wasmtime/runtime/func.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
use crate::prelude::*;
use crate::runtime::vm::{
ExportFunction, SendSyncPtr, StoreBox, VMArrayCallHostFuncContext, VMContext, VMFuncRef,
VMFunctionImport, VMOpaqueContext,
};
use crate::runtime::Uninhabited;
use crate::store::{AutoAssertNoGc, StoreData, StoreOpaque, Stored};
use crate::type_registry::RegisteredType;
use crate::{
AsContext, AsContextMut, CallHook, Engine, Extern, FuncType, Instance, Module, Ref,
StoreContext, StoreContextMut, Val, ValRaw, ValType,
};
use alloc::sync::Arc;
use core::ffi::c_void;
use core::future::Future;
use core::mem::{self, MaybeUninit};
use core::num::NonZeroUsize;
use core::pin::Pin;
use core::ptr::{self, NonNull};
use wasmtime_environ::VMSharedTypeIndex;
/// A reference to the abstract `nofunc` heap value.
///
/// The are no instances of `(ref nofunc)`: it is an uninhabited type.
///
/// There is precisely one instance of `(ref null nofunc)`, aka `nullfuncref`:
/// the null reference.
///
/// This `NoFunc` Rust type's sole purpose is for use with [`Func::wrap`]- and
/// [`Func::typed`]-style APIs for statically typing a function as taking or
/// returning a `(ref null nofunc)` (aka `Option<NoFunc>`) which is always
/// `None`.
///
/// # Example
///
/// ```
/// # use wasmtime::*;
/// # fn _foo() -> Result<()> {
/// let mut config = Config::new();
/// config.wasm_function_references(true);
/// let engine = Engine::new(&config)?;
///
/// let module = Module::new(
/// &engine,
/// r#"
/// (module
/// (func (export "f") (param (ref null nofunc))
/// ;; If the reference is null, return.
/// local.get 0
/// ref.is_null nofunc
/// br_if 0
///
/// ;; If the reference was not null (which is impossible)
/// ;; then raise a trap.
/// unreachable
/// )
/// )
/// "#,
/// )?;
///
/// let mut store = Store::new(&engine, ());
/// let instance = Instance::new(&mut store, &module, &[])?;
/// let f = instance.get_func(&mut store, "f").unwrap();
///
/// // We can cast a `(ref null nofunc)`-taking function into a typed function that
/// // takes an `Option<NoFunc>` via the `Func::typed` method.
/// let f = f.typed::<Option<NoFunc>, ()>(&store)?;
///
/// // We can call the typed function, passing the null `nofunc` reference.
/// let result = f.call(&mut store, NoFunc::null());
///
/// // The function should not have trapped, because the reference we gave it was
/// // null (as it had to be, since `NoFunc` is uninhabited).
/// assert!(result.is_ok());
/// # Ok(())
/// # }
/// ```
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct NoFunc {
_inner: Uninhabited,
}
impl NoFunc {
/// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference.
#[inline]
pub fn null() -> Option<NoFunc> {
None
}
/// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
/// [`Ref`].
#[inline]
pub fn null_ref() -> Ref {
Ref::Func(None)
}
/// Get the null `(ref null nofunc)` (aka `nullfuncref`) reference as a
/// [`Val`].
#[inline]
pub fn null_val() -> Val {
Val::FuncRef(None)
}
}
/// A WebAssembly function which can be called.
///
/// This type typically represents an exported function from a WebAssembly
/// module instance. In this case a [`Func`] belongs to an [`Instance`] and is
/// loaded from there. A [`Func`] may also represent a host function as well in
/// some cases, too.
///
/// Functions can be called in a few different ways, either synchronous or async
/// and either typed or untyped (more on this below). Note that host functions
/// are normally inserted directly into a [`Linker`](crate::Linker) rather than
/// using this directly, but both options are available.
///
/// # `Func` and `async`
///
/// Functions from the perspective of WebAssembly are always synchronous. You
/// might have an `async` function in Rust, however, which you'd like to make
/// available from WebAssembly. Wasmtime supports asynchronously calling
/// WebAssembly through native stack switching. You can get some more
/// information about [asynchronous configs](crate::Config::async_support), but
/// from the perspective of `Func` it's important to know that whether or not
/// your [`Store`](crate::Store) is asynchronous will dictate whether you call
/// functions through [`Func::call`] or [`Func::call_async`] (or the typed
/// wrappers such as [`TypedFunc::call`] vs [`TypedFunc::call_async`]).
///
/// # To `Func::call` or to `Func::typed().call()`
///
/// There's a 2x2 matrix of methods to call [`Func`]. Invocations can either be
/// asynchronous or synchronous. They can also be statically typed or not.
/// Whether or not an invocation is asynchronous is indicated via the method
/// being `async` and [`call_async`](Func::call_async) being the entry point.
/// Otherwise for statically typed or not your options are:
///
/// * Dynamically typed - if you don't statically know the signature of the
/// function that you're calling you'll be using [`Func::call`] or
/// [`Func::call_async`]. These functions take a variable-length slice of
/// "boxed" arguments in their [`Val`] representation. Additionally the
/// results are returned as an owned slice of [`Val`]. These methods are not
/// optimized due to the dynamic type checks that must occur, in addition to
/// some dynamic allocations for where to put all the arguments. While this
/// allows you to call all possible wasm function signatures, if you're
/// looking for a speedier alternative you can also use...
///
/// * Statically typed - if you statically know the type signature of the wasm
/// function you're calling, then you'll want to use the [`Func::typed`]
/// method to acquire an instance of [`TypedFunc`]. This structure is static proof
/// that the underlying wasm function has the ascripted type, and type
/// validation is only done once up-front. The [`TypedFunc::call`] and
/// [`TypedFunc::call_async`] methods are much more efficient than [`Func::call`]
/// and [`Func::call_async`] because the type signature is statically known.
/// This eschews runtime checks as much as possible to get into wasm as fast
/// as possible.
///
/// # Examples
///
/// One way to get a `Func` is from an [`Instance`] after you've instantiated
/// it:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
/// let mut store = Store::new(&engine, ());
/// let instance = Instance::new(&mut store, &module, &[])?;
/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
///
/// // Work with `foo` as a `Func` at this point, such as calling it
/// // dynamically...
/// match foo.call(&mut store, &[], &mut []) {
/// Ok(()) => { /* ... */ }
/// Err(trap) => {
/// panic!("execution of `foo` resulted in a wasm trap: {}", trap);
/// }
/// }
/// foo.call(&mut store, &[], &mut [])?;
///
/// // ... or we can make a static assertion about its signature and call it.
/// // Our first call here can fail if the signatures don't match, and then the
/// // second call can fail if the function traps (like the `match` above).
/// let foo = foo.typed::<(), ()>(&store)?;
/// foo.call(&mut store, ())?;
/// # Ok(())
/// # }
/// ```
///
/// You can also use the [`wrap` function](Func::wrap) to create a
/// `Func`
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let mut store = Store::<()>::default();
///
/// // Create a custom `Func` which can execute arbitrary code inside of the
/// // closure.
/// let add = Func::wrap(&mut store, |a: i32, b: i32| -> i32 { a + b });
///
/// // Next we can hook that up to a wasm module which uses it.
/// let module = Module::new(
/// store.engine(),
/// r#"
/// (module
/// (import "" "" (func $add (param i32 i32) (result i32)))
/// (func (export "call_add_twice") (result i32)
/// i32.const 1
/// i32.const 2
/// call $add
/// i32.const 3
/// i32.const 4
/// call $add
/// i32.add))
/// "#,
/// )?;
/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
/// let call_add_twice = instance.get_typed_func::<(), i32>(&mut store, "call_add_twice")?;
///
/// assert_eq!(call_add_twice.call(&mut store, ())?, 10);
/// # Ok(())
/// # }
/// ```
///
/// Or you could also create an entirely dynamic `Func`!
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let mut store = Store::<()>::default();
///
/// // Here we need to define the type signature of our `Double` function and
/// // then wrap it up in a `Func`
/// let double_type = wasmtime::FuncType::new(
/// store.engine(),
/// [wasmtime::ValType::I32].iter().cloned(),
/// [wasmtime::ValType::I32].iter().cloned(),
/// );
/// let double = Func::new(&mut store, double_type, |_, params, results| {
/// let mut value = params[0].unwrap_i32();
/// value *= 2;
/// results[0] = value.into();
/// Ok(())
/// });
///
/// let module = Module::new(
/// store.engine(),
/// r#"
/// (module
/// (import "" "" (func $double (param i32) (result i32)))
/// (func $start
/// i32.const 1
/// call $double
/// drop)
/// (start $start))
/// "#,
/// )?;
/// let instance = Instance::new(&mut store, &module, &[double.into()])?;
/// // .. work with `instance` if necessary
/// # Ok(())
/// # }
/// ```
#[derive(Copy, Clone, Debug)]
#[repr(transparent)] // here for the C API
pub struct Func(Stored<FuncData>);
pub(crate) struct FuncData {
kind: FuncKind,
// A pointer to the in-store `VMFuncRef` for this function, if
// any.
//
// When a function is passed to Wasm but doesn't have a Wasm-to-native
// trampoline, we have to patch it in. But that requires mutating the
// `VMFuncRef`, and this function could be shared across
// threads. So we instead copy and pin the `VMFuncRef` into
// `StoreOpaque::func_refs`, where we can safely patch the field without
// worrying about synchronization and we hold a pointer to it here so we can
// reuse it rather than re-copy if it is passed to Wasm again.
in_store_func_ref: Option<SendSyncPtr<VMFuncRef>>,
// This is somewhat expensive to load from the `Engine` and in most
// optimized use cases (e.g. `TypedFunc`) it's not actually needed or it's
// only needed rarely. To handle that this is an optionally-contained field
// which is lazily loaded into as part of `Func::call`.
//
// Also note that this is intentionally placed behind a pointer to keep it
// small as `FuncData` instances are often inserted into a `Store`.
ty: Option<Box<FuncType>>,
}
/// The three ways that a function can be created and referenced from within a
/// store.
enum FuncKind {
/// A function already owned by the store via some other means. This is
/// used, for example, when creating a `Func` from an instance's exported
/// function. The instance's `InstanceHandle` is already owned by the store
/// and we just have some pointers into that which represent how to call the
/// function.
StoreOwned { export: ExportFunction },
/// A function is shared across possibly other stores, hence the `Arc`. This
/// variant happens when a `Linker`-defined function is instantiated within
/// a `Store` (e.g. via `Linker::get` or similar APIs). The `Arc` here
/// indicates that there's some number of other stores holding this function
/// too, so dropping this may not deallocate the underlying
/// `InstanceHandle`.
SharedHost(Arc<HostFunc>),
/// A uniquely-owned host function within a `Store`. This comes about with
/// `Func::new` or similar APIs. The `HostFunc` internally owns the
/// `InstanceHandle` and that will get dropped when this `HostFunc` itself
/// is dropped.
