wasmtime/runtime/vm/vmcontext.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
//! This file declares `VMContext` and several related structs which contain
//! fields that compiled wasm code accesses directly.
mod vm_host_func_context;
pub use self::vm_host_func_context::VMArrayCallHostFuncContext;
use crate::runtime::vm::{GcStore, VMGcRef};
use core::cell::UnsafeCell;
use core::ffi::c_void;
use core::fmt;
use core::marker;
use core::mem;
use core::ptr::{self, NonNull};
use core::sync::atomic::{AtomicUsize, Ordering};
use sptr::Strict;
use wasmtime_environ::{
BuiltinFunctionIndex, DefinedMemoryIndex, Unsigned, VMSharedTypeIndex, WasmHeapTopType,
WasmValType, VMCONTEXT_MAGIC,
};
/// A function pointer that exposes the array calling convention.
///
/// Regardless of the underlying Wasm function type, all functions using the
/// array calling convention have the same Rust signature.
///
/// Arguments:
///
/// * Callee `vmctx` for the function itself.
///
/// * Caller's `vmctx` (so that host functions can access the linear memory of
/// their Wasm callers).
///
/// * A pointer to a buffer of `ValRaw`s where both arguments are passed into
/// this function, and where results are returned from this function.
///
/// * The capacity of the `ValRaw` buffer. Must always be at least
/// `max(len(wasm_params), len(wasm_results))`.
pub type VMArrayCallFunction =
unsafe extern "C" fn(*mut VMOpaqueContext, *mut VMOpaqueContext, *mut ValRaw, usize);
/// A function pointer that exposes the Wasm calling convention.
///
/// In practice, different Wasm function types end up mapping to different Rust
/// function types, so this isn't simply a type alias the way that
/// `VMArrayCallFunction` is. However, the exact details of the calling
/// convention are left to the Wasm compiler (e.g. Cranelift or Winch). Runtime
/// code never does anything with these function pointers except shuffle them
/// around and pass them back to Wasm.
#[repr(transparent)]
pub struct VMWasmCallFunction(VMFunctionBody);
/// An imported function.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMFunctionImport {
/// Function pointer to use when calling this imported function from Wasm.
pub wasm_call: NonNull<VMWasmCallFunction>,
/// Function pointer to use when calling this imported function with the
/// "array" calling convention that `Func::new` et al use.
pub array_call: VMArrayCallFunction,
/// The VM state associated with this function.
///
/// For Wasm functions defined by core wasm instances this will be `*mut
/// VMContext`, but for lifted/lowered component model functions this will
/// be a `VMComponentContext`, and for a host function it will be a
/// `VMHostFuncContext`, etc.
pub vmctx: *mut VMOpaqueContext,
}
// Declare that this type is send/sync, it's the responsibility of users of
// `VMFunctionImport` to uphold this guarantee.
unsafe impl Send for VMFunctionImport {}
unsafe impl Sync for VMFunctionImport {}
#[cfg(test)]
mod test_vmfunction_import {
use super::VMFunctionImport;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, VMOffsets};
#[test]
fn check_vmfunction_import_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMFunctionImport>(),
usize::from(offsets.size_of_vmfunction_import())
);
assert_eq!(
offset_of!(VMFunctionImport, wasm_call),
usize::from(offsets.vmfunction_import_wasm_call())
);
assert_eq!(
offset_of!(VMFunctionImport, array_call),
usize::from(offsets.vmfunction_import_array_call())
);
assert_eq!(
offset_of!(VMFunctionImport, vmctx),
usize::from(offsets.vmfunction_import_vmctx())
);
}
}
/// A placeholder byte-sized type which is just used to provide some amount of type
/// safety when dealing with pointers to JIT-compiled function bodies. Note that it's
/// deliberately not Copy, as we shouldn't be carelessly copying function body bytes
/// around.
#[repr(C)]
pub struct VMFunctionBody(u8);
#[cfg(test)]
mod test_vmfunction_body {
use super::VMFunctionBody;
use std::mem::size_of;
#[test]
fn check_vmfunction_body_offsets() {
assert_eq!(size_of::<VMFunctionBody>(), 1);
}
}
/// The fields compiled code needs to access to utilize a WebAssembly table
/// imported from another instance.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMTableImport {
/// A pointer to the imported table description.
pub from: *mut VMTableDefinition,
/// A pointer to the `VMContext` that owns the table description.
pub vmctx: *mut VMContext,
}
// Declare that this type is send/sync, it's the responsibility of users of
// `VMTableImport` to uphold this guarantee.
unsafe impl Send for VMTableImport {}
unsafe impl Sync for VMTableImport {}
#[cfg(test)]
mod test_vmtable_import {
use super::VMTableImport;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, VMOffsets};
#[test]
fn check_vmtable_import_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMTableImport>(),
usize::from(offsets.size_of_vmtable_import())
);
assert_eq!(
offset_of!(VMTableImport, from),
usize::from(offsets.vmtable_import_from())
);
assert_eq!(
offset_of!(VMTableImport, vmctx),
usize::from(offsets.vmtable_import_vmctx())
);
}
}
/// The fields compiled code needs to access to utilize a WebAssembly linear
/// memory imported from another instance.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMMemoryImport {
/// A pointer to the imported memory description.
