use `()`, a
    /// function with one argument should use `(T,)`, etc. Note that all
    /// `Params` must also implement the [`Lower`] trait since they're going
    /// into wasm.
    ///
    /// The `Return` type parameter is the return value of this function. A
    /// return value of `()` means that there's no return (similar to a Rust
    /// unit return) and otherwise a type `T` can be specified. Note that the
    /// `Return` must also implement the [`Lift`] trait since it's coming from
    /// wasm.
    ///
    /// Types specified here must implement the [`ComponentType`] trait. This
    /// trait is implemented for built-in types to Rust such as integer
    /// primitives, floats, `Option<T>`, `Result<T, E>`, strings, `Vec<T>`, and
    /// more. As parameters you'll be passing native Rust types.
    ///
    /// See the documentation for [`ComponentType`] for more information about
    /// supported types.
    ///
    /// # Errors
    ///
    /// If the function does not actually take `Params` as its parameters or
    /// return `Return` then an error will be returned.
    ///
    /// # Panics
    ///
    /// This function will panic if `self` is not owned by the `store`
    /// specified.
    ///
    /// # Examples
    ///
    /// Calling a function which takes no parameters and has no return value:
    ///
    /// ```
    /// # use wasmtime::component::Func;
    /// # use wasmtime::Store;
    /// # fn foo(func: &Func, store: &mut Store<()>) -> anyhow::Result<()> {
    /// let typed = func.typed::<(), ()>(&store)?;
    /// typed.call(store, ())?;
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// Calling a function which takes one string parameter and returns a
    /// string:
    ///
    /// ```
    /// # use wasmtime::component::Func;
    /// # use wasmtime::Store;
    /// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
    /// let typed = func.typed::<(&str,), (String,)>(&store)?;
    /// let ret = typed.call(&mut store, ("Hello, ",))?.0;
    /// println!("returned string was: {}", ret);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// Calling a function which takes multiple parameters and returns a boolean:
    ///
    /// ```
    /// # use wasmtime::component::Func;
    /// # use wasmtime::Store;
    /// # fn foo(func: &Func, mut store: Store<()>) -> anyhow::Result<()> {
    /// let typed = func.typed::<(u32, Option<&str>, &[u8]), (bool,)>(&store)?;
    /// let ok: bool = typed.call(&mut store, (1, Some("hello"), b"bytes!"))?.0;
    /// println!("return value was: {ok}");
    /// # Ok(())
    /// # }
    /// ```
    pub fn typed<Params, Return>(&self, store: impl AsContext) -> Result<TypedFunc<Params, Return>>
    where
        Params: ComponentNamedList + Lower,
        Return: ComponentNamedList + Lift,
    {
        self._typed(store.as_context().0, None)
    }

    pub(crate) fn _typed<Params, Return>(
        &self,
        store: &StoreOpaque,
        instance: Option<&InstanceData>,
    ) -> Result<TypedFunc<Params, Return>>
    where
        Params: ComponentNamedList + Lower,
        Return: ComponentNamedList + Lift,
    {
        self.typecheck::<Params, Return>(store, instance)?;
        unsafe { Ok(TypedFunc::new_unchecked(*self)) }
    }

    fn typecheck<Params, Return>(
        &self,
        store: &StoreOpaque,
        instance: Option<&InstanceData>,
    ) -> Result<()>
    where
        Params: ComponentNamedList + Lower,
        Return: ComponentNamedList + Lift,
    {
        let data = &store[self.0];
        let cx = instance
            .unwrap_or_else(|| &store[data.instance.0].as_ref().unwrap())
            .ty();
        let ty = &cx.types[data.ty];

        Params::typecheck(&InterfaceType::Tuple(ty.params), &cx)
            .context("type mismatch with parameters")?;
        Return::typecheck(&InterfaceType::Tuple(ty.results), &cx)
            .context("type mismatch with results")?;

        Ok(())
    }

    /// Get the parameter types for this function.
    pub fn params(&self, store: impl AsContext) -> Box<[Type]> {
        let store = store.as_context();
        let data = &store[self.0];
        let instance = store[data.instance.0].as_ref().unwrap();
        data.types[data.types[data.ty].params]
            .types
            .iter()
            .map(|ty| Type::from(ty, &instance.ty()))
            .collect()
    }