///
/// Note that this is intentionally placed behind a `Box` to minimize the
/// size of this enum since the most common variant for high-performance
/// situations is `SharedHost` and `StoreOwned`, so this ideally isn't
/// larger than those two.
Host(Box<HostFunc>),
/// A reference to a `HostFunc`, but one that's "rooted" in the `Store`
/// itself.
///
/// This variant is created when an `InstancePre<T>` is instantiated in to a
/// `Store<T>`. In that situation the `InstancePre<T>` already has a list of
/// host functions that are packaged up in an `Arc`, so the `Arc<[T]>` is
/// cloned once into the `Store` to avoid each individual function requiring
/// an `Arc::clone`.
///
/// The lifetime management of this type is `unsafe` because
/// `RootedHostFunc` is a small wrapper around `NonNull<HostFunc>`. To be
/// safe this is required that the memory of the host function is pinned
/// elsewhere (e.g. the `Arc` in the `Store`).
RootedHost(RootedHostFunc),
}
macro_rules! for_each_function_signature {
($mac:ident) => {
$mac!(0);
$mac!(1 A1);
$mac!(2 A1 A2);
$mac!(3 A1 A2 A3);
$mac!(4 A1 A2 A3 A4);
$mac!(5 A1 A2 A3 A4 A5);
$mac!(6 A1 A2 A3 A4 A5 A6);
$mac!(7 A1 A2 A3 A4 A5 A6 A7);
$mac!(8 A1 A2 A3 A4 A5 A6 A7 A8);
$mac!(9 A1 A2 A3 A4 A5 A6 A7 A8 A9);
$mac!(10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10);
$mac!(11 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11);
$mac!(12 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12);
$mac!(13 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13);
$mac!(14 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14);
$mac!(15 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15);
$mac!(16 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16);
$mac!(17 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17);
};
}
mod typed;
pub use typed::*;
impl Func {
/// Creates a new `Func` with the given arguments, typically to create a
/// host-defined function to pass as an import to a module.
///
/// * `store` - the store in which to create this [`Func`], which will own
/// the return value.
///
/// * `ty` - the signature of this function, used to indicate what the
/// inputs and outputs are.
///
/// * `func` - the native code invoked whenever this `Func` will be called.
/// This closure is provided a [`Caller`] as its first argument to learn
/// information about the caller, and then it's passed a list of
/// parameters as a slice along with a mutable slice of where to write
/// results.
///
/// Note that the implementation of `func` must adhere to the `ty` signature
/// given, error or traps may occur if it does not respect the `ty`
/// signature. For example if the function type declares that it returns one
/// i32 but the `func` closures does not write anything into the results
/// slice then a trap may be generated.
///
/// Additionally note that this is quite a dynamic function since signatures
/// are not statically known. For a more performant and ergonomic `Func`
/// it's recommended to use [`Func::wrap`] if you can because with
/// statically known signatures Wasmtime can optimize the implementation
/// much more.
///
/// For more information about `Send + Sync + 'static` requirements on the
/// `func`, see [`Func::wrap`](#why-send--sync--static).
///
/// # Errors
///
/// The host-provided function here returns a
/// [`Result<()>`](anyhow::Result). If the function returns `Ok(())` then
/// that indicates that the host function completed successfully and wrote
/// the result into the `&mut [Val]` argument.
///
/// If the function returns `Err(e)`, however, then this is equivalent to
/// the host function triggering a trap for wasm. WebAssembly execution is
/// immediately halted and the original caller of [`Func::call`], for
/// example, will receive the error returned here (possibly with
/// [`WasmBacktrace`](crate::WasmBacktrace) context information attached).
///
/// For more information about errors in Wasmtime see the [`Trap`]
/// documentation.
///
/// [`Trap`]: crate::Trap
///
/// # Panics
///
/// Panics if the given function type is not associated with this store's
/// engine.
pub fn new<T>(
store: impl AsContextMut<Data = T>,
ty: FuncType,
func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
) -> Self {
assert!(ty.comes_from_same_engine(store.as_context().engine()));
let ty_clone = ty.clone();
unsafe {
Func::new_unchecked(store, ty, move |caller, values| {
Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
})
}
}
/// Creates a new [`Func`] with the given arguments, although has fewer
/// runtime checks than [`Func::new`].
///
/// This function takes a callback of a different signature than
/// [`Func::new`], instead receiving a raw pointer with a list of [`ValRaw`]
/// structures. These values have no type information associated with them
/// so it's up to the caller to provide a function that will correctly
/// interpret the list of values as those coming from the `ty` specified.
///
/// If you're calling this from Rust it's recommended to either instead use
/// [`Func::new`] or [`Func::wrap`]. The [`Func::wrap`] API, in particular,
/// is both safer and faster than this API.
///
/// # Errors
///
/// See [`Func::new`] for the behavior of returning an error from the host
/// function provided here.
///
/// # Unsafety
///
/// This function is not safe because it's not known at compile time that
/// the `func` provided correctly interprets the argument types provided to
/// it, or that the results it produces will be of the correct type.
///
/// # Panics
///
/// Panics if the given function type is not associated with this store's
/// engine.
pub unsafe fn new_unchecked<T>(
mut store: impl AsContextMut<Data = T>,
ty: FuncType,
func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
) -> Self {
assert!(ty.comes_from_same_engine(store.as_context().engine()));
let store = store.as_context_mut().0;
let host = HostFunc::new_unchecked(store.engine(), ty, func);
host.into_func(store)
}
/// Creates a new host-defined WebAssembly function which, when called,
/// will run the asynchronous computation defined by `func` to completion
/// and then return the result to WebAssembly.
///
/// This function is the asynchronous analogue of [`Func::new`] and much of
/// that documentation applies to this as well. The key difference is that
/// `func` returns a future instead of simply a `Result`. Note that the
/// returned future can close over any of the arguments, but it cannot close
/// over the state of the closure itself. It's recommended to store any
/// necessary async state in the `T` of the [`Store<T>`](crate::Store) which
/// can be accessed through [`Caller::data`] or [`Caller::data_mut`].
///
/// For more information on `Send + Sync + 'static`, see
/// [`Func::wrap`](#why-send--sync--static).
///
/// # Panics
///
/// This function will panic if `store` is not associated with an [async
/// config](crate::Config::async_support).
///
/// Panics if the given function type is not associated with this store's
/// engine.
///
/// # Errors
///
/// See [`Func::new`] for the behavior of returning an error from the host
/// function provided here.
///
/// # Examples
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// // Simulate some application-specific state as well as asynchronous
/// // functions to query that state.
/// struct MyDatabase {
/// // ...
/// }
///
/// impl MyDatabase {
/// async fn get_row_count(&self) -> u32 {
/// // ...
/// # 100
/// }
/// }
///
/// let my_database = MyDatabase {
/// // ...
/// };
///
/// // Using `new_async` we can hook up into calling our async
/// // `get_row_count` function.
/// let engine = Engine::new(Config::new().async_support(true))?;
/// let mut store = Store::new(&engine, MyDatabase {
/// // ...
/// });
/// let get_row_count_type = wasmtime::FuncType::new(
/// &engine,
/// None,
/// Some(wasmtime::ValType::I32),
/// );
/// let get = Func::new_async(&mut store, get_row_count_type, |caller, _params, results| {
/// Box::new(async move {
/// let count = caller.data().get_row_count().await;
/// results[0] = Val::I32(count as i32);
/// Ok(())
/// })
/// });
/// // ...
/// # Ok(())
/// # }
/// ```
#[cfg(all(feature = "async", feature = "cranelift"))]
pub fn new_async<T, F>(store: impl AsContextMut<Data = T>, ty: FuncType, func: F) -> Func
where
F: for<'a> Fn(
Caller<'a, T>,
&'a [Val],
&'a mut [Val],
) -> Box<dyn Future<Output = Result<()>> + Send + 'a>
+ Send
+ Sync
+ 'static,
{
assert!(
store.as_context().async_support(),
"cannot use `new_async` without enabling async support in the config"
);
assert!(ty.comes_from_same_engine(store.as_context().engine()));
Func::new(store, ty, move |mut caller, params, results| {
let async_cx = caller
.store
.as_context_mut()
.0
.async_cx()
.expect("Attempt to spawn new action on dying fiber");
let mut future = Pin::from(func(caller, params, results));
match unsafe { async_cx.block_on(future.as_mut()) } {
Ok(Ok(())) => Ok(()),
Ok(Err(trap)) | Err(trap) => Err(trap),
}
})
}
pub(crate) unsafe fn from_vm_func_ref(
store: &mut StoreOpaque,
raw: *mut VMFuncRef,
) -> Option<Func> {
let func_ref = NonNull::new(raw)?;
debug_assert!(func_ref.as_ref().type_index != VMSharedTypeIndex::default());
let export = ExportFunction { func_ref };
Some(Func::from_wasmtime_function(export, store))
}
/// Creates a new `Func` from the given Rust closure.
///
/// This function will create a new `Func` which, when called, will
/// execute the given Rust closure. Unlike [`Func::new`] the target
/// function being called is known statically so the type signature can
/// be inferred. Rust types will map to WebAssembly types as follows:
///
/// | Rust Argument Type | WebAssembly Type |
/// |-----------------------------------|-------------------------------------------|
/// | `i32` | `i32` |
/// | `u32` | `i32` |
/// | `i64` | `i64` |
/// | `u64` | `i64` |
/// | `f32` | `f32` |
/// | `f64` | `f64` |
/// | `V128` on x86-64 and aarch64 only | `v128` |
/// | `Option<Func>` | `funcref` aka `(ref null func)` |
/// | `Func` | `(ref func)` |
/// | `Option<Nofunc>` | `nullfuncref` aka `(ref null nofunc)` |
/// | `NoFunc` | `(ref nofunc)` |
/// | `Option<Rooted<ExternRef>>` | `externref` aka `(ref null extern)` |
/// | `Rooted<ExternRef>` | `(ref extern)` |
/// | `Option<NoExtern>` | `nullexternref` aka `(ref null noextern)` |
/// | `NoExtern` | `(ref noextern)` |
/// | `Option<Rooted<AnyRef>>` | `anyref` aka `(ref null any)` |
/// | `Rooted<AnyRef>` | `(ref any)` |
/// | `Option<Rooted<EqRef>>` | `eqref` aka `(ref null eq)` |
/// | `Rooted<EqRef>` | `(ref eq)` |
/// | `Option<I31>` | `i31ref` aka `(ref null i31)` |
/// | `I31` | `(ref i31)` |
/// | `Option<Rooted<StructRef>>` | `(ref null struct)` |
/// | `Rooted<StructRef>` | `(ref struct)` |
/// | `Option<Rooted<ArrayRef>>` | `(ref null array)` |
/// | `Rooted<ArrayRef>` | `(ref array)` |
///
/// Note that anywhere a `Rooted<T>` appears, a `ManuallyRooted<T>` may also
/// be used.