pub from: *mut VMMemoryDefinition,
/// A pointer to the `VMContext` that owns the memory description.
pub vmctx: *mut VMContext,
/// The index of the memory in the containing `vmctx`.
pub index: DefinedMemoryIndex,
}
// Declare that this type is send/sync, it's the responsibility of users of
// `VMMemoryImport` to uphold this guarantee.
unsafe impl Send for VMMemoryImport {}
unsafe impl Sync for VMMemoryImport {}
#[cfg(test)]
mod test_vmmemory_import {
use super::VMMemoryImport;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, VMOffsets};
#[test]
fn check_vmmemory_import_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMMemoryImport>(),
usize::from(offsets.size_of_vmmemory_import())
);
assert_eq!(
offset_of!(VMMemoryImport, from),
usize::from(offsets.vmmemory_import_from())
);
assert_eq!(
offset_of!(VMMemoryImport, vmctx),
usize::from(offsets.vmmemory_import_vmctx())
);
}
}
/// The fields compiled code needs to access to utilize a WebAssembly global
/// variable imported from another instance.
///
/// Note that unlike with functions, tables, and memories, `VMGlobalImport`
/// doesn't include a `vmctx` pointer. Globals are never resized, and don't
/// require a `vmctx` pointer to access.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMGlobalImport {
/// A pointer to the imported global variable description.
pub from: *mut VMGlobalDefinition,
}
// Declare that this type is send/sync, it's the responsibility of users of
// `VMGlobalImport` to uphold this guarantee.
unsafe impl Send for VMGlobalImport {}
unsafe impl Sync for VMGlobalImport {}
#[cfg(test)]
mod test_vmglobal_import {
use super::VMGlobalImport;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, VMOffsets};
#[test]
fn check_vmglobal_import_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMGlobalImport>(),
usize::from(offsets.size_of_vmglobal_import())
);
assert_eq!(
offset_of!(VMGlobalImport, from),
usize::from(offsets.vmglobal_import_from())
);
}
}
/// The fields compiled code needs to access to utilize a WebAssembly linear
/// memory defined within the instance, namely the start address and the
/// size in bytes.
#[derive(Debug)]
#[repr(C)]
pub struct VMMemoryDefinition {
/// The start address.
pub base: *mut u8,
/// The current logical size of this linear memory in bytes.
///
/// This is atomic because shared memories must be able to grow their length
/// atomically. For relaxed access, see
/// [`VMMemoryDefinition::current_length()`].
pub current_length: AtomicUsize,
}
impl VMMemoryDefinition {
/// Return the current length (in bytes) of the [`VMMemoryDefinition`] by
/// performing a relaxed load; do not use this function for situations in
/// which a precise length is needed. Owned memories (i.e., non-shared) will
/// always return a precise result (since no concurrent modification is
/// possible) but shared memories may see an imprecise value--a
/// `current_length` potentially smaller than what some other thread
/// observes. Since Wasm memory only grows, this under-estimation may be
/// acceptable in certain cases.
pub fn current_length(&self) -> usize {
self.current_length.load(Ordering::Relaxed)
}
/// Return a copy of the [`VMMemoryDefinition`] using the relaxed value of
/// `current_length`; see [`VMMemoryDefinition::current_length()`].
pub unsafe fn load(ptr: *mut Self) -> Self {
let other = &*ptr;
VMMemoryDefinition {
base: other.base,
current_length: other.current_length().into(),
}
}
}
#[cfg(test)]
mod test_vmmemory_definition {
use super::VMMemoryDefinition;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
#[test]
fn check_vmmemory_definition_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMMemoryDefinition>(),
usize::from(offsets.ptr.size_of_vmmemory_definition())
);
assert_eq!(
offset_of!(VMMemoryDefinition, base),
usize::from(offsets.ptr.vmmemory_definition_base())
);
assert_eq!(
offset_of!(VMMemoryDefinition, current_length),
usize::from(offsets.ptr.vmmemory_definition_current_length())
);
/* TODO: Assert that the size of `current_length` matches.
assert_eq!(
size_of::<VMMemoryDefinition::current_length>(),
usize::from(offsets.size_of_vmmemory_definition_current_length())
);
*/
}
}
/// The fields compiled code needs to access to utilize a WebAssembly table
/// defined within the instance.
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct VMTableDefinition {
/// Pointer to the table data.
pub base: *mut u8,
/// The current number of elements in the table.
pub current_elements: usize,
}
#[cfg(test)]
mod test_vmtable_definition {
use super::VMTableDefinition;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, VMOffsets};
#[test]
fn check_vmtable_definition_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMTableDefinition>(),
usize::from(offsets.size_of_vmtable_definition())
);
assert_eq!(
offset_of!(VMTableDefinition, base),
usize::from(offsets.vmtable_definition_base())
);
assert_eq!(
offset_of!(VMTableDefinition, current_elements),
usize::from(offsets.vmtable_definition_current_elements())
);
}
}
/// The storage for a WebAssembly global defined within the instance.
///
/// TODO: Pack the globals more densely, rather than using the same size
/// for every type.