    /// Get the result types for this function.
    pub fn results(&self, store: impl AsContext) -> Box<[Type]> {
        let store = store.as_context();
        let data = &store[self.0];
        let instance = store[data.instance.0].as_ref().unwrap();
        data.types[data.types[data.ty].results]
            .types
            .iter()
            .map(|ty| Type::from(ty, &instance.ty()))
            .collect()
    }

    /// Invokes this function with the `params` given and returns the result.
    ///
    /// The `params` provided must match the parameters that this function takes
    /// in terms of their types and the number of parameters. Results will be
    /// written to the `results` slice provided if the call completes
    /// successfully. The initial types of the values in `results` are ignored
    /// and values are overwritten to write the result. It's required that the
    /// size of `results` exactly matches the number of results that this
    /// function produces.
    ///
    /// Note that after a function is invoked the embedder needs to invoke
    /// [`Func::post_return`] to execute any final cleanup required by the
    /// guest. This function call is required to either call the function again
    /// or to call another function.
    ///
    /// For more detailed information see the documentation of
    /// [`TypedFunc::call`].
    ///
    /// # Errors
    ///
    /// Returns an error in situations including but not limited to:
    ///
    /// * `params` is not the right size or if the values have the wrong type
    /// * `results` is not the right size
    /// * A trap occurs while executing the function
    /// * The function calls a host function which returns an error
    ///
    /// See [`TypedFunc::call`] for more information in addition to
    /// [`wasmtime::Func::call`](crate::Func::call).
    ///
    /// # Panics
    ///
    /// Panics if this is called on a function in an asynchronous store. This
    /// only works with functions defined within a synchronous store. Also
    /// panics if `store` does not own this function.
    pub fn call(
        &self,
        mut store: impl AsContextMut,
        params: &[Val],
        results: &mut [Val],
    ) -> Result<()> {
        let mut store = store.as_context_mut();
        assert!(
            !store.0.async_support(),
            "must use `call_async` when async support is enabled on the config"
        );
        self.call_impl(&mut store.as_context_mut(), params, results)
    }

    /// Exactly like [`Self::call`] except for use on async stores.
    ///
    /// Note that after this [`Func::post_return_async`] will be used instead of
    /// the synchronous version at [`Func::post_return`].
    ///
    /// # Panics
    ///
    /// Panics if this is called on a function in a synchronous store. This
    /// only works with functions defined within an asynchronous store. Also
    /// panics if `store` does not own this function.
    #[cfg(feature = "async")]
    pub async fn call_async<T>(
        &self,
        mut store: impl AsContextMut<Data = T>,
        params: &[Val],
        results: &mut [Val],
    ) -> Result<()>
    where
        T: Send,
    {
        let mut store = store.as_context_mut();
        assert!(
            store.0.async_support(),
            "cannot use `call_async` without enabling async support in the config"
        );
        store
            .on_fiber(|store| self.call_impl(store, params, results))
            .await?
    }

    fn call_impl(
        &self,
        mut store: impl AsContextMut,
        params: &[Val],
        results: &mut [Val],
    ) -> Result<()> {
        let store = &mut store.as_context_mut();

        let param_tys = self.params(&store);
        let result_tys = self.results(&store);

        if param_tys.len() != params.len() {
            bail!(
                "expected {} argument(s), got {}",
                param_tys.len(),
                params.len()
            );
        }
        if result_tys.len() != results.len() {
            bail!(
                "expected {} results(s), got {}",
                result_tys.len(),
                results.len()
            );
        }

        self.call_raw(
            store,
            params,
            |cx, params, params_ty, dst: &mut MaybeUninit<[ValRaw; MAX_FLAT_PARAMS]>| {
                let params_ty = match params_ty {
                    InterfaceType::Tuple(i) => &cx.types[i],
                    _ => unreachable!(),
                };
                if params_ty.abi.flat_count(MAX_FLAT_PARAMS).is_some() {
                    let dst = &mut unsafe {
                        mem::transmute::<_, &mut [MaybeUninit<ValRaw>; MAX_FLAT_PARAMS]>(dst)
                    }
                    .iter_mut();