///
/// Any of the Rust types can be returned from the closure as well, in
/// addition to some extra types
///
/// | Rust Return Type | WebAssembly Return Type | Meaning |
/// |-------------------|-------------------------|-----------------------|
/// | `()` | nothing | no return value |
/// | `T` | `T` | a single return value |
/// | `(T1, T2, ...)` | `T1 T2 ...` | multiple returns |
///
/// Note that all return types can also be wrapped in `Result<_>` to
/// indicate that the host function can generate a trap as well as possibly
/// returning a value.
///
/// Finally you can also optionally take [`Caller`] as the first argument of
/// your closure. If inserted then you're able to inspect the caller's
/// state, for example the [`Memory`](crate::Memory) it has exported so you
/// can read what pointers point to.
///
/// Note that when using this API, the intention is to create as thin of a
/// layer as possible for when WebAssembly calls the function provided. With
/// sufficient inlining and optimization the WebAssembly will call straight
/// into `func` provided, with no extra fluff entailed.
///
/// # Why `Send + Sync + 'static`?
///
/// All host functions defined in a [`Store`](crate::Store) (including
/// those from [`Func::new`] and other constructors) require that the
/// `func` provided is `Send + Sync + 'static`. Additionally host functions
/// always are `Fn` as opposed to `FnMut` or `FnOnce`. This can at-a-glance
/// feel restrictive since the closure cannot close over as many types as
/// before. The reason for this, though, is to ensure that
/// [`Store<T>`](crate::Store) can implement both the `Send` and `Sync`
/// traits.
///
/// Fear not, however, because this isn't as restrictive as it seems! Host
/// functions are provided a [`Caller<'_, T>`](crate::Caller) argument which
/// allows access to the host-defined data within the
/// [`Store`](crate::Store). The `T` type is not required to be any of
/// `Send`, `Sync`, or `'static`! This means that you can store whatever
/// you'd like in `T` and have it accessible by all host functions.
/// Additionally mutable access to `T` is allowed through
/// [`Caller::data_mut`].
///
/// Most host-defined [`Func`] values provide closures that end up not
/// actually closing over any values. These zero-sized types will use the
/// context from [`Caller`] for host-defined information.
///
/// # Errors
///
/// The closure provided here to `wrap` can optionally return a
/// [`Result<T>`](anyhow::Result). Returning `Ok(t)` represents the host
/// function successfully completing with the `t` result. Returning
/// `Err(e)`, however, is equivalent to raising a custom wasm trap.
/// Execution of WebAssembly does not resume and the stack is unwound to the
/// original caller of the function where the error is returned.
///
/// For more information about errors in Wasmtime see the [`Trap`]
/// documentation.
///
/// [`Trap`]: crate::Trap
///
/// # Examples
///
/// First up we can see how simple wasm imports can be implemented, such
/// as a function that adds its two arguments and returns the result.
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let mut store = Store::<()>::default();
/// let add = Func::wrap(&mut store, |a: i32, b: i32| a + b);
/// let module = Module::new(
/// store.engine(),
/// r#"
/// (module
/// (import "" "" (func $add (param i32 i32) (result i32)))
/// (func (export "foo") (param i32 i32) (result i32)
/// local.get 0
/// local.get 1
/// call $add))
/// "#,
/// )?;
/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
/// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
/// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
/// # Ok(())
/// # }
/// ```
///
/// We can also do the same thing, but generate a trap if the addition
/// overflows:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let mut store = Store::<()>::default();
/// let add = Func::wrap(&mut store, |a: i32, b: i32| {
/// match a.checked_add(b) {
/// Some(i) => Ok(i),
/// None => anyhow::bail!("overflow"),
/// }
/// });
/// let module = Module::new(
/// store.engine(),
/// r#"
/// (module
/// (import "" "" (func $add (param i32 i32) (result i32)))
/// (func (export "foo") (param i32 i32) (result i32)
/// local.get 0
/// local.get 1
/// call $add))
/// "#,
/// )?;
/// let instance = Instance::new(&mut store, &module, &[add.into()])?;
/// let foo = instance.get_typed_func::<(i32, i32), i32>(&mut store, "foo")?;
/// assert_eq!(foo.call(&mut store, (1, 2))?, 3);
/// assert!(foo.call(&mut store, (i32::max_value(), 1)).is_err());
/// # Ok(())
/// # }
/// ```
///
/// And don't forget all the wasm types are supported!
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let mut store = Store::<()>::default();
/// let debug = Func::wrap(&mut store, |a: i32, b: u32, c: f32, d: i64, e: u64, f: f64| {
///
/// println!("a={}", a);
/// println!("b={}", b);
/// println!("c={}", c);
/// println!("d={}", d);
/// println!("e={}", e);
/// println!("f={}", f);
/// });
/// let module = Module::new(
/// store.engine(),
/// r#"
/// (module
/// (import "" "" (func $debug (param i32 i32 f32 i64 i64 f64)))
/// (func (export "foo")
/// i32.const -1
/// i32.const 1
/// f32.const 2
/// i64.const -3
/// i64.const 3
/// f64.const 4
/// call $debug))
/// "#,
/// )?;
/// let instance = Instance::new(&mut store, &module, &[debug.into()])?;
/// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
/// foo.call(&mut store, ())?;
/// # Ok(())
/// # }
/// ```
///
/// Finally if you want to get really fancy you can also implement
/// imports that read/write wasm module's memory
///
/// ```
/// use std::str;
///
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// # let mut store = Store::default();
/// let log_str = Func::wrap(&mut store, |mut caller: Caller<'_, ()>, ptr: i32, len: i32| {
/// let mem = match caller.get_export("memory") {
/// Some(Extern::Memory(mem)) => mem,
/// _ => anyhow::bail!("failed to find host memory"),
/// };
/// let data = mem.data(&caller)
/// .get(ptr as u32 as usize..)
/// .and_then(|arr| arr.get(..len as u32 as usize));
/// let string = match data {
/// Some(data) => match str::from_utf8(data) {
/// Ok(s) => s,
/// Err(_) => anyhow::bail!("invalid utf-8"),
/// },
/// None => anyhow::bail!("pointer/length out of bounds"),
/// };
/// assert_eq!(string, "Hello, world!");
/// println!("{}", string);
/// Ok(())
/// });
/// let module = Module::new(
/// store.engine(),
/// r#"
/// (module
/// (import "" "" (func $log_str (param i32 i32)))
/// (func (export "foo")
/// i32.const 4 ;; ptr
/// i32.const 13 ;; len
/// call $log_str)
/// (memory (export "memory") 1)
/// (data (i32.const 4) "Hello, world!"))
/// "#,
/// )?;
/// let instance = Instance::new(&mut store, &module, &[log_str.into()])?;
/// let foo = instance.get_typed_func::<(), ()>(&mut store, "foo")?;
/// foo.call(&mut store, ())?;
/// # Ok(())
/// # }
/// ```
pub fn wrap<T, Params, Results>(
mut store: impl AsContextMut<Data = T>,
func: impl IntoFunc<T, Params, Results>,
) -> Func {
let store = store.as_context_mut().0;
// part of this unsafety is about matching the `T` to a `Store<T>`,
// which is done through the `AsContextMut` bound above.
unsafe {
let host = HostFunc::wrap(store.engine(), func);
host.into_func(store)
}
}
fn wrap_inner<F, T, Params, Results>(mut store: impl AsContextMut<Data = T>, func: F) -> Func
where
F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
Params: WasmTyList,
Results: WasmRet,
{
let store = store.as_context_mut().0;
// part of this unsafety is about matching the `T` to a `Store<T>`,
// which is done through the `AsContextMut` bound above.
unsafe {
let host = HostFunc::wrap_inner(store.engine(), func);
host.into_func(store)
}
}
/// Same as [`Func::wrap`], except the closure asynchronously produces the
/// result and the arguments are passed within a tuple. For more information
/// see the [`Func`] documentation.
///
/// # Panics
///
/// This function will panic if called with a non-asynchronous store.
#[cfg(feature = "async")]
pub fn wrap_async<T, F, P, R>(store: impl AsContextMut<Data = T>, func: F) -> Func
where
F: for<'a> Fn(Caller<'a, T>, P) -> Box<dyn Future<Output = R> + Send + 'a>
+ Send
+ Sync
+ 'static,
P: WasmTyList,
R: WasmRet,
{
assert!(
store.as_context().async_support(),
concat!("cannot use `wrap_async` without enabling async support on the config")
);
Func::wrap_inner(store, move |mut caller: Caller<'_, T>, args| {
let async_cx = caller
.store
.as_context_mut()
.0
.async_cx()
.expect("Attempt to start async function on dying fiber");
let mut future = Pin::from(func(caller, args));
match unsafe { async_cx.block_on(future.as_mut()) } {
Ok(ret) => ret.into_fallible(),
Err(e) => R::fallible_from_error(e),
}
})
}
/// Returns the underlying wasm type that this `Func` has.
///
/// # Panics
///
/// Panics if `store` does not own this function.
pub fn ty(&self, store: impl AsContext) -> FuncType {
self.load_ty(&store.as_context().0)
}
/// Forcibly loads the type of this function from the `Engine`.
///
/// Note that this is a somewhat expensive method since it requires taking a
/// lock as well as cloning a type.
pub(crate) fn load_ty(&self, store: &StoreOpaque) -> FuncType {
assert!(self.comes_from_same_store(store));
FuncType::from_shared_type_index(store.engine(), self.type_index(store.store_data()))
}
/// Does this function match the given type?
///
/// That is, is this function's type a subtype of the given type?
///
/// # Panics
///
/// Panics if this function is not associated with the given store or if the
/// function type is not associated with the store's engine.
pub fn matches_ty(&self, store: impl AsContext, func_ty: &FuncType) -> bool {
self._matches_ty(store.as_context().0, func_ty)
}
pub(crate) fn _matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> bool {
let actual_ty = self.load_ty(store);
actual_ty.matches(func_ty)
}
pub(crate) fn ensure_matches_ty(&self, store: &StoreOpaque, func_ty: &FuncType) -> Result<()> {
if !self.comes_from_same_store(store) {
bail!("function used with wrong store");
}
if self._matches_ty(store, func_ty) {
Ok(())
} else {
let actual_ty = self.load_ty(store);
bail!("type mismatch: expected {func_ty}, found {actual_ty}")
}
}
/// Gets a reference to the `FuncType` for this function.
///
/// Note that this returns both a reference to the type of this function as
/// well as a reference back to the store itself. This enables using the
/// `StoreOpaque` while the `FuncType` is also being used (from the
/// perspective of the borrow-checker) because otherwise the signature would
/// consider `StoreOpaque` borrowed mutable while `FuncType` is in use.
fn ty_ref<'a>(&self, store: &'a mut StoreOpaque) -> (&'a FuncType, &'a StoreOpaque) {
// If we haven't loaded our type into the store yet then do so lazily at
// this time.
if store.store_data()[self.0].ty.is_none() {
let ty = self.load_ty(store);
store.store_data_mut()[self.0].ty = Some(Box::new(ty));
}
(store.store_data()[self.0].ty.as_ref().unwrap(), store)
}
pub(crate) fn type_index(&self, data: &StoreData) -> VMSharedTypeIndex {
data[self.0].sig_index()
}
/// Invokes this function with the `params` given and writes returned values
/// to `results`.