#[derive(Debug)]
#[repr(C, align(16))]
pub struct VMGlobalDefinition {
storage: [u8; 16],
// If more elements are added here, remember to add offset_of tests below!
}
#[cfg(test)]
mod test_vmglobal_definition {
use super::VMGlobalDefinition;
use std::mem::{align_of, size_of};
use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
#[test]
fn check_vmglobal_definition_alignment() {
assert!(align_of::<VMGlobalDefinition>() >= align_of::<i32>());
assert!(align_of::<VMGlobalDefinition>() >= align_of::<i64>());
assert!(align_of::<VMGlobalDefinition>() >= align_of::<f32>());
assert!(align_of::<VMGlobalDefinition>() >= align_of::<f64>());
assert!(align_of::<VMGlobalDefinition>() >= align_of::<[u8; 16]>());
}
#[test]
fn check_vmglobal_definition_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMGlobalDefinition>(),
usize::from(offsets.ptr.size_of_vmglobal_definition())
);
}
#[test]
fn check_vmglobal_begins_aligned() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(offsets.vmctx_globals_begin() % 16, 0);
}
#[test]
#[cfg(feature = "gc")]
fn check_vmglobal_can_contain_gc_ref() {
assert!(size_of::<crate::runtime::vm::VMGcRef>() <= size_of::<VMGlobalDefinition>());
}
}
impl VMGlobalDefinition {
/// Construct a `VMGlobalDefinition`.
pub fn new() -> Self {
Self { storage: [0; 16] }
}
/// Create a `VMGlobalDefinition` from a `ValRaw`.
///
/// # Unsafety
///
/// This raw value's type must match the given `WasmValType`.
pub unsafe fn from_val_raw(wasm_ty: WasmValType, raw: ValRaw) -> Self {
let mut global = Self::new();
match wasm_ty {
WasmValType::I32 => *global.as_i32_mut() = raw.get_i32(),
WasmValType::I64 => *global.as_i64_mut() = raw.get_i64(),
WasmValType::F32 => *global.as_f32_bits_mut() = raw.get_f32(),
WasmValType::F64 => *global.as_f64_bits_mut() = raw.get_f64(),
WasmValType::V128 => *global.as_u128_mut() = raw.get_v128(),
WasmValType::Ref(r) => match r.heap_type.top() {
WasmHeapTopType::Extern => {
global.init_gc_ref(VMGcRef::from_raw_u32(raw.get_externref()))
}
WasmHeapTopType::Any => global.init_gc_ref(VMGcRef::from_raw_u32(raw.get_anyref())),
WasmHeapTopType::Func => *global.as_func_ref_mut() = raw.get_funcref().cast(),
},
}
global
}
/// Get this global's value as a `ValRaw`.
///
/// # Unsafety
///
/// This global's value's type must match the given `WasmValType`.
pub unsafe fn to_val_raw(&self, gc_store: &mut GcStore, wasm_ty: WasmValType) -> ValRaw {
match wasm_ty {
WasmValType::I32 => ValRaw::i32(*self.as_i32()),
WasmValType::I64 => ValRaw::i64(*self.as_i64()),
WasmValType::F32 => ValRaw::f32(*self.as_f32_bits()),
WasmValType::F64 => ValRaw::f64(*self.as_f64_bits()),
WasmValType::V128 => ValRaw::v128(*self.as_u128()),
WasmValType::Ref(r) => match r.heap_type.top() {
WasmHeapTopType::Extern => ValRaw::externref(
self.as_gc_ref()
.map_or(0, |r| gc_store.clone_gc_ref(r).as_raw_u32()),
),
WasmHeapTopType::Any => ValRaw::anyref(
self.as_gc_ref()
.map_or(0, |r| gc_store.clone_gc_ref(r).as_raw_u32()),
),
WasmHeapTopType::Func => ValRaw::funcref(self.as_func_ref().cast()),
},
}
}
/// Return a reference to the value as an i32.
pub unsafe fn as_i32(&self) -> &i32 {
&*(self.storage.as_ref().as_ptr().cast::<i32>())
}
/// Return a mutable reference to the value as an i32.
pub unsafe fn as_i32_mut(&mut self) -> &mut i32 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<i32>())
}
/// Return a reference to the value as a u32.
pub unsafe fn as_u32(&self) -> &u32 {
&*(self.storage.as_ref().as_ptr().cast::<u32>())
}
/// Return a mutable reference to the value as an u32.
pub unsafe fn as_u32_mut(&mut self) -> &mut u32 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<u32>())
}
/// Return a reference to the value as an i64.
pub unsafe fn as_i64(&self) -> &i64 {
&*(self.storage.as_ref().as_ptr().cast::<i64>())
}
/// Return a mutable reference to the value as an i64.
pub unsafe fn as_i64_mut(&mut self) -> &mut i64 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<i64>())
}
/// Return a reference to the value as an u64.
pub unsafe fn as_u64(&self) -> &u64 {
&*(self.storage.as_ref().as_ptr().cast::<u64>())
}
/// Return a mutable reference to the value as an u64.
pub unsafe fn as_u64_mut(&mut self) -> &mut u64 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<u64>())
}
/// Return a reference to the value as an f32.
