wasmtime_environ/compile/
module_environ.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
use crate::module::{
    FuncRefIndex, Initializer, MemoryInitialization, MemoryInitializer, MemoryPlan, Module,
    TablePlan, TableSegment, TableSegmentElements,
};
use crate::prelude::*;
use crate::{
    ConstExpr, ConstOp, DataIndex, DefinedFuncIndex, ElemIndex, EngineOrModuleTypeIndex,
    EntityIndex, EntityType, FuncIndex, GlobalIndex, IndexType, InitMemory, MemoryIndex,
    ModuleInternedTypeIndex, ModuleTypesBuilder, PrimaryMap, SizeOverflow, StaticMemoryInitializer,
    TableIndex, TableInitialValue, Tunables, TypeConvert, TypeIndex, Unsigned, WasmError,
    WasmHeapTopType, WasmHeapType, WasmResult, WasmValType, WasmparserTypeConverter,
};
use anyhow::{bail, Result};
use cranelift_entity::packed_option::ReservedValue;
use std::borrow::Cow;
use std::collections::HashMap;
use std::mem;
use std::path::PathBuf;
use std::sync::Arc;
use wasmparser::{
    types::Types, CustomSectionReader, DataKind, ElementItems, ElementKind, Encoding, ExternalKind,
    FuncToValidate, FunctionBody, KnownCustom, NameSectionReader, Naming, Parser, Payload, TypeRef,
    Validator, ValidatorResources,
};

/// Object containing the standalone environment information.
pub struct ModuleEnvironment<'a, 'data> {
    /// The current module being translated
    result: ModuleTranslation<'data>,

    /// Intern'd types for this entire translation, shared by all modules.
    types: &'a mut ModuleTypesBuilder,

    // Various bits and pieces of configuration
    validator: &'a mut Validator,
    tunables: &'a Tunables,
}

/// The result of translating via `ModuleEnvironment`. Function bodies are not
/// yet translated, and data initializers have not yet been copied out of the
/// original buffer.
#[derive(Default)]
pub struct ModuleTranslation<'data> {
    /// Module information.
    pub module: Module,

    /// The input wasm binary.
    ///
    /// This can be useful, for example, when modules are parsed from a
    /// component and the embedder wants access to the raw wasm modules
    /// themselves.
    pub wasm: &'data [u8],

    /// References to the function bodies.
    pub function_body_inputs: PrimaryMap<DefinedFuncIndex, FunctionBodyData<'data>>,

    /// A list of type signatures which are considered exported from this
    /// module, or those that can possibly be called. This list is sorted, and
    /// trampolines for each of these signatures are required.
    pub exported_signatures: Vec<ModuleInternedTypeIndex>,

    /// DWARF debug information, if enabled, parsed from the module.
    pub debuginfo: DebugInfoData<'data>,

    /// Set if debuginfo was found but it was not parsed due to `Tunables`
    /// configuration.
    pub has_unparsed_debuginfo: bool,

    /// List of data segments found in this module which should be concatenated
    /// together for the final compiled artifact.
    ///
    /// These data segments, when concatenated, are indexed by the
    /// `MemoryInitializer` type.
    pub data: Vec<Cow<'data, [u8]>>,

    /// The desired alignment of `data` in the final data section of the object
    /// file that we'll emit.
    ///
    /// Note that this is 1 by default but `MemoryInitialization::Static` might
    /// switch this to a higher alignment to facilitate mmap-ing data from
    /// an object file into a linear memory.
    pub data_align: Option<u64>,

    /// Total size of all data pushed onto `data` so far.
    total_data: u32,

    /// List of passive element segments found in this module which will get
    /// concatenated for the final artifact.
    pub passive_data: Vec<&'data [u8]>,

    /// Total size of all passive data pushed into `passive_data` so far.
    total_passive_data: u32,

    /// When we're parsing the code section this will be incremented so we know
    /// which function is currently being defined.
    code_index: u32,

    /// The type information of the current module made available at the end of the
    /// validation process.
    types: Option<Types>,
}

impl<'data> ModuleTranslation<'data> {
    /// Returns a reference to the type information of the current module.
    pub fn get_types(&self) -> &Types {
        self.types
            .as_ref()
            .expect("module type information to be available")
    }
}