///
/// The `params` here must match the type signature of this `Func`, or an
/// error will occur. Additionally `results` must have the same
/// length as the number of results for this function. Calling this function
/// will synchronously execute the WebAssembly function referenced to get
/// the results.
///
/// This function will return `Ok(())` if execution completed without a trap
/// or error of any kind. In this situation the results will be written to
/// the provided `results` array.
///
/// # Errors
///
/// Any error which occurs throughout the execution of the function will be
/// returned as `Err(e)`. The [`Error`](anyhow::Error) type can be inspected
/// for the precise error cause such as:
///
/// * [`Trap`] - indicates that a wasm trap happened and execution was
/// halted.
/// * [`WasmBacktrace`] - optionally included on errors for backtrace
/// information of the trap/error.
/// * Other string-based errors to indicate issues such as type errors with
/// `params`.
/// * Any host-originating error originally returned from a function defined
/// via [`Func::new`], for example.
///
/// Errors typically indicate that execution of WebAssembly was halted
/// mid-way and did not complete after the error condition happened.
///
/// [`Trap`]: crate::Trap
///
/// # Panics
///
/// This function will panic if called on a function belonging to an async
/// store. Asynchronous stores must always use `call_async`. Also panics if
/// `store` does not own this function.
///
/// [`WasmBacktrace`]: crate::WasmBacktrace
pub fn call(
&self,
mut store: impl AsContextMut,
params: &[Val],
results: &mut [Val],
) -> Result<()> {
assert!(
!store.as_context().async_support(),
"must use `call_async` when async support is enabled on the config",
);
let mut store = store.as_context_mut();
let need_gc = self.call_impl_check_args(&mut store, params, results)?;
if need_gc {
store.0.gc();
}
unsafe { self.call_impl_do_call(&mut store, params, results) }
}
/// Invokes this function in an "unchecked" fashion, reading parameters and
/// writing results to `params_and_returns`.
///
/// This function is the same as [`Func::call`] except that the arguments
/// and results both use a different representation. If possible it's
/// recommended to use [`Func::call`] if safety isn't necessary or to use
/// [`Func::typed`] in conjunction with [`TypedFunc::call`] since that's
/// both safer and faster than this method of invoking a function.
///
/// Note that if this function takes `externref` arguments then it will
/// **not** automatically GC unlike the [`Func::call`] and
/// [`TypedFunc::call`] functions. This means that if this function is
/// invoked many times with new `ExternRef` values and no other GC happens
/// via any other means then no values will get collected.
///
/// # Errors
///
/// For more information about errors see the [`Func::call`] documentation.
///
/// # Unsafety
///
/// This function is unsafe because the `params_and_returns` argument is not
/// validated at all. It must uphold invariants such as:
///
/// * It's a valid pointer to an array
/// * It has enough space to store all parameters
/// * It has enough space to store all results (not at the same time as
/// parameters)
/// * Parameters are initially written to the array and have the correct
/// types and such.
/// * Reference types like `externref` and `funcref` are valid at the
/// time of this call and for the `store` specified.
///
/// These invariants are all upheld for you with [`Func::call`] and
/// [`TypedFunc::call`].
pub unsafe fn call_unchecked(
&self,
mut store: impl AsContextMut,
params_and_returns: *mut ValRaw,
params_and_returns_capacity: usize,
) -> Result<()> {
let mut store = store.as_context_mut();
let data = &store.0.store_data()[self.0];
let func_ref = data.export().func_ref;
Self::call_unchecked_raw(
&mut store,
func_ref,
params_and_returns,
params_and_returns_capacity,
)
}
pub(crate) unsafe fn call_unchecked_raw<T>(
store: &mut StoreContextMut<'_, T>,
func_ref: NonNull<VMFuncRef>,
params_and_returns: *mut ValRaw,
params_and_returns_capacity: usize,
) -> Result<()> {
invoke_wasm_and_catch_traps(store, |caller| {
let func_ref = func_ref.as_ref();
(func_ref.array_call)(
func_ref.vmctx,
caller.cast::<VMOpaqueContext>(),
params_and_returns,
params_and_returns_capacity,
)
})
}
/// Converts the raw representation of a `funcref` into an `Option<Func>`
///
/// This is intended to be used in conjunction with [`Func::new_unchecked`],
/// [`Func::call_unchecked`], and [`ValRaw`] with its `funcref` field.
///
/// # Unsafety
///
/// This function is not safe because `raw` is not validated at all. The
/// caller must guarantee that `raw` is owned by the `store` provided and is
/// valid within the `store`.
pub unsafe fn from_raw(mut store: impl AsContextMut, raw: *mut c_void) -> Option<Func> {
Self::_from_raw(store.as_context_mut().0, raw)
}
pub(crate) unsafe fn _from_raw(store: &mut StoreOpaque, raw: *mut c_void) -> Option<Func> {
Func::from_vm_func_ref(store, raw.cast())
}
/// Extracts the raw value of this `Func`, which is owned by `store`.
///
/// This function returns a value that's suitable for writing into the
/// `funcref` field of the [`ValRaw`] structure.
///
/// # Unsafety
///
/// The returned value is only valid for as long as the store is alive and
/// this function is properly rooted within it. Additionally this function
/// should not be liberally used since it's a very low-level knob.
pub unsafe fn to_raw(&self, mut store: impl AsContextMut) -> *mut c_void {
self.vm_func_ref(store.as_context_mut().0).as_ptr().cast()
}
/// Invokes this function with the `params` given, returning the results
/// asynchronously.
///
/// This function is the same as [`Func::call`] except that it is
/// asynchronous. This is only compatible with stores associated with an
/// [asynchronous config](crate::Config::async_support).
///
/// It's important to note that the execution of WebAssembly will happen
/// synchronously in the `poll` method of the future returned from this
/// function. Wasmtime does not manage its own thread pool or similar to
/// execute WebAssembly in. Future `poll` methods are generally expected to
/// resolve quickly, so it's recommended that you run or poll this future
/// in a "blocking context".
///
/// For more information see the documentation on [asynchronous
/// configs](crate::Config::async_support).
///
/// # Errors
///
/// For more information on errors see the [`Func::call`] documentation.
///
/// # Panics
///
/// Panics if this is called on a function in a synchronous store. This
/// only works with functions defined within an asynchronous store. Also
/// panics if `store` does not own this function.
#[cfg(feature = "async")]
pub async fn call_async<T>(
&self,
mut store: impl AsContextMut<Data = T>,
params: &[Val],
results: &mut [Val],
) -> Result<()>
where
T: Send,
{
let mut store = store.as_context_mut();
assert!(
store.0.async_support(),
"cannot use `call_async` without enabling async support in the config",
);
let need_gc = self.call_impl_check_args(&mut store, params, results)?;
if need_gc {
store.0.gc_async().await;
}
let result = store
.on_fiber(|store| unsafe { self.call_impl_do_call(store, params, results) })
.await??;
Ok(result)
}
/// Perform dynamic checks that the arguments given to us match
/// the signature of this function and are appropriate to pass to this
/// function.
///
/// This involves checking to make sure we have the right number and types
/// of arguments as well as making sure everything is from the same `Store`.
///
/// This must be called just before `call_impl_do_call`.
///
/// Returns whether we need to GC before calling `call_impl_do_call`.
fn call_impl_check_args<T>(
&self,
store: &mut StoreContextMut<'_, T>,
params: &[Val],
results: &mut [Val],
) -> Result<bool> {
let (ty, opaque) = self.ty_ref(store.0);
if ty.params().len() != params.len() {
bail!(
"expected {} arguments, got {}",
ty.params().len(),
params.len()
);
}
if ty.results().len() != results.len() {
bail!(
"expected {} results, got {}",
ty.results().len(),
results.len()
);
}
for (ty, arg) in ty.params().zip(params) {
arg.ensure_matches_ty(opaque, &ty)
.context("argument type mismatch")?;
if !arg.comes_from_same_store(opaque) {
bail!("cross-`Store` values are not currently supported");
}
}
#[cfg(feature = "gc")]
{
// Check whether we need to GC before calling into Wasm.
//
// For example, with the DRC collector, whenever we pass GC refs
// from host code to Wasm code, they go into the
// `VMGcRefActivationsTable`. But the table might be at capacity
// already. If it is at capacity (unlikely) then we need to do a GC
// to free up space.
let num_gc_refs = ty.as_wasm_func_type().non_i31_gc_ref_params_count();
if let Some(num_gc_refs) = NonZeroUsize::new(num_gc_refs) {
return Ok(opaque
.gc_store()?
.gc_heap
.need_gc_before_entering_wasm(num_gc_refs));
}
}
Ok(false)
}
/// Do the actual call into Wasm.
///
/// # Safety
///
/// You must have type checked the arguments by calling
/// `call_impl_check_args` immediately before calling this function. It is
/// only safe to call this function if that one did not return an error.
unsafe fn call_impl_do_call<T>(
&self,
store: &mut StoreContextMut<'_, T>,
params: &[Val],
results: &mut [Val],
) -> Result<()> {
// Store the argument values into `values_vec`.
let (ty, _) = self.ty_ref(store.0);
let values_vec_size = params.len().max(ty.results().len());
let mut values_vec = store.0.take_wasm_val_raw_storage();
debug_assert!(values_vec.is_empty());
values_vec.resize_with(values_vec_size, || ValRaw::v128(0));
for (arg, slot) in params.iter().cloned().zip(&mut values_vec) {
unsafe {
*slot = arg.to_raw(&mut *store)?;
}
}
unsafe {
self.call_unchecked(&mut *store, values_vec.as_mut_ptr(), values_vec_size)?;
}
for ((i, slot), val) in results.iter_mut().enumerate().zip(&values_vec) {
let ty = self.ty_ref(store.0).0.results().nth(i).unwrap();
*slot = unsafe { Val::from_raw(&mut *store, *val, ty) };
}
values_vec.truncate(0);
store.0.save_wasm_val_raw_storage(values_vec);
Ok(())
}
#[inline]
pub(crate) fn vm_func_ref(&self, store: &mut StoreOpaque) -> NonNull<VMFuncRef> {
let func_data = &mut store.store_data_mut()[self.0];
let func_ref = func_data.export().func_ref;
if unsafe { func_ref.as_ref().wasm_call.is_some() } {
return func_ref;
}
if let Some(in_store) = func_data.in_store_func_ref {
in_store.as_non_null()
} else {
unsafe {
// Move this uncommon/slow path out of line.