                    params
                        .iter()
                        .zip(params_ty.types.iter())
                        .try_for_each(|(param, ty)| param.lower(cx, *ty, dst))
                } else {
                    self.store_args(cx, &params_ty, params, dst)
                }
            },
            |cx, results_ty, src: &[ValRaw; MAX_FLAT_RESULTS]| {
                let results_ty = match results_ty {
                    InterfaceType::Tuple(i) => &cx.types[i],
                    _ => unreachable!(),
                };
                if results_ty.abi.flat_count(MAX_FLAT_RESULTS).is_some() {
                    let mut flat = src.iter();
                    for (ty, slot) in results_ty.types.iter().zip(results) {
                        *slot = Val::lift(cx, *ty, &mut flat)?;
                    }
                    Ok(())
                } else {
                    Self::load_results(cx, results_ty, results, &mut src.iter())
                }
            },
        )
    }

    /// Invokes the underlying wasm function, lowering arguments and lifting the
    /// result.
    ///
    /// The `lower` function and `lift` function provided here are what actually
    /// do the lowering and lifting. The `LowerParams` and `LowerReturn` types
    /// are what will be allocated on the stack for this function call. They
    /// should be appropriately sized for the lowering/lifting operation
    /// happening.
    fn call_raw<T, Params: ?Sized, Return, LowerParams, LowerReturn>(
        &self,
        store: &mut StoreContextMut<'_, T>,
        params: &Params,
        lower: impl FnOnce(
            &mut LowerContext<'_, T>,
            &Params,
            InterfaceType,
            &mut MaybeUninit<LowerParams>,
        ) -> Result<()>,
        lift: impl FnOnce(&mut LiftContext<'_>, InterfaceType, &LowerReturn) -> Result<Return>,
    ) -> Result<Return>
    where
        LowerParams: Copy,
        LowerReturn: Copy,
    {
        let FuncData {
            export,
            options,
            instance,
            component_instance,
            ty,
            ..
        } = store.0[self.0];

        let space = &mut MaybeUninit::<ParamsAndResults<LowerParams, LowerReturn>>::uninit();

        // Double-check the size/alignment of `space`, just in case.
        //
        // Note that this alone is not enough to guarantee the validity of the
        // `unsafe` block below, but it's definitely required. In any case LLVM
        // should be able to trivially see through these assertions and remove
        // them in release mode.
        let val_size = mem::size_of::<ValRaw>();
        let val_align = mem::align_of::<ValRaw>();
        assert!(mem::size_of_val(space) % val_size == 0);
        assert!(mem::size_of_val(map_maybe_uninit!(space.params)) % val_size == 0);
        assert!(mem::size_of_val(map_maybe_uninit!(space.ret)) % val_size == 0);
        assert!(mem::align_of_val(space) == val_align);
        assert!(mem::align_of_val(map_maybe_uninit!(space.params)) == val_align);
        assert!(mem::align_of_val(map_maybe_uninit!(space.ret)) == val_align);

        let instance = store.0[instance.0].as_ref().unwrap();
        let types = instance.component_types().clone();
        let mut flags = instance.instance().instance_flags(component_instance);

        unsafe {
            // Test the "may enter" flag which is a "lock" on this instance.
            // This is immediately set to `false` afterwards and note that
            // there's no on-cleanup setting this flag back to true. That's an
            // intentional design aspect where if anything goes wrong internally
            // from this point on the instance is considered "poisoned" and can
            // never be entered again. The only time this flag is set to `true`
            // again is after post-return logic has completed successfully.
            if !flags.may_enter() {
                bail!(crate::Trap::CannotEnterComponent);
            }
            flags.set_may_enter(false);

            debug_assert!(flags.may_leave());
            flags.set_may_leave(false);
            let instance_ptr = instance.instance_ptr();
            let mut cx = LowerContext::new(store.as_context_mut(), &options, &types, instance_ptr);
            cx.enter_call();
            let result = lower(
                &mut cx,
                params,
                InterfaceType::Tuple(types[ty].params),
                map_maybe_uninit!(space.params),
            );
            flags.set_may_leave(true);
            result?;