/// Contains function data: byte code and its offset in the module.
pub struct FunctionBodyData<'a> {
    /// The body of the function, containing code and locals.
    pub body: FunctionBody<'a>,
    /// Validator for the function body
    pub validator: FuncToValidate<ValidatorResources>,
}

#[derive(Debug, Default)]
#[allow(missing_docs)]
pub struct DebugInfoData<'a> {
    pub dwarf: Dwarf<'a>,
    pub name_section: NameSection<'a>,
    pub wasm_file: WasmFileInfo,
    pub debug_loc: gimli::DebugLoc<Reader<'a>>,
    pub debug_loclists: gimli::DebugLocLists<Reader<'a>>,
    pub debug_ranges: gimli::DebugRanges<Reader<'a>>,
    pub debug_rnglists: gimli::DebugRngLists<Reader<'a>>,
    pub debug_cu_index: gimli::DebugCuIndex<Reader<'a>>,
    pub debug_tu_index: gimli::DebugTuIndex<Reader<'a>>,
}

#[allow(missing_docs)]
pub type Dwarf<'input> = gimli::Dwarf<Reader<'input>>;

type Reader<'input> = gimli::EndianSlice<'input, gimli::LittleEndian>;

#[derive(Debug, Default)]
#[allow(missing_docs)]
pub struct NameSection<'a> {
    pub module_name: Option<&'a str>,
    pub func_names: HashMap<FuncIndex, &'a str>,
    pub locals_names: HashMap<FuncIndex, HashMap<u32, &'a str>>,
}

#[derive(Debug, Default)]
#[allow(missing_docs)]
pub struct WasmFileInfo {
    pub path: Option<PathBuf>,
    pub code_section_offset: u64,
    pub imported_func_count: u32,
    pub funcs: Vec<FunctionMetadata>,
}

#[derive(Debug)]
#[allow(missing_docs)]
pub struct FunctionMetadata {
    pub params: Box<[WasmValType]>,
    pub locals: Box<[(u32, WasmValType)]>,
}

impl<'a, 'data> ModuleEnvironment<'a, 'data> {
    /// Allocates the environment data structures.
    pub fn new(
        tunables: &'a Tunables,
        validator: &'a mut Validator,
        types: &'a mut ModuleTypesBuilder,
    ) -> Self {
        Self {
            result: ModuleTranslation::default(),
            types,
            tunables,
            validator,
        }
    }

    /// Translate a wasm module using this environment.
    ///
    /// This function will translate the `data` provided with `parser`,
    /// validating everything along the way with this environment's validator.
    ///
    /// The result of translation, [`ModuleTranslation`], contains everything
    /// necessary to compile functions afterwards as well as learn type
    /// information about the module at runtime.
    pub fn translate(
        mut self,
        parser: Parser,
        data: &'data [u8],
    ) -> Result<ModuleTranslation<'data>> {
        self.result.wasm = data;

        for payload in parser.parse_all(data) {
            self.translate_payload(payload?)?;
        }

        Ok(self.result)
    }

    fn translate_payload(&mut self, payload: Payload<'data>) -> Result<()> {
        match payload {
            Payload::Version {
                num,
                encoding,
                range,
            } => {
                self.validator.version(num, encoding, &range)?;
                match encoding {
                    Encoding::Module => {}
                    Encoding::Component => {
                        bail!("expected a WebAssembly module but was given a WebAssembly component")
                    }
                }
            }

            Payload::End(offset) => {
                self.result.types = Some(self.validator.end(offset)?);

                // With the `escaped_funcs` set of functions finished
                // we can calculate the set of signatures that are exported as
                // the set of exported functions' signatures.
                self.result.exported_signatures = self
                    .result
                    .module
                    .functions
                    .iter()
                    .filter_map(|(_, func)| {
                        if func.is_escaping() {
                            Some(func.signature)
                        } else {
                            None
                        }
                    })
                    .collect();
                self.result.exported_signatures.sort_unstable();
                self.result.exported_signatures.dedup();
            }