self.copy_func_ref_into_store_and_fill(store, func_ref)
}
}
}
unsafe fn copy_func_ref_into_store_and_fill(
&self,
store: &mut StoreOpaque,
func_ref: NonNull<VMFuncRef>,
) -> NonNull<VMFuncRef> {
let func_ref = store.func_refs().push(func_ref.as_ref().clone());
store.store_data_mut()[self.0].in_store_func_ref = Some(SendSyncPtr::new(func_ref));
store.fill_func_refs();
func_ref
}
pub(crate) unsafe fn from_wasmtime_function(
export: ExportFunction,
store: &mut StoreOpaque,
) -> Self {
Func::from_func_kind(FuncKind::StoreOwned { export }, store)
}
fn from_func_kind(kind: FuncKind, store: &mut StoreOpaque) -> Self {
Func(store.store_data_mut().insert(FuncData {
kind,
in_store_func_ref: None,
ty: None,
}))
}
pub(crate) fn vmimport(&self, store: &mut StoreOpaque, module: &Module) -> VMFunctionImport {
unsafe {
let f = {
let func_data = &mut store.store_data_mut()[self.0];
// If we already patched this `funcref.wasm_call` and saved a
// copy in the store, use the patched version. Otherwise, use
// the potentially un-patched version.
if let Some(func_ref) = func_data.in_store_func_ref {
func_ref.as_non_null()
} else {
func_data.export().func_ref
}
};
VMFunctionImport {
wasm_call: if let Some(wasm_call) = f.as_ref().wasm_call {
wasm_call
} else {
// Assert that this is a array-call function, since those
// are the only ones that could be missing a `wasm_call`
// trampoline.
let _ = VMArrayCallHostFuncContext::from_opaque(f.as_ref().vmctx);
let sig = self.type_index(store.store_data());
module.wasm_to_array_trampoline(sig).expect(
"if the wasm is importing a function of a given type, it must have the \
type's trampoline",
)
},
array_call: f.as_ref().array_call,
vmctx: f.as_ref().vmctx,
}
}
}
pub(crate) fn comes_from_same_store(&self, store: &StoreOpaque) -> bool {
store.store_data().contains(self.0)
}
fn invoke_host_func_for_wasm<T>(
mut caller: Caller<'_, T>,
ty: &FuncType,
values_vec: &mut [ValRaw],
func: &dyn Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()>,
) -> Result<()> {
// Translate the raw JIT arguments in `values_vec` into a `Val` which
// we'll be passing as a slice. The storage for our slice-of-`Val` we'll
// be taking from the `Store`. We preserve our slice back into the
// `Store` after the hostcall, ideally amortizing the cost of allocating
// the storage across wasm->host calls.
//
// Note that we have a dynamic guarantee that `values_vec` is the
// appropriate length to both read all arguments from as well as store
// all results into.
let mut val_vec = caller.store.0.take_hostcall_val_storage();
debug_assert!(val_vec.is_empty());
let nparams = ty.params().len();
val_vec.reserve(nparams + ty.results().len());
for (i, ty) in ty.params().enumerate() {
val_vec.push(unsafe { Val::from_raw(&mut caller.store, values_vec[i], ty) })
}
val_vec.extend((0..ty.results().len()).map(|_| Val::null_func_ref()));
let (params, results) = val_vec.split_at_mut(nparams);
func(caller.sub_caller(), params, results)?;
// Unlike our arguments we need to dynamically check that the return
// values produced are correct. There could be a bug in `func` that
// produces the wrong number, wrong types, or wrong stores of
// values, and we need to catch that here.
for (i, (ret, ty)) in results.iter().zip(ty.results()).enumerate() {
ret.ensure_matches_ty(caller.store.0, &ty)
.context("function attempted to return an incompatible value")?;
unsafe {
values_vec[i] = ret.to_raw(&mut caller.store)?;
}
}
// Restore our `val_vec` back into the store so it's usable for the next
// hostcall to reuse our own storage.
val_vec.truncate(0);
caller.store.0.save_hostcall_val_storage(val_vec);
Ok(())
}
/// Attempts to extract a typed object from this `Func` through which the
/// function can be called.
///
/// This function serves as an alternative to [`Func::call`] and
/// [`Func::call_async`]. This method performs a static type check (using
/// the `Params` and `Results` type parameters on the underlying wasm
/// function. If the type check passes then a `TypedFunc` object is returned,
/// otherwise an error is returned describing the typecheck failure.
///
/// The purpose of this relative to [`Func::call`] is that it's much more
/// efficient when used to invoke WebAssembly functions. With the types
/// statically known far less setup/teardown is required when invoking
/// WebAssembly. If speed is desired then this function is recommended to be
/// used instead of [`Func::call`] (which is more general, hence its
/// slowdown).
///
/// The `Params` type parameter is used to describe the parameters of the
/// WebAssembly function. This can either be a single type (like `i32`), or
/// a tuple of types representing the list of parameters (like `(i32, f32,
/// f64)`). Additionally you can use `()` to represent that the function has
/// no parameters.
///
/// The `Results` type parameter is used to describe the results of the
/// function. This behaves the same way as `Params`, but just for the
/// results of the function.
///
/// # Translating Between WebAssembly and Rust Types
///
/// Translation between Rust types and WebAssembly types looks like:
///
/// | WebAssembly | Rust |
/// |-------------------------------------------|---------------------------------------|
/// | `i32` | `i32` or `u32` |
/// | `i64` | `i64` or `u64` |
/// | `f32` | `f32` |
/// | `f64` | `f64` |
/// | `externref` aka `(ref null extern)` | `Option<Rooted<ExternRef>>` |
/// | `(ref extern)` | `Rooted<ExternRef>` |
/// | `nullexternref` aka `(ref null noextern)` | `Option<NoExtern>` |
/// | `(ref noextern)` | `NoExtern` |
/// | `anyref` aka `(ref null any)` | `Option<Rooted<AnyRef>>` |
/// | `(ref any)` | `Rooted<AnyRef>` |
/// | `eqref` aka `(ref null eq)` | `Option<Rooted<EqRef>>` |
/// | `(ref eq)` | `Rooted<EqRef>` |
/// | `i31ref` aka `(ref null i31)` | `Option<I31>` |
/// | `(ref i31)` | `I31` |
/// | `structref` aka `(ref null struct)` | `Option<Rooted<StructRef>>` |
/// | `(ref struct)` | `Rooted<StructRef>` |
/// | `arrayref` aka `(ref null array)` | `Option<Rooted<ArrayRef>>` |
/// | `(ref array)` | `Rooted<ArrayRef>` |
/// | `funcref` aka `(ref null func)` | `Option<Func>` |
/// | `(ref func)` | `Func` |
/// | `(ref null <func type index>)` | `Option<Func>` |
/// | `(ref <func type index>)` | `Func` |
/// | `nullfuncref` aka `(ref null nofunc)` | `Option<NoFunc>` |
/// | `(ref nofunc)` | `NoFunc` |
/// | `v128` | `V128` on `x86-64` and `aarch64` only |
///
/// (Note that this mapping is the same as that of [`Func::wrap`], and that
/// anywhere a `Rooted<T>` appears, a `ManuallyRooted<T>` may also appear).
///
/// Note that once the [`TypedFunc`] return value is acquired you'll use either
/// [`TypedFunc::call`] or [`TypedFunc::call_async`] as necessary to actually invoke
/// the function. This method does not invoke any WebAssembly code, it
/// simply performs a typecheck before returning the [`TypedFunc`] value.
///
/// This method also has a convenience wrapper as
/// [`Instance::get_typed_func`](crate::Instance::get_typed_func) to
/// directly get a typed function value from an
/// [`Instance`](crate::Instance).
///
/// ## Subtyping
///
/// For result types, you can always use a supertype of the WebAssembly
/// function's actual declared result type. For example, if the WebAssembly
/// function was declared with type `(func (result nullfuncref))` you could
/// successfully call `f.typed::<(), Option<Func>>()` because `Option<Func>`
/// corresponds to `funcref`, which is a supertype of `nullfuncref`.
///
/// For parameter types, you can always use a subtype of the WebAssembly
/// function's actual declared parameter type. For example, if the
/// WebAssembly function was declared with type `(func (param (ref null
/// func)))` you could successfully call `f.typed::<Func, ()>()` because
/// `Func` corresponds to `(ref func)`, which is a subtype of `(ref null
/// func)`.
///
/// Additionally, for functions which take a reference to a concrete type as
/// a parameter, you can also use the concrete type's supertype. Consider a
/// WebAssembly function that takes a reference to a function with a
/// concrete type: `(ref null <func type index>)`. In this scenario, there
/// is no static `wasmtime::Foo` Rust type that corresponds to that
/// particular Wasm-defined concrete reference type because Wasm modules are
/// loaded dynamically at runtime. You *could* do `f.typed::<Option<NoFunc>,
/// ()>()`, and while that is correctly typed and valid, it is often overly
/// restrictive. The only value you could call the resulting typed function
/// with is the null function reference, but we'd like to call it with
/// non-null function references that happen to be of the correct
/// type. Therefore, `f.typed<Option<Func>, ()>()` is also allowed in this
/// case, even though `Option<Func>` represents `(ref null func)` which is
/// the supertype, not subtype, of `(ref null <func type index>)`. This does
/// imply some minimal dynamic type checks in this case, but it is supported
/// for better ergonomics, to enable passing non-null references into the
/// function.
///
/// # Errors
///
/// This function will return an error if `Params` or `Results` does not
/// match the native type of this WebAssembly function.
///
/// # Panics
///
/// This method will panic if `store` does not own this function.
///
/// # Examples
///
/// An end-to-end example of calling a function which takes no parameters
/// and has no results:
///
/// ```
/// # use wasmtime::*;
/// # fn main() -> anyhow::Result<()> {
/// let engine = Engine::default();
/// let mut store = Store::new(&engine, ());
/// let module = Module::new(&engine, r#"(module (func (export "foo")))"#)?;
/// let instance = Instance::new(&mut store, &module, &[])?;
/// let foo = instance.get_func(&mut store, "foo").expect("export wasn't a function");
///
/// // Note that this call can fail due to the typecheck not passing, but
/// // in our case we statically know the module so we know this should
/// // pass.
/// let typed = foo.typed::<(), ()>(&store)?;
///
/// // Note that this can fail if the wasm traps at runtime.