            // This is unsafe as we are providing the guarantee that all the
            // inputs are valid. The various pointers passed in for the function
            // are all valid since they're coming from our store, and the
            // `params_and_results` should have the correct layout for the core
            // wasm function we're calling. Note that this latter point relies
            // on the correctness of this module and `ComponentType`
            // implementations, hence `ComponentType` being an `unsafe` trait.
            crate::Func::call_unchecked_raw(
                store,
                export.func_ref,
                space.as_mut_ptr().cast(),
                mem::size_of_val(space) / mem::size_of::<ValRaw>(),
            )?;

            // Note that `.assume_init_ref()` here is unsafe but we're relying
            // on the correctness of the structure of `LowerReturn` and the
            // type-checking performed to acquire the `TypedFunc` to make this
            // safe. It should be the case that `LowerReturn` is the exact
            // representation of the return value when interpreted as
            // `[ValRaw]`, and additionally they should have the correct types
            // for the function we just called (which filled in the return
            // values).
            let ret = map_maybe_uninit!(space.ret).assume_init_ref();

            // Lift the result into the host while managing post-return state
            // here as well.
            //
            // After a successful lift the return value of the function, which
            // is currently required to be 0 or 1 values according to the
            // canonical ABI, is saved within the `Store`'s `FuncData`. This'll
            // later get used in post-return.
            flags.set_needs_post_return(true);
            let val = lift(
                &mut LiftContext::new(store.0, &options, &types, instance_ptr),
                InterfaceType::Tuple(types[ty].results),
                ret,
            )?;
            let ret_slice = storage_as_slice(ret);
            let data = &mut store.0[self.0];
            assert!(data.post_return_arg.is_none());
            match ret_slice.len() {
                0 => data.post_return_arg = Some(ValRaw::i32(0)),
                1 => data.post_return_arg = Some(ret_slice[0]),
                _ => unreachable!(),
            }
            return Ok(val);
        }
    }

    /// Invokes the `post-return` canonical ABI option, if specified, after a
    /// [`Func::call`] has finished.
    ///
    /// This function is a required method call after a [`Func::call`] completes
    /// successfully. After the embedder has finished processing the return
    /// value then this function must be invoked.
    ///
    /// # Errors
    ///
    /// This function will return an error in the case of a WebAssembly trap
    /// happening during the execution of the `post-return` function, if
    /// specified.
    ///
    /// # Panics
    ///
    /// This function will panic if it's not called under the correct
    /// conditions. This can only be called after a previous invocation of
    /// [`Func::call`] completes successfully, and this function can only
    /// be called for the same [`Func`] that was `call`'d.
    ///
    /// If this function is called when [`Func::call`] was not previously
    /// called, then it will panic. If a different [`Func`] for the same
    /// component instance was invoked then this function will also panic
    /// because the `post-return` needs to happen for the other function.
    ///
    /// Panics if this is called on a function in an asynchronous store.
    /// This only works with functions defined within a synchronous store.
    #[inline]
    pub fn post_return(&self, mut store: impl AsContextMut) -> Result<()> {
        let store = store.as_context_mut();
        assert!(
            !store.0.async_support(),
            "must use `post_return_async` when async support is enabled on the config"
        );
        self.post_return_impl(store)
    }

    /// Exactly like [`Self::post_return`] except for use on async stores.
    ///
    /// # Panics
    ///
    /// Panics if this is called on a function in a synchronous store. This
    /// only works with functions defined within an asynchronous store.
    #[cfg(feature = "async")]
    pub async fn post_return_async<T: Send>(
        &self,
        mut store: impl AsContextMut<Data = T>,
    ) -> Result<()> {
        let mut store = store.as_context_mut();
        assert!(
            store.0.async_support(),
            "cannot use `call_async` without enabling async support in the config"
        );
        // Future optimization opportunity: conditionally use a fiber here since
        // some func's post_return will not need the async context (i.e. end up
        // calling async host functionality)
        store.on_fiber(|store| self.post_return_impl(store)).await?
    }

    fn post_return_impl(&self, mut store: impl AsContextMut) -> Result<()> {
        let mut store = store.as_context_mut();
        let data = &mut store.0[self.0];
        let instance = data.instance;
        let post_return = data.post_return;
        let component_instance = data.component_instance;
        let post_return_arg = data.post_return_arg.take();
        let instance = store.0[instance.0].as_ref().unwrap().instance_ptr();

        unsafe {
            let mut flags = (*instance).instance_flags(component_instance);

