1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
use crate::hash_map::HashMap;
use crate::prelude::*;
use crate::{
store::StoreOpaque, AsContextMut, FrameInfo, Global, HeapType, Instance, Memory, Module,
StoreContextMut, Val, ValType, WasmBacktrace,
};
use std::fmt;
/// Representation of a core dump of a WebAssembly module
///
/// When the Config::coredump_on_trap option is enabled this structure is
/// attached to the [`anyhow::Error`] returned from many Wasmtime functions that
/// execute WebAssembly such as [`Instance::new`] or [`Func::call`]. This can be
/// acquired with the [`anyhow::Error::downcast`] family of methods to
/// programmatically inspect the coredump. Otherwise since it's part of the
/// error returned this will get printed along with the rest of the error when
/// the error is logged.
///
/// Note that some state, such as Wasm locals or values on the operand stack,
/// may be optimized away by the compiler or otherwise not recovered in the
/// coredump.
///
/// Capturing of wasm coredumps can be configured through the
/// [`Config::coredump_on_trap`][crate::Config::coredump_on_trap] method.
///
/// For more information about errors in wasmtime see the documentation of the
/// [`Trap`][crate::Trap] type.
///
/// [`Func::call`]: crate::Func::call
/// [`Instance::new`]: crate::Instance::new
pub struct WasmCoreDump {
name: String,
modules: Vec<Module>,
instances: Vec<Instance>,
memories: Vec<Memory>,
globals: Vec<Global>,
backtrace: WasmBacktrace,
}
impl WasmCoreDump {
pub(crate) fn new(store: &mut StoreOpaque, backtrace: WasmBacktrace) -> WasmCoreDump {
let modules: Vec<_> = store.modules().all_modules().cloned().collect();
let instances: Vec<Instance> = store.all_instances().collect();
let store_memories: Vec<Memory> = store.all_memories().collect();
let mut store_globals: Vec<Global> = vec![];
store.for_each_global(|_store, global| store_globals.push(global));
WasmCoreDump {
name: String::from("store_name"),
modules,
instances,
memories: store_memories,
globals: store_globals,
backtrace,
}
}
/// The stack frames for this core dump.
///
/// Frames appear in callee to caller order, that is youngest to oldest
/// frames.
pub fn frames(&self) -> &[FrameInfo] {
self.backtrace.frames()
}
/// All modules instantiated inside the store when the core dump was
/// created.
pub fn modules(&self) -> &[Module] {
self.modules.as_ref()
}
/// All instances within the store when the core dump was created.
pub fn instances(&self) -> &[Instance] {
self.instances.as_ref()
}
/// All globals, instance- or host-defined, within the store when the core
/// dump was created.
pub fn globals(&self) -> &[Global] {
self.globals.as_ref()
}
/// All memories, instance- or host-defined, within the store when the core
/// dump was created.
pub fn memories(&self) -> &[Memory] {
self.memories.as_ref()
}
/// Serialize this core dump into [the standard core dump binary
/// format][spec].
///
/// The `name` parameter may be a file path, URL, or arbitrary name for the
/// "main" Wasm service or executable that was running in this store.
///
/// Once serialized, you can write this core dump to disk, send it over the
/// network, or pass it to other debugging tools that consume Wasm core
/// dumps.
///
/// [spec]: https://github.com/WebAssembly/tool-conventions/blob/main/Coredump.md
pub fn serialize(&self, mut store: impl AsContextMut, name: &str) -> Vec<u8> {
let store = store.as_context_mut();
self._serialize(store, name)
}
fn _serialize<T>(&self, mut store: StoreContextMut<'_, T>, name: &str) -> Vec<u8> {
let mut core_dump = wasm_encoder::Module::new();
core_dump.section(&wasm_encoder::CoreDumpSection::new(name));
// A map from each memory to its index in the core dump's memories
// section.
let mut memory_to_idx = HashMap::new();
let mut data = wasm_encoder::DataSection::new();
{
let mut memories = wasm_encoder::MemorySection::new();
for mem in self.memories() {
let memory_idx = memories.len();
memory_to_idx.insert(mem.hash_key(&store.0), memory_idx);
let ty = mem.ty(&store);
memories.memory(wasm_encoder::MemoryType {
minimum: mem.size(&store),
maximum: ty.maximum(),
memory64: ty.is_64(),
shared: ty.is_shared(),
page_size_log2: None,
});
// Attach the memory data, balancing number of data segments and
// binary size. We don't want to attach the whole memory in one
// big segment, since it likely contains a bunch of large runs
// of zeroes. But we can't encode the data without any potential
// runs of zeroes (i.e. including only non-zero data in our
// segments) because we can run up against the implementation
// limits for number of segments in a Wasm module this way. So
// to balance these conflicting desires, we break the memory up
// into reasonably-sized chunks and then trim runs of zeroes
// from the start and end of each chunk.
const CHUNK_SIZE: usize = 4096;
for (i, chunk) in mem.data(&store).chunks_exact(CHUNK_SIZE).enumerate() {
if let Some(start) = chunk.iter().position(|byte| *byte != 0) {
let end = chunk.iter().rposition(|byte| *byte != 0).unwrap() + 1;
let offset = i * CHUNK_SIZE + start;
let offset = if ty.is_64() {
let offset = u64::try_from(offset).unwrap();
wasm_encoder::ConstExpr::i64_const(offset as i64)
} else {
let offset = u32::try_from(offset).unwrap();
wasm_encoder::ConstExpr::i32_const(offset as i32)
};
data.active(memory_idx, &offset, chunk[start..end].iter().copied());
}
}
}
core_dump.section(&memories);
}
// A map from each global to its index in the core dump's globals
// section.