/// typed.call(&mut store, ())?;
/// # Ok(())
/// # }
/// ```
///
/// You can also pass in multiple parameters and get a result back
///
/// ```
/// # use wasmtime::*;
/// # fn foo(add: &Func, mut store: Store<()>) -> anyhow::Result<()> {
/// let typed = add.typed::<(i32, i64), f32>(&store)?;
/// assert_eq!(typed.call(&mut store, (1, 2))?, 3.0);
/// # Ok(())
/// # }
/// ```
///
/// and similarly if a function has multiple results you can bind that too
///
/// ```
/// # use wasmtime::*;
/// # fn foo(add_with_overflow: &Func, mut store: Store<()>) -> anyhow::Result<()> {
/// let typed = add_with_overflow.typed::<(u32, u32), (u32, i32)>(&store)?;
/// let (result, overflow) = typed.call(&mut store, (u32::max_value(), 2))?;
/// assert_eq!(result, 1);
/// assert_eq!(overflow, 1);
/// # Ok(())
/// # }
/// ```
pub fn typed<Params, Results>(
&self,
store: impl AsContext,
) -> Result<TypedFunc<Params, Results>>
where
Params: WasmParams,
Results: WasmResults,
{
// Type-check that the params/results are all valid
let store = store.as_context().0;
let ty = self.load_ty(store);
Params::typecheck(store.engine(), ty.params(), TypeCheckPosition::Param)
.context("type mismatch with parameters")?;
Results::typecheck(store.engine(), ty.results(), TypeCheckPosition::Result)
.context("type mismatch with results")?;
// and then we can construct the typed version of this function
// (unsafely), which should be safe since we just did the type check above.
unsafe { Ok(TypedFunc::_new_unchecked(store, *self)) }
}
/// Get a stable hash key for this function.
///
/// Even if the same underlying function is added to the `StoreData`
/// multiple times and becomes multiple `wasmtime::Func`s, this hash key
/// will be consistent across all of these functions.
#[allow(dead_code)] // Not used yet, but added for consistency.
pub(crate) fn hash_key(&self, store: &mut StoreOpaque) -> impl core::hash::Hash + Eq {
self.vm_func_ref(store).as_ptr() as usize
}
}
/// Prepares for entrance into WebAssembly.
///
/// This function will set up context such that `closure` is allowed to call a
/// raw trampoline or a raw WebAssembly function. This *must* be called to do
/// things like catch traps and set up GC properly.
///
/// The `closure` provided receives a default "caller" `VMContext` parameter it
/// can pass to the called wasm function, if desired.
pub(crate) fn invoke_wasm_and_catch_traps<T>(
store: &mut StoreContextMut<'_, T>,
closure: impl FnMut(*mut VMContext),
) -> Result<()> {
unsafe {
let exit = enter_wasm(store);
if let Err(trap) = store.0.call_hook(CallHook::CallingWasm) {
exit_wasm(store, exit);
return Err(trap);
}
let result = crate::runtime::vm::catch_traps(
store.0.signal_handler(),
store.0.engine().config().wasm_backtrace,
store.0.engine().config().coredump_on_trap,
store.0.async_guard_range(),
store.0.default_caller(),
closure,
);
exit_wasm(store, exit);
store.0.call_hook(CallHook::ReturningFromWasm)?;
result.map_err(|t| crate::trap::from_runtime_box(store.0, t))
}
}
/// This function is called to register state within `Store` whenever
/// WebAssembly is entered within the `Store`.
///
/// This function sets up various limits such as:
///
/// * The stack limit. This is what ensures that we limit the stack space
/// allocated by WebAssembly code and it's relative to the initial stack
/// pointer that called into wasm.
///
/// This function may fail if the stack limit can't be set because an
/// interrupt already happened.
fn enter_wasm<T>(store: &mut StoreContextMut<'_, T>) -> Option<usize> {
// If this is a recursive call, e.g. our stack limit is already set, then
// we may be able to skip this function.
//
// For synchronous stores there's nothing else to do because all wasm calls
// happen synchronously and on the same stack. This means that the previous
// stack limit will suffice for the next recursive call.
//
// For asynchronous stores then each call happens on a separate native
// stack. This means that the previous stack limit is no longer relevant
// because we're on a separate stack.
if unsafe { *store.0.runtime_limits().stack_limit.get() } != usize::MAX
&& !store.0.async_support()
{
return None;
}
// Ignore this stack pointer business on miri since we can't execute wasm
// anyway and the concept of a stack pointer on miri is a bit nebulous
// regardless.
if cfg!(miri) {
return None;
}
let stack_pointer = crate::runtime::vm::get_stack_pointer();
// Determine the stack pointer where, after which, any wasm code will
// immediately trap. This is checked on the entry to all wasm functions.
//
// Note that this isn't 100% precise. We are requested to give wasm
// `max_wasm_stack` bytes, but what we're actually doing is giving wasm
// probably a little less than `max_wasm_stack` because we're
// calculating the limit relative to this function's approximate stack
// pointer. Wasm will be executed on a frame beneath this one (or next
// to it). In any case it's expected to be at most a few hundred bytes
// of slop one way or another. When wasm is typically given a MB or so
// (a million bytes) the slop shouldn't matter too much.
//
// After we've got the stack limit then we store it into the `stack_limit`
// variable.
let wasm_stack_limit = stack_pointer - store.engine().config().max_wasm_stack;
let prev_stack = unsafe {
mem::replace(
&mut *store.0.runtime_limits().stack_limit.get(),
wasm_stack_limit,
)
};
Some(prev_stack)
}
fn exit_wasm<T>(store: &mut StoreContextMut<'_, T>, prev_stack: Option<usize>) {
// If we don't have a previous stack pointer to restore, then there's no
// cleanup we need to perform here.
let prev_stack = match prev_stack {
Some(stack) => stack,
None => return,
};
unsafe {
*store.0.runtime_limits().stack_limit.get() = prev_stack;
}
}
/// A trait implemented for types which can be returned from closures passed to
/// [`Func::wrap`] and friends.
///
/// This trait should not be implemented by user types. This trait may change at
/// any time internally. The types which implement this trait, however, are
/// stable over time.
///
/// For more information see [`Func::wrap`]
pub unsafe trait WasmRet {
// Same as `WasmTy::compatible_with_store`.
#[doc(hidden)]
fn compatible_with_store(&self, store: &StoreOpaque) -> bool;
/// Stores this return value into the `ptr` specified using the rooted
/// `store`.
///
/// Traps are communicated through the `Result<_>` return value.
///
/// # Unsafety
///
/// This method is unsafe as `ptr` must have the correct length to store
/// this result. This property is only checked in debug mode, not in release
/// mode.
#[doc(hidden)]
unsafe fn store(
self,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut [MaybeUninit<ValRaw>],
) -> Result<()>;
#[doc(hidden)]
fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType;
#[doc(hidden)]
fn may_gc() -> bool;
// Utilities used to convert an instance of this type to a `Result`
// explicitly, used when wrapping async functions which always bottom-out
// in a function that returns a trap because futures can be cancelled.
#[doc(hidden)]
type Fallible: WasmRet;
#[doc(hidden)]
fn into_fallible(self) -> Self::Fallible;
#[doc(hidden)]
fn fallible_from_error(error: Error) -> Self::Fallible;
}
unsafe impl<T> WasmRet for T
where
T: WasmTy,
{
type Fallible = Result<T>;
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
<Self as WasmTy>::compatible_with_store(self, store)
}
unsafe fn store(
self,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut [MaybeUninit<ValRaw>],
) -> Result<()> {
debug_assert!(ptr.len() > 0);
<Self as WasmTy>::store(self, store, ptr.get_unchecked_mut(0))
}
fn may_gc() -> bool {
T::may_gc()
}
fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
FuncType::new(engine, params, Some(<Self as WasmTy>::valtype()))
}
fn into_fallible(self) -> Result<T> {
Ok(self)
}
fn fallible_from_error(error: Error) -> Result<T> {
Err(error)
}
}
unsafe impl<T> WasmRet for Result<T>
where
T: WasmRet,
{
type Fallible = Self;
fn compatible_with_store(&self, store: &StoreOpaque) -> bool {
match self {
Ok(x) => <T as WasmRet>::compatible_with_store(x, store),
Err(_) => true,
}
}
unsafe fn store(
self,
store: &mut AutoAssertNoGc<'_>,
ptr: &mut [MaybeUninit<ValRaw>],
) -> Result<()> {
self.and_then(|val| val.store(store, ptr))
}
fn may_gc() -> bool {
T::may_gc()
}
fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
T::func_type(engine, params)
}
fn into_fallible(self) -> Result<T> {
self
}
fn fallible_from_error(error: Error) -> Result<T> {
Err(error)
}
}
macro_rules! impl_wasm_host_results {
($n:tt $($t:ident)*) => (
#[allow(non_snake_case)]
unsafe impl<$($t),*> WasmRet for ($($t,)*)
where
$($t: WasmTy,)*
{
type Fallible = Result<Self>;
#[inline]
fn compatible_with_store(&self, _store: &StoreOpaque) -> bool {
let ($($t,)*) = self;
$( $t.compatible_with_store(_store) && )* true
}
#[inline]
unsafe fn store(
self,
_store: &mut AutoAssertNoGc<'_>,
_ptr: &mut [MaybeUninit<ValRaw>],
) -> Result<()> {
let ($($t,)*) = self;
let mut _cur = 0;
$(
debug_assert!(_cur < _ptr.len());
let val = _ptr.get_unchecked_mut(_cur);
_cur += 1;
WasmTy::store($t, _store, val)?;
)*
Ok(())
}
#[doc(hidden)]
fn may_gc() -> bool {
$( $t::may_gc() || )* false
}
fn func_type(engine: &Engine, params: impl Iterator<Item = ValType>) -> FuncType {
FuncType::new(
engine,
params,
IntoIterator::into_iter([$($t::valtype(),)*]),
)
}
#[inline]
fn into_fallible(self) -> Result<Self> {
Ok(self)
}
#[inline]
fn fallible_from_error(error: Error) -> Result<Self> {
Err(error)
}
}
)
}
for_each_function_signature!(impl_wasm_host_results);
/// Internal trait implemented for all arguments that can be passed to
/// [`Func::wrap`] and [`Linker::func_wrap`](crate::Linker::func_wrap).
///
/// This trait should not be implemented by external users, it's only intended
/// as an implementation detail of this crate.
pub trait IntoFunc<T, Params, Results>: Send + Sync + 'static {
/// Convert this function into a `VM{Array,Native}CallHostFuncContext` and
/// internal `VMFuncRef`.
#[doc(hidden)]
fn into_func(self, engine: &Engine) -> HostContext;
}
macro_rules! impl_into_func {
($num:tt $arg:ident) => {
// Implement for functions without a leading `&Caller` parameter,
// delegating to the implementation below which does have the leading
// `Caller` parameter.
#[allow(non_snake_case)]
impl<T, F, $arg, R> IntoFunc<T, $arg, R> for F
where
F: Fn($arg) -> R + Send + Sync + 'static,
$arg: WasmTy,
R: WasmRet,
{
fn into_func(self, engine: &Engine) -> HostContext {
let f = move |_: Caller<'_, T>, $arg: $arg| {
self($arg)
};
f.into_func(engine)
}
}
#[allow(non_snake_case)]
impl<T, F, $arg, R> IntoFunc<T, (Caller<'_, T>, $arg), R> for F
where
F: Fn(Caller<'_, T>, $arg) -> R + Send + Sync + 'static,
$arg: WasmTy,
R: WasmRet,
{
fn into_func(self, engine: &Engine) -> HostContext {
HostContext::from_closure(engine, move |caller: Caller<'_, T>, ($arg,)| {
self(caller, $arg)
})
}
}
};
($num:tt $($args:ident)*) => {
// Implement for functions without a leading `&Caller` parameter,
// delegating to the implementation below which does have the leading
// `Caller` parameter.