            Payload::TypeSection(types) => {
                self.validator.type_section(&types)?;

                let count = self.validator.types(0).unwrap().core_type_count();
                log::trace!("interning {count} Wasm types");

                let capacity = usize::try_from(count).unwrap();
                self.result.module.types.reserve(capacity);
                self.types.reserve_wasm_signatures(capacity);

                // Iterate over each *rec group* -- not type -- defined in the
                // types section. Rec groups are the unit of canonicalization
                // and therefore the unit at which we need to process at a
                // time. `wasmparser` has already done the hard work of
                // de-duplicating and canonicalizing the rec groups within the
                // module for us, we just need to translate them into our data
                // structures. Note that, if the Wasm defines duplicate rec
                // groups, we need copy the duplicates over (shallowly) as well,
                // so that our types index space doesn't have holes.
                let mut type_index = 0;
                while type_index < count {
                    let validator_types = self.validator.types(0).unwrap();

                    // Get the rec group for the current type index, which is
                    // always the first type defined in a rec group.
                    log::trace!("looking up wasmparser type for index {type_index}");
                    let core_type_id = validator_types.core_type_at(type_index).unwrap_sub();
                    log::trace!(
                        "  --> {core_type_id:?} = {:?}",
                        validator_types[core_type_id],
                    );
                    let rec_group_id = validator_types.rec_group_id_of(core_type_id);
                    debug_assert_eq!(
                        validator_types
                            .rec_group_elements(rec_group_id)
                            .position(|id| id == core_type_id),
                        Some(0)
                    );

                    // Intern the rec group and then fill in this module's types
                    // index space.
                    let interned = self.types.intern_rec_group(
                        &self.result.module,
                        validator_types,
                        rec_group_id,
                    )?;
                    let elems = self.types.rec_group_elements(interned);
                    let len = elems.len();
                    self.result.module.types.reserve(len);
                    for ty in elems {
                        self.result.module.types.push(ty);
                    }

                    // Advance `type_index` to the start of the next rec group.
                    type_index += u32::try_from(len).unwrap();
                }
            }

            Payload::ImportSection(imports) => {
                self.validator.import_section(&imports)?;

                let cnt = usize::try_from(imports.count()).unwrap();
                self.result.module.initializers.reserve(cnt);

                for entry in imports {
                    let import = entry?;
                    let ty = match import.ty {
                        TypeRef::Func(index) => {
                            let index = TypeIndex::from_u32(index);
                            let interned_index = self.result.module.types[index];
                            self.result.module.num_imported_funcs += 1;
                            self.result.debuginfo.wasm_file.imported_func_count += 1;
                            EntityType::Function(EngineOrModuleTypeIndex::Module(interned_index))
                        }
                        TypeRef::Memory(ty) => {
                            self.result.module.num_imported_memories += 1;
                            EntityType::Memory(ty.into())
                        }
                        TypeRef::Global(ty) => {
                            self.result.module.num_imported_globals += 1;
                            EntityType::Global(self.convert_global_type(&ty))
                        }
                        TypeRef::Table(ty) => {
                            self.result.module.num_imported_tables += 1;
                            EntityType::Table(self.convert_table_type(&ty)?)
                        }

                        // doesn't get past validation
                        TypeRef::Tag(_) => unreachable!(),
                    };
                    self.declare_import(import.module, import.name, ty);
                }
            }

            Payload::FunctionSection(functions) => {
                self.validator.function_section(&functions)?;

                let cnt = usize::try_from(functions.count()).unwrap();
                self.result.module.functions.reserve_exact(cnt);

                for entry in functions {
                    let sigindex = entry?;
                    let ty = TypeIndex::from_u32(sigindex);
                    let interned_index = self.result.module.types[ty];
                    self.result.module.push_function(interned_index);
                }
            }

            Payload::TableSection(tables) => {
                self.validator.table_section(&tables)?;
                let cnt = usize::try_from(tables.count()).unwrap();
                self.result.module.table_plans.reserve_exact(cnt);

                for entry in tables {
                    let wasmparser::Table { ty, init } = entry?;
                    let table = self.convert_table_type(&ty)?;
                    let plan = TablePlan::for_table(table, &self.tunables);
                    self.result.module.table_plans.push(plan);
                    let init = match init {
                        wasmparser::TableInit::RefNull => TableInitialValue::Null {
                            precomputed: Vec::new(),
                        },
                        wasmparser::TableInit::Expr(expr) => {
                            let (init, escaped) = ConstExpr::from_wasmparser(expr)?;
                            for f in escaped {
                                self.flag_func_escaped(f);
                            }
                            TableInitialValue::Expr(init)
                        }
                    };
                    self.result
                        .module
                        .table_initialization
                        .initial_values
                        .push(init);
                }
            }