pub unsafe fn as_f32(&self) -> &f32 {
&*(self.storage.as_ref().as_ptr().cast::<f32>())
}
/// Return a mutable reference to the value as an f32.
pub unsafe fn as_f32_mut(&mut self) -> &mut f32 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<f32>())
}
/// Return a reference to the value as f32 bits.
pub unsafe fn as_f32_bits(&self) -> &u32 {
&*(self.storage.as_ref().as_ptr().cast::<u32>())
}
/// Return a mutable reference to the value as f32 bits.
pub unsafe fn as_f32_bits_mut(&mut self) -> &mut u32 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<u32>())
}
/// Return a reference to the value as an f64.
pub unsafe fn as_f64(&self) -> &f64 {
&*(self.storage.as_ref().as_ptr().cast::<f64>())
}
/// Return a mutable reference to the value as an f64.
pub unsafe fn as_f64_mut(&mut self) -> &mut f64 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<f64>())
}
/// Return a reference to the value as f64 bits.
pub unsafe fn as_f64_bits(&self) -> &u64 {
&*(self.storage.as_ref().as_ptr().cast::<u64>())
}
/// Return a mutable reference to the value as f64 bits.
pub unsafe fn as_f64_bits_mut(&mut self) -> &mut u64 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<u64>())
}
/// Return a reference to the value as an u128.
pub unsafe fn as_u128(&self) -> &u128 {
&*(self.storage.as_ref().as_ptr().cast::<u128>())
}
/// Return a mutable reference to the value as an u128.
pub unsafe fn as_u128_mut(&mut self) -> &mut u128 {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<u128>())
}
/// Return a reference to the value as u128 bits.
pub unsafe fn as_u128_bits(&self) -> &[u8; 16] {
&*(self.storage.as_ref().as_ptr().cast::<[u8; 16]>())
}
/// Return a mutable reference to the value as u128 bits.
pub unsafe fn as_u128_bits_mut(&mut self) -> &mut [u8; 16] {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<[u8; 16]>())
}
/// Return a reference to the global value as a borrowed GC reference.
pub unsafe fn as_gc_ref(&self) -> Option<&VMGcRef> {
let raw_ptr = self.storage.as_ref().as_ptr().cast::<Option<VMGcRef>>();
let ret = (*raw_ptr).as_ref();
assert!(cfg!(feature = "gc") || ret.is_none());
ret
}
/// Initialize a global to the given GC reference.
pub unsafe fn init_gc_ref(&mut self, gc_ref: Option<VMGcRef>) {
assert!(cfg!(feature = "gc") || gc_ref.is_none());
let raw_ptr = self.storage.as_mut().as_mut_ptr().cast::<Option<VMGcRef>>();
ptr::write(raw_ptr, gc_ref);
}
/// Write a GC reference into this global value.
pub unsafe fn write_gc_ref(&mut self, gc_store: &mut GcStore, gc_ref: Option<&VMGcRef>) {
assert!(cfg!(feature = "gc") || gc_ref.is_none());
let dest = &mut *(self.storage.as_mut().as_mut_ptr().cast::<Option<VMGcRef>>());
assert!(cfg!(feature = "gc") || dest.is_none());
gc_store.write_gc_ref(dest, gc_ref)
}
/// Return a reference to the value as a `VMFuncRef`.
pub unsafe fn as_func_ref(&self) -> *mut VMFuncRef {
*(self.storage.as_ref().as_ptr().cast::<*mut VMFuncRef>())
}
/// Return a mutable reference to the value as a `VMFuncRef`.
pub unsafe fn as_func_ref_mut(&mut self) -> &mut *mut VMFuncRef {
&mut *(self.storage.as_mut().as_mut_ptr().cast::<*mut VMFuncRef>())
}
}
#[cfg(test)]
mod test_vmshared_type_index {
use super::VMSharedTypeIndex;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, VMOffsets};
#[test]
fn check_vmshared_type_index() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMSharedTypeIndex>(),
usize::from(offsets.size_of_vmshared_type_index())
);
}
}
/// The VM caller-checked "funcref" record, for caller-side signature checking.
///
/// It consists of function pointer(s), a type id to be checked by the
/// caller, and the vmctx closure associated with this function.
#[derive(Debug, Clone)]
#[repr(C)]
pub struct VMFuncRef {
/// Function pointer for this funcref if being called via the "array"
/// calling convention that `Func::new` et al use.
pub array_call: VMArrayCallFunction,
/// Function pointer for this funcref if being called via the calling
/// convention we use when compiling Wasm.
///
/// Most functions come with a function pointer that we can use when they
/// are called from Wasm. The notable exception is when we `Func::wrap` a
/// host function, and we don't have a Wasm compiler on hand to compile a
/// Wasm-to-native trampoline for the function. In this case, we leave
/// `wasm_call` empty until the function is passed as an import to Wasm (or
/// otherwise exposed to Wasm via tables/globals). At this point, we look up
/// a Wasm-to-native trampoline for the function in the Wasm's compiled
/// module and use that fill in `VMFunctionImport::wasm_call`. **However**
/// there is no guarantee that the Wasm module has a trampoline for this
/// function's signature. The Wasm module only has trampolines for its
/// types, and if this function isn't of one of those types, then the Wasm
/// module will not have a trampoline for it. This is actually okay, because
/// it means that the Wasm cannot actually call this function. But it does
/// mean that this field needs to be an `Option` even though it is non-null
/// the vast vast vast majority of the time.
pub wasm_call: Option<NonNull<VMWasmCallFunction>>,
/// Function signature's type id.
pub type_index: VMSharedTypeIndex,
/// The VM state associated with this function.