            // First assert that the instance is in a "needs post return" state.
            // This will ensure that the previous action on the instance was a
            // function call above. This flag is only set after a component
            // function returns so this also can't be called (as expected)
            // during a host import for example.
            //
            // Note, though, that this assert is not sufficient because it just
            // means some function on this instance needs its post-return
            // called. We need a precise post-return for a particular function
            // which is the second assert here (the `.expect`). That will assert
            // that this function itself needs to have its post-return called.
            //
            // The theory at least is that these two asserts ensure component
            // model semantics are upheld where the host properly calls
            // `post_return` on the right function despite the call being a
            // separate step in the API.
            assert!(
                flags.needs_post_return(),
                "post_return can only be called after a function has previously been called",
            );
            let post_return_arg = post_return_arg.expect("calling post_return on wrong function");

            // This is a sanity-check assert which shouldn't ever trip.
            assert!(!flags.may_enter());

            // Unset the "needs post return" flag now that post-return is being
            // processed. This will cause future invocations of this method to
            // panic, even if the function call below traps.
            flags.set_needs_post_return(false);

            // If the function actually had a `post-return` configured in its
            // canonical options that's executed here.
            //
            // Note that if this traps (returns an error) this function
            // intentionally leaves the instance in a "poisoned" state where it
            // can no longer be entered because `may_enter` is `false`.
            if let Some(func) = post_return {
                crate::Func::call_unchecked_raw(
                    &mut store,
                    func.func_ref,
                    &post_return_arg as *const ValRaw as *mut ValRaw,
                    1,
                )?;
            }

            // And finally if everything completed successfully then the "may
            // enter" flag is set to `true` again here which enables further use
            // of the component.
            flags.set_may_enter(true);

            let (calls, host_table, _) = store.0.component_resource_state();
            ResourceTables {
                calls,
                host_table: Some(host_table),
                tables: Some((*instance).component_resource_tables()),
            }
            .exit_call()?;
        }
        Ok(())
    }

    fn store_args<T>(
        &self,
        cx: &mut LowerContext<'_, T>,
        params_ty: &TypeTuple,
        args: &[Val],
        dst: &mut MaybeUninit<[ValRaw; MAX_FLAT_PARAMS]>,
    ) -> Result<()> {
        let size = usize::try_from(params_ty.abi.size32).unwrap();
        let ptr = cx.realloc(0, 0, params_ty.abi.align32, size)?;
        let mut offset = ptr;
        for (ty, arg) in params_ty.types.iter().zip(args) {
            let abi = cx.types.canonical_abi(ty);
            arg.store(cx, *ty, abi.next_field32_size(&mut offset))?;
        }

        map_maybe_uninit!(dst[0]).write(ValRaw::i64(ptr as i64));

        Ok(())
    }

    fn load_results(
        cx: &mut LiftContext<'_>,
        results_ty: &TypeTuple,
        results: &mut [Val],
        src: &mut core::slice::Iter<'_, ValRaw>,
    ) -> Result<()> {
        // FIXME: needs to read an i64 for memory64
        let ptr = usize::try_from(src.next().unwrap().get_u32()).err2anyhow()?;
        if ptr % usize::try_from(results_ty.abi.align32).err2anyhow()? != 0 {
            bail!("return pointer not aligned");
        }

        let bytes = cx
            .memory()
            .get(ptr..)
            .and_then(|b| b.get(..usize::try_from(results_ty.abi.size32).unwrap()))
            .ok_or_else(|| anyhow::anyhow!("pointer out of bounds of memory"))?;

        let mut offset = 0;
        for (ty, slot) in results_ty.types.iter().zip(results) {
            let abi = cx.types.canonical_abi(ty);
            let offset = abi.next_field32_size(&mut offset);
            *slot = Val::load(cx, *ty, &bytes[offset..][..abi.size32 as usize])?;
        }
        Ok(())
    }
}