            Payload::MemorySection(memories) => {
                self.validator.memory_section(&memories)?;

                let cnt = usize::try_from(memories.count()).unwrap();
                self.result.module.memory_plans.reserve_exact(cnt);

                for entry in memories {
                    let memory = entry?;
                    let plan = MemoryPlan::for_memory(memory.into(), &self.tunables);
                    self.result.module.memory_plans.push(plan);
                }
            }

            Payload::TagSection(tags) => {
                self.validator.tag_section(&tags)?;

                // This feature isn't enabled at this time, so we should
                // never get here.
                unreachable!();
            }

            Payload::GlobalSection(globals) => {
                self.validator.global_section(&globals)?;

                let cnt = usize::try_from(globals.count()).unwrap();
                self.result.module.globals.reserve_exact(cnt);

                for entry in globals {
                    let wasmparser::Global { ty, init_expr } = entry?;
                    let (initializer, escaped) = ConstExpr::from_wasmparser(init_expr)?;
                    for f in escaped {
                        self.flag_func_escaped(f);
                    }
                    let ty = self.convert_global_type(&ty);
                    self.result.module.globals.push(ty);
                    self.result.module.global_initializers.push(initializer);
                }
            }

            Payload::ExportSection(exports) => {
                self.validator.export_section(&exports)?;

                let cnt = usize::try_from(exports.count()).unwrap();
                self.result.module.exports.reserve(cnt);

                for entry in exports {
                    let wasmparser::Export { name, kind, index } = entry?;
                    let entity = match kind {
                        ExternalKind::Func => {
                            let index = FuncIndex::from_u32(index);
                            self.flag_func_escaped(index);
                            EntityIndex::Function(index)
                        }
                        ExternalKind::Table => EntityIndex::Table(TableIndex::from_u32(index)),
                        ExternalKind::Memory => EntityIndex::Memory(MemoryIndex::from_u32(index)),
                        ExternalKind::Global => EntityIndex::Global(GlobalIndex::from_u32(index)),

                        // this never gets past validation
                        ExternalKind::Tag => unreachable!(),
                    };
                    self.result
                        .module
                        .exports
                        .insert(String::from(name), entity);
                }
            }

            Payload::StartSection { func, range } => {
                self.validator.start_section(func, &range)?;

                let func_index = FuncIndex::from_u32(func);
                self.flag_func_escaped(func_index);
                debug_assert!(self.result.module.start_func.is_none());
                self.result.module.start_func = Some(func_index);
            }

            Payload::ElementSection(elements) => {
                self.validator.element_section(&elements)?;

                for (index, entry) in elements.into_iter().enumerate() {
                    let wasmparser::Element {
                        kind,
                        items,
                        range: _,
                    } = entry?;

                    // Build up a list of `FuncIndex` corresponding to all the
                    // entries listed in this segment. Note that it's not
                    // possible to create anything other than a `ref.null
                    // extern` for externref segments, so those just get
                    // translated to the reserved value of `FuncIndex`.
                    let elements = match items {
                        ElementItems::Functions(funcs) => {
                            let mut elems =
                                Vec::with_capacity(usize::try_from(funcs.count()).unwrap());
                            for func in funcs {
                                let func = FuncIndex::from_u32(func?);
                                self.flag_func_escaped(func);
                                elems.push(func);
                            }
                            TableSegmentElements::Functions(elems.into())
                        }
                        ElementItems::Expressions(_ty, items) => {
                            let mut exprs =
                                Vec::with_capacity(usize::try_from(items.count()).unwrap());
                            for expr in items {
                                let (expr, escaped) = ConstExpr::from_wasmparser(expr?)?;
                                exprs.push(expr);
                                for func in escaped {
                                    self.flag_func_escaped(func);
                                }
                            }
                            TableSegmentElements::Expressions(exprs.into())
                        }
                    };

                    match kind {
                        ElementKind::Active {
                            table_index,
                            offset_expr,
                        } => {
                            let table_index = TableIndex::from_u32(table_index.unwrap_or(0));
                            let (offset, escaped) = ConstExpr::from_wasmparser(offset_expr)?;
                            debug_assert!(escaped.is_empty());