///
/// The actual definition of what this pointer points to depends on the
/// function being referenced: for core Wasm functions, this is a `*mut
/// VMContext`, for host functions it is a `*mut VMHostFuncContext`, and for
/// component functions it is a `*mut VMComponentContext`.
pub vmctx: *mut VMOpaqueContext,
// If more elements are added here, remember to add offset_of tests below!
}
unsafe impl Send for VMFuncRef {}
unsafe impl Sync for VMFuncRef {}
#[cfg(test)]
mod test_vm_func_ref {
use super::VMFuncRef;
use core::mem::offset_of;
use std::mem::size_of;
use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
#[test]
fn check_vm_func_ref_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
size_of::<VMFuncRef>(),
usize::from(offsets.ptr.size_of_vm_func_ref())
);
assert_eq!(
offset_of!(VMFuncRef, array_call),
usize::from(offsets.ptr.vm_func_ref_array_call())
);
assert_eq!(
offset_of!(VMFuncRef, wasm_call),
usize::from(offsets.ptr.vm_func_ref_wasm_call())
);
assert_eq!(
offset_of!(VMFuncRef, type_index),
usize::from(offsets.ptr.vm_func_ref_type_index())
);
assert_eq!(
offset_of!(VMFuncRef, vmctx),
usize::from(offsets.ptr.vm_func_ref_vmctx())
);
}
}
macro_rules! define_builtin_array {
(
$(
$( #[$attr:meta] )*
$name:ident( $( $pname:ident: $param:ident ),* ) $( -> $result:ident )?;
)*
) => {
/// An array that stores addresses of builtin functions. We translate code
/// to use indirect calls. This way, we don't have to patch the code.
#[repr(C)]
pub struct VMBuiltinFunctionsArray {
$(
$name: unsafe extern "C" fn(
$(define_builtin_array!(@ty $param)),*
) $( -> define_builtin_array!(@ty $result))?,
)*
}
impl VMBuiltinFunctionsArray {
#[allow(unused_doc_comments)]
pub const INIT: VMBuiltinFunctionsArray = VMBuiltinFunctionsArray {
$(
$name: crate::runtime::vm::libcalls::raw::$name,
)*
};
}
};
(@ty i32) => (u32);
(@ty i64) => (u64);
(@ty f64) => (f64);
(@ty u8) => (u8);
(@ty reference) => (u32);
(@ty pointer) => (*mut u8);
(@ty vmctx) => (*mut VMContext);
}
wasmtime_environ::foreach_builtin_function!(define_builtin_array);
const _: () = {
assert!(
mem::size_of::<VMBuiltinFunctionsArray>()
== mem::size_of::<usize>()
* (BuiltinFunctionIndex::builtin_functions_total_number() as usize)
)
};
/// Structure used to control interrupting wasm code.
#[derive(Debug)]
#[repr(C)]
pub struct VMRuntimeLimits {
/// Current stack limit of the wasm module.
///
/// For more information see `crates/cranelift/src/lib.rs`.
pub stack_limit: UnsafeCell<usize>,
/// Indicator of how much fuel has been consumed and is remaining to
/// WebAssembly.
///
/// This field is typically negative and increments towards positive. Upon
/// turning positive a wasm trap will be generated. This field is only
/// modified if wasm is configured to consume fuel.
pub fuel_consumed: UnsafeCell<i64>,
/// Deadline epoch for interruption: if epoch-based interruption
/// is enabled and the global (per engine) epoch counter is
/// observed to reach or exceed this value, the guest code will
/// yield if running asynchronously.
pub epoch_deadline: UnsafeCell<u64>,
/// The value of the frame pointer register when we last called from Wasm to
/// the host.
///
/// Maintained by our Wasm-to-host trampoline, and cleared just before
/// calling into Wasm in `catch_traps`.
///
/// This member is `0` when Wasm is actively running and has not called out
/// to the host.
///
/// Used to find the start of a a contiguous sequence of Wasm frames when
/// walking the stack.
pub last_wasm_exit_fp: UnsafeCell<usize>,
/// The last Wasm program counter before we called from Wasm to the host.
///
/// Maintained by our Wasm-to-host trampoline, and cleared just before
/// calling into Wasm in `catch_traps`.
///
/// This member is `0` when Wasm is actively running and has not called out
/// to the host.
///
/// Used when walking a contiguous sequence of Wasm frames.
pub last_wasm_exit_pc: UnsafeCell<usize>,
/// The last host stack pointer before we called into Wasm from the host.
///
/// Maintained by our host-to-Wasm trampoline, and cleared just before
/// calling into Wasm in `catch_traps`.
///
/// This member is `0` when Wasm is actively running and has not called out
/// to the host.