let mut global_to_idx = HashMap::new();
{
let mut globals = wasm_encoder::GlobalSection::new();
for g in self.globals() {
global_to_idx.insert(g.hash_key(&store.0), globals.len());
let ty = g.ty(&store);
let mutable = matches!(ty.mutability(), crate::Mutability::Var);
let val_type = match ty.content() {
ValType::I32 => wasm_encoder::ValType::I32,
ValType::I64 => wasm_encoder::ValType::I64,
ValType::F32 => wasm_encoder::ValType::F32,
ValType::F64 => wasm_encoder::ValType::F64,
ValType::V128 => wasm_encoder::ValType::V128,
// We encode all references as null in the core dump, so
// choose the common super type of all the actual function
// reference types. This lets us avoid needing to figure out
// what a concrete type reference's index is in the local
// core dump index space.
ValType::Ref(r) => match r.heap_type().top() {
HeapType::Extern => wasm_encoder::ValType::EXTERNREF,
HeapType::Func => wasm_encoder::ValType::FUNCREF,
HeapType::Any => wasm_encoder::ValType::Ref(wasm_encoder::RefType::ANYREF),
ty => unreachable!("not a top type: {ty:?}"),
},
};
let init = match g.get(&mut store) {
Val::I32(x) => wasm_encoder::ConstExpr::i32_const(x),
Val::I64(x) => wasm_encoder::ConstExpr::i64_const(x),
Val::F32(x) => wasm_encoder::ConstExpr::f32_const(f32::from_bits(x)),
Val::F64(x) => wasm_encoder::ConstExpr::f64_const(f64::from_bits(x)),
Val::V128(x) => wasm_encoder::ConstExpr::v128_const(x.as_u128() as i128),
Val::FuncRef(_) => {
wasm_encoder::ConstExpr::ref_null(wasm_encoder::HeapType::FUNC)
}
Val::ExternRef(_) => {
wasm_encoder::ConstExpr::ref_null(wasm_encoder::HeapType::EXTERN)
}
Val::AnyRef(_) => {
wasm_encoder::ConstExpr::ref_null(wasm_encoder::HeapType::ANY)
}
};
globals.global(
wasm_encoder::GlobalType {
val_type,
mutable,
shared: false,
},
&init,
);
}
core_dump.section(&globals);
}
core_dump.section(&data);
drop(data);
// A map from module id to its index within the core dump's modules
// section.
let mut module_to_index = HashMap::new();
{
let mut modules = wasm_encoder::CoreDumpModulesSection::new();
for module in self.modules() {
module_to_index.insert(module.id(), modules.len());
match module.name() {
Some(name) => modules.module(name),
None => modules.module(&format!("<anonymous-module-{}>", modules.len())),
};
}
core_dump.section(&modules);
}
// TODO: We can't currently recover instances from stack frames. We can
// recover module via the frame's PC, but if there are multiple
// instances of the same module, we don't know which instance the frame
// is associated with. Therefore, we do a best effort job: remember the
// last instance of each module and always choose that one. We record
// that information here.
let mut module_to_instance = HashMap::new();
{
let mut instances = wasm_encoder::CoreDumpInstancesSection::new();
for instance in self.instances() {
let module = instance.module(&store);
module_to_instance.insert(module.id(), instances.len());
let module_index = module_to_index[&module.id()];
let memories = instance
.all_memories(&mut store.0)
.collect::<Vec<_>>()
.into_iter()
.map(|(_i, memory)| memory_to_idx[&memory.hash_key(&store.0)])
.collect::<Vec<_>>();
let globals = instance
.all_globals(&mut store.0)
.collect::<Vec<_>>()
.into_iter()
.map(|(_i, global)| global_to_idx[&global.hash_key(&store.0)])
.collect::<Vec<_>>();
instances.instance(module_index, memories, globals);
}
core_dump.section(&instances);
}
{
let thread_name = "main";
let mut stack = wasm_encoder::CoreDumpStackSection::new(thread_name);
for frame in self.frames() {
// This isn't necessarily the right instance if there are
// multiple instances of the same module. See comment above
// `module_to_instance` for details.
let instance = module_to_instance[&frame.module().id()];
let func = frame.func_index();
let offset = frame
.func_offset()
.and_then(|o| u32::try_from(o).ok())
.unwrap_or(0);
// We can't currently recover locals and the operand stack. We
// should eventually be able to do that with Winch though.
let locals = [];
let operand_stack = [];
stack.frame(instance, func, offset, locals, operand_stack);
}
core_dump.section(&stack);
}
core_dump.finish()
}
}
impl fmt::Display for WasmCoreDump {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
writeln!(f, "wasm coredump generated while executing {}:", self.name)?;
writeln!(f, "modules:")?;
for module in self.modules.iter() {
writeln!(f, " {}", module.name().unwrap_or("<module>"))?;
}
writeln!(f, "instances:")?;
for instance in self.instances.iter() {
writeln!(f, " {instance:?}")?;
}
writeln!(f, "memories:")?;
for memory in self.memories.iter() {
writeln!(f, " {memory:?}")?;
}
writeln!(f, "globals:")?;
for global in self.globals.iter() {
writeln!(f, " {global:?}")?;
}
writeln!(f, "backtrace:")?;
write!(f, "{}", self.backtrace)?;
Ok(())
}
}
impl fmt::Debug for WasmCoreDump {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "<wasm core dump>")
}
}