                            self.result
                                .module
                                .table_initialization
                                .segments
                                .push(TableSegment {
                                    table_index,
                                    offset,
                                    elements: elements.into(),
                                });
                        }

                        ElementKind::Passive => {
                            let elem_index = ElemIndex::from_u32(index as u32);
                            let index = self.result.module.passive_elements.len();
                            self.result.module.passive_elements.push(elements.into());
                            self.result
                                .module
                                .passive_elements_map
                                .insert(elem_index, index);
                        }

                        ElementKind::Declared => {}
                    }
                }
            }

            Payload::CodeSectionStart { count, range, .. } => {
                self.validator.code_section_start(count, &range)?;
                let cnt = usize::try_from(count).unwrap();
                self.result.function_body_inputs.reserve_exact(cnt);
                self.result.debuginfo.wasm_file.code_section_offset = range.start as u64;
            }

            Payload::CodeSectionEntry(body) => {
                let validator = self.validator.code_section_entry(&body)?;
                let func_index =
                    self.result.code_index + self.result.module.num_imported_funcs as u32;
                let func_index = FuncIndex::from_u32(func_index);

                if self.tunables.generate_native_debuginfo {
                    let sig_index = self.result.module.functions[func_index].signature;
                    let sig = self.types[sig_index].unwrap_func();
                    let mut locals = Vec::new();
                    for pair in body.get_locals_reader()? {
                        let (cnt, ty) = pair?;
                        let ty = self.convert_valtype(ty);
                        locals.push((cnt, ty));
                    }
                    self.result
                        .debuginfo
                        .wasm_file
                        .funcs
                        .push(FunctionMetadata {
                            locals: locals.into_boxed_slice(),
                            params: sig.params().into(),
                        });
                }
                self.result
                    .function_body_inputs
                    .push(FunctionBodyData { validator, body });
                self.result.code_index += 1;
            }

            Payload::DataSection(data) => {
                self.validator.data_section(&data)?;

                let initializers = match &mut self.result.module.memory_initialization {
                    MemoryInitialization::Segmented(i) => i,
                    _ => unreachable!(),
                };

                let cnt = usize::try_from(data.count()).unwrap();
                initializers.reserve_exact(cnt);
                self.result.data.reserve_exact(cnt);

                for (index, entry) in data.into_iter().enumerate() {
                    let wasmparser::Data {
                        kind,
                        data,
                        range: _,
                    } = entry?;
                    let mk_range = |total: &mut u32| -> Result<_, WasmError> {
                        let range = u32::try_from(data.len())
                            .ok()
                            .and_then(|size| {
                                let start = *total;
                                let end = start.checked_add(size)?;
                                Some(start..end)
                            })
                            .ok_or_else(|| {
                                WasmError::Unsupported(format!(
                                    "more than 4 gigabytes of data in wasm module",
                                ))
                            })?;
                        *total += range.end - range.start;
                        Ok(range)
                    };
                    match kind {
                        DataKind::Active {
                            memory_index,
                            offset_expr,
                        } => {
                            let range = mk_range(&mut self.result.total_data)?;
                            let memory_index = MemoryIndex::from_u32(memory_index);
                            let (offset, escaped) = ConstExpr::from_wasmparser(offset_expr)?;
                            debug_assert!(escaped.is_empty());

                            initializers.push(MemoryInitializer {
                                memory_index,
                                offset,
                                data: range,
                            });
                            self.result.data.push(data.into());
                        }
                        DataKind::Passive => {
                            let data_index = DataIndex::from_u32(index as u32);
                            let range = mk_range(&mut self.result.total_passive_data)?;
                            self.result.passive_data.push(data);
                            self.result
                                .module
                                .passive_data_map
                                .insert(data_index, range);
                        }
                    }
                }
            }

            Payload::DataCountSection { count, range } => {
                self.validator.data_count_section(count, &range)?;

                // Note: the count passed in here is the *total* segment count
                // There is no way to reserve for just the passive segments as
                // they are discovered when iterating the data section entries
                // Given that the total segment count might be much larger than
                // the passive count, do not reserve anything here.
            }

            Payload::CustomSection(s)
                if s.name() == "webidl-bindings" || s.name() == "wasm-interface-types" =>
            {
                bail!(
                    "\
Support for interface types has temporarily been removed from `wasmtime`.