///
/// When a host function is wrapped into a `wasmtime::Func`, and is then
/// called from the host, then this member has the sentinel value of `-1 as
/// usize`, meaning that this contiguous sequence of Wasm frames is the
/// empty sequence, and it is not safe to dereference the
/// `last_wasm_exit_fp`.
///
/// Used to find the end of a contiguous sequence of Wasm frames when
/// walking the stack.
pub last_wasm_entry_sp: UnsafeCell<usize>,
}
// The `VMRuntimeLimits` type is a pod-type with no destructor, and we don't
// access any fields from other threads, so add in these trait impls which are
// otherwise not available due to the `fuel_consumed` and `epoch_deadline`
// variables in `VMRuntimeLimits`.
unsafe impl Send for VMRuntimeLimits {}
unsafe impl Sync for VMRuntimeLimits {}
impl Default for VMRuntimeLimits {
fn default() -> VMRuntimeLimits {
VMRuntimeLimits {
stack_limit: UnsafeCell::new(usize::max_value()),
fuel_consumed: UnsafeCell::new(0),
epoch_deadline: UnsafeCell::new(0),
last_wasm_exit_fp: UnsafeCell::new(0),
last_wasm_exit_pc: UnsafeCell::new(0),
last_wasm_entry_sp: UnsafeCell::new(0),
}
}
}
#[cfg(test)]
mod test_vmruntime_limits {
use super::VMRuntimeLimits;
use core::mem::offset_of;
use wasmtime_environ::{HostPtr, Module, PtrSize, VMOffsets};
#[test]
fn field_offsets() {
let module = Module::new();
let offsets = VMOffsets::new(HostPtr, &module);
assert_eq!(
offset_of!(VMRuntimeLimits, stack_limit),
usize::from(offsets.ptr.vmruntime_limits_stack_limit())
);
assert_eq!(
offset_of!(VMRuntimeLimits, fuel_consumed),
usize::from(offsets.ptr.vmruntime_limits_fuel_consumed())
);
assert_eq!(
offset_of!(VMRuntimeLimits, epoch_deadline),
usize::from(offsets.ptr.vmruntime_limits_epoch_deadline())
);
assert_eq!(
offset_of!(VMRuntimeLimits, last_wasm_exit_fp),
usize::from(offsets.ptr.vmruntime_limits_last_wasm_exit_fp())
);
assert_eq!(
offset_of!(VMRuntimeLimits, last_wasm_exit_pc),
usize::from(offsets.ptr.vmruntime_limits_last_wasm_exit_pc())
);
assert_eq!(
offset_of!(VMRuntimeLimits, last_wasm_entry_sp),
usize::from(offsets.ptr.vmruntime_limits_last_wasm_entry_sp())
);
}
}
/// The VM "context", which is pointed to by the `vmctx` arg in Cranelift.
/// This has information about globals, memories, tables, and other runtime
/// state associated with the current instance.
///
/// The struct here is empty, as the sizes of these fields are dynamic, and
/// we can't describe them in Rust's type system. Sufficient memory is
/// allocated at runtime.
#[derive(Debug)]
#[repr(C, align(16))] // align 16 since globals are aligned to that and contained inside
pub struct VMContext {
/// There's some more discussion about this within `wasmtime/src/lib.rs` but
/// the idea is that we want to tell the compiler that this contains
/// pointers which transitively refers to itself, to suppress some
/// optimizations that might otherwise assume this doesn't exist.
///
/// The self-referential pointer we care about is the `*mut Store` pointer
/// early on in this context, which if you follow through enough levels of
/// nesting, eventually can refer back to this `VMContext`
pub _marker: marker::PhantomPinned,
}
impl VMContext {
/// Helper function to cast between context types using a debug assertion to
/// protect against some mistakes.
#[inline]
pub unsafe fn from_opaque(opaque: *mut VMOpaqueContext) -> *mut VMContext {
// Note that in general the offset of the "magic" field is stored in
// `VMOffsets::vmctx_magic`. Given though that this is a sanity check
// about converting this pointer to another type we ideally don't want
// to read the offset from potentially corrupt memory. Instead it would
// be better to catch errors here as soon as possible.
//
// To accomplish this the `VMContext` structure is laid out with the
// magic field at a statically known offset (here it's 0 for now). This
// static offset is asserted in `VMOffsets::from` and needs to be kept
// in sync with this line for this debug assertion to work.
//
// Also note that this magic is only ever invalid in the presence of
// bugs, meaning we don't actually read the magic and act differently
// at runtime depending what it is, so this is a debug assertion as
// opposed to a regular assertion.
debug_assert_eq!((*opaque).magic, VMCONTEXT_MAGIC);
opaque.cast()
}
}
/// A "raw" and unsafe representation of a WebAssembly value.
///
/// This is provided for use with the `Func::new_unchecked` and
/// `Func::call_unchecked` APIs. In general it's unlikely you should be using
/// this from Rust, rather using APIs like `Func::wrap` and `TypedFunc::call`.
///
/// This is notably an "unsafe" way to work with `Val` and it's recommended to
/// instead use `Val` where possible. An important note about this union is that
/// fields are all stored in little-endian format, regardless of the endianness
/// of the host system.