#[allow(non_snake_case)]
impl<T, F, $($args,)* R> IntoFunc<T, ($($args,)*), R> for F
where
F: Fn($($args),*) -> R + Send + Sync + 'static,
$($args: WasmTy,)*
R: WasmRet,
{
fn into_func(self, engine: &Engine) -> HostContext {
let f = move |_: Caller<'_, T>, $($args:$args),*| {
self($($args),*)
};
f.into_func(engine)
}
}
#[allow(non_snake_case)]
impl<T, F, $($args,)* R> IntoFunc<T, (Caller<'_, T>, $($args,)*), R> for F
where
F: Fn(Caller<'_, T>, $($args),*) -> R + Send + Sync + 'static,
$($args: WasmTy,)*
R: WasmRet,
{
fn into_func(self, engine: &Engine) -> HostContext {
HostContext::from_closure(engine, move |caller: Caller<'_, T>, ( $( $args ),* )| {
self(caller, $( $args ),* )
})
}
}
}
}
for_each_function_signature!(impl_into_func);
/// Trait implemented for various tuples made up of types which implement
/// [`WasmTy`] that can be passed to [`Func::wrap_inner`] and
/// [`HostContext::from_closure`].
pub unsafe trait WasmTyList {
/// Get the value type that each Type in the list represents.
fn valtypes() -> impl Iterator<Item = ValType>;
// Load a version of `Self` from the `values` provided.
//
// # Safety
//
// This function is unsafe as it's up to the caller to ensure that `values` are
// valid for this given type.
#[doc(hidden)]
unsafe fn load(store: &mut AutoAssertNoGc<'_>, values: &mut [MaybeUninit<ValRaw>]) -> Self;
#[doc(hidden)]
fn may_gc() -> bool;
}
macro_rules! impl_wasm_ty_list {
($num:tt $($args:ident)*) => (paste::paste!{
#[allow(non_snake_case)]
unsafe impl<$($args),*> WasmTyList for ($($args,)*)
where
$($args: WasmTy,)*
{
fn valtypes() -> impl Iterator<Item = ValType> {
IntoIterator::into_iter([$($args::valtype(),)*])
}
unsafe fn load(_store: &mut AutoAssertNoGc<'_>, _values: &mut [MaybeUninit<ValRaw>]) -> Self {
let mut _cur = 0;
($({
debug_assert!(_cur < _values.len());
let ptr = _values.get_unchecked(_cur).assume_init_ref();
_cur += 1;
$args::load(_store, ptr)
},)*)
}
fn may_gc() -> bool {
$( $args::may_gc() || )* false
}
}
});
}
for_each_function_signature!(impl_wasm_ty_list);
/// A structure representing the caller's context when creating a function
/// via [`Func::wrap`].
///
/// This structure can be taken as the first parameter of a closure passed to
/// [`Func::wrap`] or other constructors, and serves two purposes:
///
/// * First consumers can use [`Caller<'_, T>`](crate::Caller) to get access to
/// [`StoreContextMut<'_, T>`](crate::StoreContextMut) and/or get access to
/// `T` itself. This means that the [`Caller`] type can serve as a proxy to
/// the original [`Store`](crate::Store) itself and is used to satisfy
/// [`AsContext`] and [`AsContextMut`] bounds.
///
/// * Second a [`Caller`] can be used as the name implies, learning about the
/// caller's context, namely it's exported memory and exported functions. This
/// allows functions which take pointers as arguments to easily read the
/// memory the pointers point into, or if a function is expected to call
/// malloc in the wasm module to reserve space for the output you can do that.
///
/// Host functions which want access to [`Store`](crate::Store)-level state are
/// recommended to use this type.
pub struct Caller<'a, T> {
pub(crate) store: StoreContextMut<'a, T>,
caller: &'a crate::runtime::vm::Instance,
}
impl<T> Caller<'_, T> {
unsafe fn with<F, R>(caller: *mut VMContext, f: F) -> R
where
// The closure must be valid for any `Caller` it is given; it doesn't
// get to choose the `Caller`'s lifetime.
F: for<'a> FnOnce(Caller<'a, T>) -> R,
// And the return value must not borrow from the caller/store.
R: 'static,
{
debug_assert!(!caller.is_null());
crate::runtime::vm::Instance::from_vmctx(caller, |instance| {
let store = StoreContextMut::from_raw(instance.store());
let gc_lifo_scope = store.0.gc_roots().enter_lifo_scope();
let ret = f(Caller {
store,
caller: &instance,
});
// Safe to recreate a mutable borrow of the store because `ret`
// cannot be borrowing from the store.
let store = StoreContextMut::<T>::from_raw(instance.store());
store.0.exit_gc_lifo_scope(gc_lifo_scope);
ret
})
}
fn sub_caller(&mut self) -> Caller<'_, T> {
Caller {
store: self.store.as_context_mut(),
caller: self.caller,
}
}
/// Looks up an export from the caller's module by the `name` given.
///
/// This is a low-level function that's typically used to implement passing
/// of pointers or indices between core Wasm instances, where the callee
/// needs to consult the caller's exports to perform memory management and
/// resolve the references.
///
/// For comparison, in components, the component model handles translating
/// arguments from one component instance to another and managing memory, so
/// that callees don't need to be aware of their callers, which promotes
/// virtualizability of APIs.
///
/// # Return
///
/// If an export with the `name` provided was found, then it is returned as an
/// `Extern`. There are a number of situations, however, where the export may not
/// be available:
///
/// * The caller instance may not have an export named `name`
/// * There may not be a caller available, for example if `Func` was called
/// directly from host code.
///
/// It's recommended to take care when calling this API and gracefully
/// handling a `None` return value.
pub fn get_export(&mut self, name: &str) -> Option<Extern> {
// All instances created have a `host_state` with a pointer pointing
// back to themselves. If this caller doesn't have that `host_state`
// then it probably means it was a host-created object like `Func::new`
// which doesn't have any exports we want to return anyway.
self.caller
.host_state()
.downcast_ref::<Instance>()?
.get_export(&mut self.store, name)
}
/// Access the underlying data owned by this `Store`.
///
/// Same as [`Store::data`](crate::Store::data)
pub fn data(&self) -> &T {
self.store.data()
}
/// Access the underlying data owned by this `Store`.
///
/// Same as [`Store::data_mut`](crate::Store::data_mut)
pub fn data_mut(&mut self) -> &mut T {
self.store.data_mut()
}
/// Returns the underlying [`Engine`] this store is connected to.
pub fn engine(&self) -> &Engine {
self.store.engine()
}
/// Perform garbage collection.
///
/// Same as [`Store::gc`](crate::Store::gc).
#[cfg(feature = "gc")]
pub fn gc(&mut self) {
self.store.gc()
}
/// Perform garbage collection asynchronously.
///
/// Same as [`Store::gc_async`](crate::Store::gc_async).
#[cfg(all(feature = "async", feature = "gc"))]
pub async fn gc_async(&mut self)
where
T: Send,
{
self.store.gc_async().await;
}
/// Returns the remaining fuel in the store.
///
/// For more information see [`Store::get_fuel`](crate::Store::get_fuel)
pub fn get_fuel(&self) -> Result<u64> {
self.store.get_fuel()
}
/// Set the amount of fuel in this store to be consumed when executing wasm code.
///
/// For more information see [`Store::set_fuel`](crate::Store::set_fuel)
pub fn set_fuel(&mut self, fuel: u64) -> Result<()> {
self.store.set_fuel(fuel)
}
/// Configures this `Store` to yield while executing futures every N units of fuel.
///
/// For more information see
/// [`Store::fuel_async_yield_interval`](crate::Store::fuel_async_yield_interval)
pub fn fuel_async_yield_interval(&mut self, interval: Option<u64>) -> Result<()> {
self.store.fuel_async_yield_interval(interval)
}
}
impl<T> AsContext for Caller<'_, T> {
type Data = T;
fn as_context(&self) -> StoreContext<'_, T> {
self.store.as_context()
}
}
impl<T> AsContextMut for Caller<'_, T> {
fn as_context_mut(&mut self) -> StoreContextMut<'_, T> {
self.store.as_context_mut()
}
}
// State stored inside a `VMArrayCallHostFuncContext`.
struct HostFuncState<F> {
// The actual host function.
func: F,
// NB: We have to keep our `VMSharedTypeIndex` registered in the engine for
// as long as this function exists.
#[allow(dead_code)]
ty: RegisteredType,
}
#[doc(hidden)]
pub enum HostContext {
Array(StoreBox<VMArrayCallHostFuncContext>),
}
impl From<StoreBox<VMArrayCallHostFuncContext>> for HostContext {
fn from(ctx: StoreBox<VMArrayCallHostFuncContext>) -> Self {
HostContext::Array(ctx)
}
}
impl HostContext {
fn from_closure<F, T, P, R>(engine: &Engine, func: F) -> Self
where
F: Fn(Caller<'_, T>, P) -> R + Send + Sync + 'static,
P: WasmTyList,
R: WasmRet,
{
let ty = R::func_type(engine, None::<ValType>.into_iter().chain(P::valtypes()));
let type_index = ty.type_index();
let array_call = Self::array_call_trampoline::<T, F, P, R>;
let ctx = unsafe {
VMArrayCallHostFuncContext::new(
VMFuncRef {
array_call,
wasm_call: None,
type_index,
vmctx: ptr::null_mut(),
},
Box::new(HostFuncState {
func,
ty: ty.into_registered_type(),
}),
)
};
ctx.into()
}
unsafe extern "C" fn array_call_trampoline<T, F, P, R>(
callee_vmctx: *mut VMOpaqueContext,
caller_vmctx: *mut VMOpaqueContext,
args: *mut ValRaw,
args_len: usize,
) where
F: Fn(Caller<'_, T>, P) -> R + 'static,
P: WasmTyList,
R: WasmRet,
{
// Note that this function is intentionally scoped into a
// separate closure. Handling traps and panics will involve
// longjmp-ing from this function which means we won't run
// destructors. As a result anything requiring a destructor
// should be part of this closure, and the long-jmp-ing
// happens after the closure in handling the result.
let run = move |mut caller: Caller<'_, T>| {
let args =
core::slice::from_raw_parts_mut(args.cast::<MaybeUninit<ValRaw>>(), args_len);
let vmctx = VMArrayCallHostFuncContext::from_opaque(callee_vmctx);
let state = (*vmctx).host_state();
// Double-check ourselves in debug mode, but we control
// the `Any` here so an unsafe downcast should also
// work.
debug_assert!(state.is::<HostFuncState<F>>());
let state = &*(state as *const _ as *const HostFuncState<F>);
let func = &state.func;
let ret = 'ret: {
if let Err(trap) = caller.store.0.call_hook(CallHook::CallingHost) {
break 'ret R::fallible_from_error(trap);
}
let mut store = if P::may_gc() {
AutoAssertNoGc::new(caller.store.0)
} else {
unsafe { AutoAssertNoGc::disabled(caller.store.0) }
};
let params = P::load(&mut store, args);
let _ = &mut store;
drop(store);
let r = func(caller.sub_caller(), params);
if let Err(trap) = caller.store.0.call_hook(CallHook::ReturningFromHost) {
break 'ret R::fallible_from_error(trap);
}
r.into_fallible()
};
if !ret.compatible_with_store(caller.store.0) {
bail!("host function attempted to return cross-`Store` value to Wasm")
} else {
let mut store = if R::may_gc() {
AutoAssertNoGc::new(caller.store.0)
} else {
unsafe { AutoAssertNoGc::disabled(caller.store.0) }
};
let ret = ret.store(&mut store, args)?;
Ok(ret)
}
};
// With nothing else on the stack move `run` into this
// closure and then run it as part of `Caller::with`.
let result = crate::runtime::vm::catch_unwind_and_longjmp(move || {
let caller_vmctx = VMContext::from_opaque(caller_vmctx);
Caller::with(caller_vmctx, run)
});
match result {
Ok(val) => val,
Err(err) => crate::trap::raise(err),
}
}
}
/// Representation of a host-defined function.