For more information about this temporary change you can read on the issue online:

    https://github.com/bytecodealliance/wasmtime/issues/1271

and for re-adding support for interface types you can see this issue:

    https://github.com/bytecodealliance/wasmtime/issues/677
"
                )
            }

            Payload::CustomSection(s) => {
                self.register_custom_section(&s);
            }

            // It's expected that validation will probably reject other
            // payloads such as `UnknownSection` or those related to the
            // component model. If, however, something gets past validation then
            // that's a bug in Wasmtime as we forgot to implement something.
            other => {
                self.validator.payload(&other)?;
                panic!("unimplemented section in wasm file {other:?}");
            }
        }
        Ok(())
    }

    fn register_custom_section(&mut self, section: &CustomSectionReader<'data>) {
        match section.as_known() {
            KnownCustom::Name(name) => {
                let result = self.name_section(name);
                if let Err(e) = result {
                    log::warn!("failed to parse name section {:?}", e);
                }
            }
            _ => {
                let name = section.name().trim_end_matches(".dwo");
                if name.starts_with(".debug_") {
                    self.dwarf_section(name, section);
                }
            }
        }
    }

    fn dwarf_section(&mut self, name: &str, section: &CustomSectionReader<'data>) {
        if !self.tunables.generate_native_debuginfo && !self.tunables.parse_wasm_debuginfo {
            self.result.has_unparsed_debuginfo = true;
            return;
        }
        let info = &mut self.result.debuginfo;
        let dwarf = &mut info.dwarf;
        let endian = gimli::LittleEndian;
        let data = section.data();
        let slice = gimli::EndianSlice::new(data, endian);

        match name {
            // `gimli::Dwarf` fields.
            ".debug_abbrev" => dwarf.debug_abbrev = gimli::DebugAbbrev::new(data, endian),
            ".debug_addr" => dwarf.debug_addr = gimli::DebugAddr::from(slice),
            ".debug_info" => {
                dwarf.debug_info = gimli::DebugInfo::new(data, endian);
            }
            ".debug_line" => dwarf.debug_line = gimli::DebugLine::new(data, endian),
            ".debug_line_str" => dwarf.debug_line_str = gimli::DebugLineStr::from(slice),
            ".debug_str" => dwarf.debug_str = gimli::DebugStr::new(data, endian),
            ".debug_str_offsets" => dwarf.debug_str_offsets = gimli::DebugStrOffsets::from(slice),
            ".debug_str_sup" => {
                let mut dwarf_sup: Dwarf<'data> = Default::default();
                dwarf_sup.debug_str = gimli::DebugStr::from(slice);
                dwarf.sup = Some(Arc::new(dwarf_sup));
            }
            ".debug_types" => dwarf.debug_types = gimli::DebugTypes::from(slice),

            // Additional fields.
            ".debug_loc" => info.debug_loc = gimli::DebugLoc::from(slice),
            ".debug_loclists" => info.debug_loclists = gimli::DebugLocLists::from(slice),
            ".debug_ranges" => info.debug_ranges = gimli::DebugRanges::new(data, endian),
            ".debug_rnglists" => info.debug_rnglists = gimli::DebugRngLists::new(data, endian),

            // DWARF package fields
            ".debug_cu_index" => info.debug_cu_index = gimli::DebugCuIndex::new(data, endian),
            ".debug_tu_index" => info.debug_tu_index = gimli::DebugTuIndex::new(data, endian),