#[allow(missing_docs)]
#[repr(C)]
#[derive(Copy, Clone)]
pub union ValRaw {
/// A WebAssembly `i32` value.
///
/// Note that the payload here is a Rust `i32` but the WebAssembly `i32`
/// type does not assign an interpretation of the upper bit as either signed
/// or unsigned. The Rust type `i32` is simply chosen for convenience.
///
/// This value is always stored in a little-endian format.
i32: i32,
/// A WebAssembly `i64` value.
///
/// Note that the payload here is a Rust `i64` but the WebAssembly `i64`
/// type does not assign an interpretation of the upper bit as either signed
/// or unsigned. The Rust type `i64` is simply chosen for convenience.
///
/// This value is always stored in a little-endian format.
i64: i64,
/// A WebAssembly `f32` value.
///
/// Note that the payload here is a Rust `u32`. This is to allow passing any
/// representation of NaN into WebAssembly without risk of changing NaN
/// payload bits as its gets passed around the system. Otherwise though this
/// `u32` value is the return value of `f32::to_bits` in Rust.
///
/// This value is always stored in a little-endian format.
f32: u32,
/// A WebAssembly `f64` value.
///
/// Note that the payload here is a Rust `u64`. This is to allow passing any
/// representation of NaN into WebAssembly without risk of changing NaN
/// payload bits as its gets passed around the system. Otherwise though this
/// `u64` value is the return value of `f64::to_bits` in Rust.
///
/// This value is always stored in a little-endian format.
f64: u64,
/// A WebAssembly `v128` value.
///
/// The payload here is a Rust `[u8; 16]` which has the same number of bits
/// but note that `v128` in WebAssembly is often considered a vector type
/// such as `i32x4` or `f64x2`. This means that the actual interpretation
/// of the underlying bits is left up to the instructions which consume
/// this value.
///
/// This value is always stored in a little-endian format.
v128: [u8; 16],
/// A WebAssembly `funcref` value (or one of its subtypes).
///
/// The payload here is a pointer which is runtime-defined. This is one of
/// the main points of unsafety about the `ValRaw` type as the validity of
/// the pointer here is not easily verified and must be preserved by
/// carefully calling the correct functions throughout the runtime.
///
/// This value is always stored in a little-endian format.
funcref: *mut c_void,
/// A WebAssembly `externref` value (or one of its subtypes).
///
/// The payload here is a compressed pointer value which is
/// runtime-defined. This is one of the main points of unsafety about the
/// `ValRaw` type as the validity of the pointer here is not easily verified
/// and must be preserved by carefully calling the correct functions
/// throughout the runtime.
///
/// This value is always stored in a little-endian format.
externref: u32,
/// A WebAssembly `anyref` value (or one of its subtypes).
///
/// The payload here is a compressed pointer value which is
/// runtime-defined. This is one of the main points of unsafety about the
/// `ValRaw` type as the validity of the pointer here is not easily verified
/// and must be preserved by carefully calling the correct functions
/// throughout the runtime.
///
/// This value is always stored in a little-endian format.
anyref: u32,
}
// The `ValRaw` type is matched as `wasmtime_val_raw_t` in the C API so these
// are some simple assertions about the shape of the type which are additionally
// matched in C.
const _: () = {
assert!(mem::size_of::<ValRaw>() == 16);
assert!(mem::align_of::<ValRaw>() == mem::align_of::<u64>());
};
// This type is just a bag-of-bits so it's up to the caller to figure out how
// to safely deal with threading concerns and safely access interior bits.
unsafe impl Send for ValRaw {}
unsafe impl Sync for ValRaw {}
impl fmt::Debug for ValRaw {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
struct Hex<T>(T);
impl<T: fmt::LowerHex> fmt::Debug for Hex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let bytes = mem::size_of::<T>();
let hex_digits_per_byte = 2;
let hex_digits = bytes * hex_digits_per_byte;
write!(f, "0x{:0width$x}", self.0, width = hex_digits)
}
}
unsafe {
f.debug_struct("ValRaw")
.field("i32", &Hex(self.i32))
.field("i64", &Hex(self.i64))
.field("f32", &Hex(self.f32))
.field("f64", &Hex(self.f64))
.field("v128", &Hex(u128::from_le_bytes(self.v128)))
.field("funcref", &self.funcref)
.field("externref", &Hex(self.externref))
.field("anyref", &Hex(self.anyref))
.finish()
}
}
}
impl ValRaw {
/// Create a null reference that is compatible with any of
/// `{any,extern,func}ref`.
pub fn null() -> ValRaw {
unsafe {
let raw = mem::MaybeUninit::<Self>::zeroed().assume_init();
debug_assert_eq!(raw.get_anyref(), 0);
debug_assert_eq!(raw.get_externref(), 0);
debug_assert_eq!(raw.get_funcref(), ptr::null_mut());
raw
}
}
/// Creates a WebAssembly `i32` value
#[inline]
pub fn i32(i: i32) -> ValRaw {
// Note that this is intentionally not setting the `i32` field, instead
// setting the `i64` field with a zero-extended version of `i`. For more
// information on this see the comments on `Lower for Result` in the
// `wasmtime` crate. Otherwise though all `ValRaw` constructors are
// otherwise constrained to guarantee that the initial 64-bits are
// always initialized.