///
/// This is used for `Func::new` but also for `Linker`-defined functions. For
/// `Func::new` this is stored within a `Store`, and for `Linker`-defined
/// functions they wrap this up in `Arc` to enable shared ownership of this
/// across many stores.
///
/// Technically this structure needs a `<T>` type parameter to connect to the
/// `Store<T>` itself, but that's an unsafe contract of using this for now
/// rather than part of the struct type (to avoid `Func<T>` in the API).
pub(crate) struct HostFunc {
ctx: HostContext,
// Stored to unregister this function's signature with the engine when this
// is dropped.
engine: Engine,
}
impl HostFunc {
/// Analog of [`Func::new`]
///
/// # Panics
///
/// Panics if the given function type is not associated with the given
/// engine.
pub fn new<T>(
engine: &Engine,
ty: FuncType,
func: impl Fn(Caller<'_, T>, &[Val], &mut [Val]) -> Result<()> + Send + Sync + 'static,
) -> Self {
assert!(ty.comes_from_same_engine(engine));
let ty_clone = ty.clone();
unsafe {
HostFunc::new_unchecked(engine, ty, move |caller, values| {
Func::invoke_host_func_for_wasm(caller, &ty_clone, values, &func)
})
}
}
/// Analog of [`Func::new_unchecked`]
///
/// # Panics
///
/// Panics if the given function type is not associated with the given
/// engine.
pub unsafe fn new_unchecked<T>(
engine: &Engine,
ty: FuncType,
func: impl Fn(Caller<'_, T>, &mut [ValRaw]) -> Result<()> + Send + Sync + 'static,
) -> Self {
assert!(ty.comes_from_same_engine(engine));
let func = move |caller_vmctx, values: &mut [ValRaw]| {
Caller::<T>::with(caller_vmctx, |mut caller| {
caller.store.0.call_hook(CallHook::CallingHost)?;
let result = func(caller.sub_caller(), values)?;
caller.store.0.call_hook(CallHook::ReturningFromHost)?;
Ok(result)
})
};
let ctx = crate::trampoline::create_array_call_function(&ty, func)
.expect("failed to create function");
HostFunc::_new(engine, ctx.into())
}
/// Analog of [`Func::wrap_inner`]
pub fn wrap_inner<F, T, Params, Results>(engine: &Engine, func: F) -> Self
where
F: Fn(Caller<'_, T>, Params) -> Results + Send + Sync + 'static,
Params: WasmTyList,
Results: WasmRet,
{
let ctx = HostContext::from_closure(engine, func);
HostFunc::_new(engine, ctx)
}
/// Analog of [`Func::wrap`]
pub fn wrap<T, Params, Results>(
engine: &Engine,
func: impl IntoFunc<T, Params, Results>,
) -> Self {
let ctx = func.into_func(engine);
HostFunc::_new(engine, ctx)
}
/// Requires that this function's signature is already registered within
/// `Engine`. This happens automatically during the above two constructors.
fn _new(engine: &Engine, ctx: HostContext) -> Self {
HostFunc {
ctx,
engine: engine.clone(),
}
}
/// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
/// it.
///
/// # Unsafety
///
/// Can only be inserted into stores with a matching `T` relative to when
/// this `HostFunc` was first created.
pub unsafe fn to_func(self: &Arc<Self>, store: &mut StoreOpaque) -> Func {
self.validate_store(store);
let me = self.clone();
Func::from_func_kind(FuncKind::SharedHost(me), store)
}
/// Inserts this `HostFunc` into a `Store`, returning the `Func` pointing to
/// it.
///
/// This function is similar to, but not equivalent, to `HostFunc::to_func`.
/// Notably this function requires that the `Arc<Self>` pointer is otherwise
/// rooted within the `StoreOpaque` via another means. When in doubt use
/// `to_func` above as it's safer.
///
/// # Unsafety
///
/// Can only be inserted into stores with a matching `T` relative to when
/// this `HostFunc` was first created.
///
/// Additionally the `&Arc<Self>` is not cloned in this function. Instead a
/// raw pointer to `Self` is stored within the `Store` for this function.
/// The caller must arrange for the `Arc<Self>` to be "rooted" in the store
/// provided via another means, probably by pushing to
/// `StoreOpaque::rooted_host_funcs`.
///
/// Similarly, the caller must arrange for `rooted_func_ref` to be rooted in
/// the same store.
pub unsafe fn to_func_store_rooted(
self: &Arc<Self>,
store: &mut StoreOpaque,
rooted_func_ref: Option<NonNull<VMFuncRef>>,
) -> Func {
self.validate_store(store);
if rooted_func_ref.is_some() {
debug_assert!(self.func_ref().wasm_call.is_none());
debug_assert!(matches!(self.ctx, HostContext::Array(_)));
}
Func::from_func_kind(
FuncKind::RootedHost(RootedHostFunc::new(self, rooted_func_ref)),
store,
)
}
/// Same as [`HostFunc::to_func`], different ownership.
unsafe fn into_func(self, store: &mut StoreOpaque) -> Func {
self.validate_store(store);
Func::from_func_kind(FuncKind::Host(Box::new(self)), store)
}
fn validate_store(&self, store: &mut StoreOpaque) {
// This assert is required to ensure that we can indeed safely insert
// `self` into the `store` provided, otherwise the type information we
// have listed won't be correct. This is possible to hit with the public
// API of Wasmtime, and should be documented in relevant functions.
assert!(
Engine::same(&self.engine, store.engine()),
"cannot use a store with a different engine than a linker was created with",
);
}
pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
self.func_ref().type_index
}
pub(crate) fn func_ref(&self) -> &VMFuncRef {
match &self.ctx {
HostContext::Array(ctx) => unsafe { (*ctx.get()).func_ref() },
}
}
pub(crate) fn host_ctx(&self) -> &HostContext {
&self.ctx
}
fn export_func(&self) -> ExportFunction {
ExportFunction {
func_ref: NonNull::from(self.func_ref()),
}
}
}
impl FuncData {
#[inline]
fn export(&self) -> ExportFunction {
self.kind.export()
}
pub(crate) fn sig_index(&self) -> VMSharedTypeIndex {
unsafe { self.export().func_ref.as_ref().type_index }
}
}
impl FuncKind {
#[inline]
fn export(&self) -> ExportFunction {
match self {
FuncKind::StoreOwned { export, .. } => *export,
FuncKind::SharedHost(host) => host.export_func(),
FuncKind::RootedHost(rooted) => ExportFunction {
func_ref: NonNull::from(rooted.func_ref()),
},
FuncKind::Host(host) => host.export_func(),
}
}
}
use self::rooted::*;
/// An inner module is used here to force unsafe construction of
/// `RootedHostFunc` instead of accidentally safely allowing access to its
/// constructor.
mod rooted {
use super::HostFunc;
use crate::runtime::vm::{SendSyncPtr, VMFuncRef};
use alloc::sync::Arc;
use core::ptr::NonNull;
/// A variant of a pointer-to-a-host-function used in `FuncKind::RootedHost`
/// above.
///
/// For more documentation see `FuncKind::RootedHost`, `InstancePre`, and
/// `HostFunc::to_func_store_rooted`.
pub(crate) struct RootedHostFunc {
func: SendSyncPtr<HostFunc>,
func_ref: Option<SendSyncPtr<VMFuncRef>>,
}
impl RootedHostFunc {
/// Note that this is `unsafe` because this wrapper type allows safe
/// access to the pointer given at any time, including outside the
/// window of validity of `func`, so callers must not use the return
/// value past the lifetime of the provided `func`.
///
/// Similarly, callers must ensure that the given `func_ref` is valid
/// for the lifetime of the return value.
pub(crate) unsafe fn new(
func: &Arc<HostFunc>,
func_ref: Option<NonNull<VMFuncRef>>,
) -> RootedHostFunc {
RootedHostFunc {
func: NonNull::from(&**func).into(),
func_ref: func_ref.map(|p| p.into()),
}
}
pub(crate) fn func(&self) -> &HostFunc {
// Safety invariants are upheld by the `RootedHostFunc::new` caller.
unsafe { self.func.as_ref() }
}
pub(crate) fn func_ref(&self) -> &VMFuncRef {
if let Some(f) = self.func_ref {
// Safety invariants are upheld by the `RootedHostFunc::new` caller.
unsafe { f.as_ref() }
} else {
self.func().func_ref()
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Store;
#[test]
fn hash_key_is_stable_across_duplicate_store_data_entries() -> Result<()> {
let mut store = Store::<()>::default();
let module = Module::new(
store.engine(),
r#"
(module
(func (export "f")
nop
)
)
"#,
)?;
let instance = Instance::new(&mut store, &module, &[])?;
// Each time we `get_func`, we call `Func::from_wasmtime` which adds a
// new entry to `StoreData`, so `f1` and `f2` will have different
// indices into `StoreData`.
let f1 = instance.get_func(&mut store, "f").unwrap();
let f2 = instance.get_func(&mut store, "f").unwrap();
// But their hash keys are the same.
assert!(
f1.hash_key(&mut store.as_context_mut().0)
== f2.hash_key(&mut store.as_context_mut().0)
);
// But the hash keys are different from different funcs.
let instance2 = Instance::new(&mut store, &module, &[])?;
let f3 = instance2.get_func(&mut store, "f").unwrap();
assert!(
f1.hash_key(&mut store.as_context_mut().0)
!= f3.hash_key(&mut store.as_context_mut().0)
);
Ok(())
}
}