            // We don't use these at the moment.
            ".debug_aranges" | ".debug_pubnames" | ".debug_pubtypes" => return,
            other => {
                log::warn!("unknown debug section `{}`", other);
                return;
            }
        }

        dwarf.ranges = gimli::RangeLists::new(info.debug_ranges, info.debug_rnglists);
        dwarf.locations = gimli::LocationLists::new(info.debug_loc, info.debug_loclists);
    }

    /// Declares a new import with the `module` and `field` names, importing the
    /// `ty` specified.
    ///
    /// Note that this method is somewhat tricky due to the implementation of
    /// the module linking proposal. In the module linking proposal two-level
    /// imports are recast as single-level imports of instances. That recasting
    /// happens here by recording an import of an instance for the first time
    /// we see a two-level import.
    ///
    /// When the module linking proposal is disabled, however, disregard this
    /// logic and instead work directly with two-level imports since no
    /// instances are defined.
    fn declare_import(&mut self, module: &'data str, field: &'data str, ty: EntityType) {
        let index = self.push_type(ty);
        self.result.module.initializers.push(Initializer::Import {
            name: module.to_owned(),
            field: field.to_owned(),
            index,
        });
    }

    fn push_type(&mut self, ty: EntityType) -> EntityIndex {
        match ty {
            EntityType::Function(ty) => EntityIndex::Function({
                let func_index = self
                    .result
                    .module
                    .push_function(ty.unwrap_module_type_index());
                // Imported functions can escape; in fact, they've already done
                // so to get here.
                self.flag_func_escaped(func_index);
                func_index
            }),
            EntityType::Table(ty) => {
                let plan = TablePlan::for_table(ty, &self.tunables);
                EntityIndex::Table(self.result.module.table_plans.push(plan))
            }
            EntityType::Memory(ty) => {
                let plan = MemoryPlan::for_memory(ty, &self.tunables);
                EntityIndex::Memory(self.result.module.memory_plans.push(plan))
            }
            EntityType::Global(ty) => EntityIndex::Global(self.result.module.globals.push(ty)),
            EntityType::Tag(_) => unimplemented!(),
        }
    }

    fn flag_func_escaped(&mut self, func: FuncIndex) {
        let ty = &mut self.result.module.functions[func];
        // If this was already assigned a funcref index no need to re-assign it.
        if ty.is_escaping() {
            return;
        }
        let index = self.result.module.num_escaped_funcs as u32;
        ty.func_ref = FuncRefIndex::from_u32(index);
        self.result.module.num_escaped_funcs += 1;
    }

    /// Parses the Name section of the wasm module.
    fn name_section(&mut self, names: NameSectionReader<'data>) -> WasmResult<()> {
        for subsection in names {
            match subsection? {
                wasmparser::Name::Function(names) => {
                    for name in names {
                        let Naming { index, name } = name?;
                        // Skip this naming if it's naming a function that
                        // doesn't actually exist.
                        if (index as usize) >= self.result.module.functions.len() {
                            continue;
                        }

                        // Store the name unconditionally, regardless of
                        // whether we're parsing debuginfo, since function
                        // names are almost always present in the
                        // final compilation artifact.
                        let index = FuncIndex::from_u32(index);
                        self.result
                            .debuginfo
                            .name_section
                            .func_names
                            .insert(index, name);
                    }
                }
                wasmparser::Name::Module { name, .. } => {
                    self.result.module.name = Some(name.to_string());
                    if self.tunables.generate_native_debuginfo {
                        self.result.debuginfo.name_section.module_name = Some(name);
                    }
                }
                wasmparser::Name::Local(reader) => {
                    if !self.tunables.generate_native_debuginfo {
                        continue;
                    }
                    for f in reader {
                        let f = f?;
                        // Skip this naming if it's naming a function that
                        // doesn't actually exist.
                        if (f.index as usize) >= self.result.module.functions.len() {
                            continue;
                        }
                        for name in f.names {
                            let Naming { index, name } = name?;