ValRaw::u64(i.unsigned().into())
}
/// Creates a WebAssembly `i64` value
#[inline]
pub fn i64(i: i64) -> ValRaw {
ValRaw { i64: i.to_le() }
}
/// Creates a WebAssembly `i32` value
#[inline]
pub fn u32(i: u32) -> ValRaw {
// See comments in `ValRaw::i32` for why this is setting the upper
// 32-bits as well.
ValRaw::u64(i.into())
}
/// Creates a WebAssembly `i64` value
#[inline]
pub fn u64(i: u64) -> ValRaw {
ValRaw::i64(i as i64)
}
/// Creates a WebAssembly `f32` value
#[inline]
pub fn f32(i: u32) -> ValRaw {
// See comments in `ValRaw::i32` for why this is setting the upper
// 32-bits as well.
ValRaw::u64(i.into())
}
/// Creates a WebAssembly `f64` value
#[inline]
pub fn f64(i: u64) -> ValRaw {
ValRaw { f64: i.to_le() }
}
/// Creates a WebAssembly `v128` value
#[inline]
pub fn v128(i: u128) -> ValRaw {
ValRaw {
v128: i.to_le_bytes(),
}
}
/// Creates a WebAssembly `funcref` value
#[inline]
pub fn funcref(i: *mut c_void) -> ValRaw {
ValRaw {
funcref: Strict::map_addr(i, |i| i.to_le()),
}
}
/// Creates a WebAssembly `externref` value
#[inline]
pub fn externref(e: u32) -> ValRaw {
assert!(cfg!(feature = "gc") || e == 0);
ValRaw {
externref: e.to_le(),
}
}
/// Creates a WebAssembly `anyref` value
#[inline]
pub fn anyref(r: u32) -> ValRaw {
assert!(cfg!(feature = "gc") || r == 0);
ValRaw { anyref: r.to_le() }
}
/// Gets the WebAssembly `i32` value
#[inline]
pub fn get_i32(&self) -> i32 {
unsafe { i32::from_le(self.i32) }
}
/// Gets the WebAssembly `i64` value
#[inline]
pub fn get_i64(&self) -> i64 {
unsafe { i64::from_le(self.i64) }
}
/// Gets the WebAssembly `i32` value
#[inline]
pub fn get_u32(&self) -> u32 {
self.get_i32().unsigned()
}
/// Gets the WebAssembly `i64` value
#[inline]
pub fn get_u64(&self) -> u64 {
self.get_i64().unsigned()
}
/// Gets the WebAssembly `f32` value
#[inline]
pub fn get_f32(&self) -> u32 {
unsafe { u32::from_le(self.f32) }
}
/// Gets the WebAssembly `f64` value
#[inline]
pub fn get_f64(&self) -> u64 {
unsafe { u64::from_le(self.f64) }
}
/// Gets the WebAssembly `v128` value
#[inline]
pub fn get_v128(&self) -> u128 {
unsafe { u128::from_le_bytes(self.v128) }
}
/// Gets the WebAssembly `funcref` value
#[inline]
pub fn get_funcref(&self) -> *mut c_void {
unsafe { Strict::map_addr(self.funcref, |i| usize::from_le(i)) }
}
/// Gets the WebAssembly `externref` value
#[inline]
pub fn get_externref(&self) -> u32 {
let externref = u32::from_le(unsafe { self.externref });
assert!(cfg!(feature = "gc") || externref == 0);
externref
}
/// Gets the WebAssembly `anyref` value
#[inline]
pub fn get_anyref(&self) -> u32 {
let anyref = u32::from_le(unsafe { self.anyref });
assert!(cfg!(feature = "gc") || anyref == 0);
anyref
}
}
/// An "opaque" version of `VMContext` which must be explicitly casted to a
/// target context.
///
/// This context is used to represent that contexts specified in
/// `VMFuncRef` can have any type and don't have an implicit
/// structure. Neither wasmtime nor cranelift-generated code can rely on the
/// structure of an opaque context in general and only the code which configured
/// the context is able to rely on a particular structure. This is because the
/// context pointer configured for `VMFuncRef` is guaranteed to be
/// the first parameter passed.
///
/// Note that Wasmtime currently has a layout where all contexts that are casted
/// to an opaque context start with a 32-bit "magic" which can be used in debug
/// mode to debug-assert that the casts here are correct and have at least a
/// little protection against incorrect casts.
pub struct VMOpaqueContext {
pub(crate) magic: u32,
_marker: marker::PhantomPinned,
}
impl VMOpaqueContext {
/// Helper function to clearly indicate that casts are desired.
#[inline]
pub fn from_vmcontext(ptr: *mut VMContext) -> *mut VMOpaqueContext {
ptr.cast()
}
/// Helper function to clearly indicate that casts are desired.
#[inline]
pub fn from_vm_array_call_host_func_context(
ptr: *mut VMArrayCallHostFuncContext,
) -> *mut VMOpaqueContext {
ptr.cast()
}
}