                            self.result
                                .debuginfo
                                .name_section
                                .locals_names
                                .entry(FuncIndex::from_u32(f.index))
                                .or_insert(HashMap::new())
                                .insert(index, name);
                        }
                    }
                }
                wasmparser::Name::Label(_)
                | wasmparser::Name::Type(_)
                | wasmparser::Name::Table(_)
                | wasmparser::Name::Global(_)
                | wasmparser::Name::Memory(_)
                | wasmparser::Name::Element(_)
                | wasmparser::Name::Data(_)
                | wasmparser::Name::Tag(_)
                | wasmparser::Name::Field(_)
                | wasmparser::Name::Unknown { .. } => {}
            }
        }
        Ok(())
    }
}

impl TypeConvert for ModuleEnvironment<'_, '_> {
    fn lookup_heap_type(&self, index: wasmparser::UnpackedIndex) -> WasmHeapType {
        WasmparserTypeConverter::new(&self.types, &self.result.module).lookup_heap_type(index)
    }

    fn lookup_type_index(&self, index: wasmparser::UnpackedIndex) -> EngineOrModuleTypeIndex {
        WasmparserTypeConverter::new(&self.types, &self.result.module).lookup_type_index(index)
    }
}

impl ModuleTranslation<'_> {
    /// Attempts to convert segmented memory initialization into static
    /// initialization for the module that this translation represents.
    ///
    /// If this module's memory initialization is not compatible with paged
    /// initialization then this won't change anything. Otherwise if it is
    /// compatible then the `memory_initialization` field will be updated.
    ///
    /// Takes a `page_size` argument in order to ensure that all
    /// initialization is page-aligned for mmap-ability, and
    /// `max_image_size_always_allowed` to control how we decide
    /// whether to use static init.
    ///
    /// We will try to avoid generating very sparse images, which are
    /// possible if e.g. a module has an initializer at offset 0 and a
    /// very high offset (say, 1 GiB). To avoid this, we use a dual
    /// condition: we always allow images less than
    /// `max_image_size_always_allowed`, and the embedder of Wasmtime
    /// can set this if desired to ensure that static init should
    /// always be done if the size of the module or its heaps is
    /// otherwise bounded by the system. We also allow images with
    /// static init data bigger than that, but only if it is "dense",
    /// defined as having at least half (50%) of its pages with some
    /// data.
    ///
    /// We could do something slightly better by building a dense part
    /// and keeping a sparse list of outlier/leftover segments (see
    /// issue #3820). This would also allow mostly-static init of
    /// modules that have some dynamically-placed data segments. But,
    /// for now, this is sufficient to allow a system that "knows what
    /// it's doing" to always get static init.
    pub fn try_static_init(&mut self, page_size: u64, max_image_size_always_allowed: u64) {
        // This method only attempts to transform a `Segmented` memory init
        // into a `Static` one, no other state.
        if !self.module.memory_initialization.is_segmented() {
            return;
        }

        // First a dry run of memory initialization is performed. This
        // collects information about the extent of memory initialized for each
        // memory as well as the size of all data segments being copied in.
        struct Memory {
            data_size: u64,
            min_addr: u64,
            max_addr: u64,
            // The `usize` here is a pointer into `self.data` which is the list
            // of data segments corresponding to what was found in the original
            // wasm module.
            segments: Vec<(usize, StaticMemoryInitializer)>,
        }
        let mut info = PrimaryMap::with_capacity(self.module.memory_plans.len());
        for _ in 0..self.module.memory_plans.len() {
            info.push(Memory {
                data_size: 0,
                min_addr: u64::MAX,
                max_addr: 0,
                segments: Vec::new(),
            });
        }

        struct InitMemoryAtCompileTime<'a> {
            module: &'a Module,
            info: &'a mut PrimaryMap<MemoryIndex, Memory>,
            idx: usize,
        }
        impl InitMemory for InitMemoryAtCompileTime<'_> {
            fn memory_size_in_bytes(
                &mut self,
                memory_index: MemoryIndex,
            ) -> Result<u64, SizeOverflow> {
                self.module.memory_plans[memory_index]
                    .memory
                    .minimum_byte_size()
            }

            fn eval_offset(&mut self, memory_index: MemoryIndex, expr: &ConstExpr) -> Option<u64> {
                match (
                    expr.ops(),
                    self.module.memory_plans[memory_index].memory.idx_type,
                ) {
                    (&[ConstOp::I32Const(offset)], IndexType::I32) => {
                        Some(offset.unsigned().into())
                    }
                    (&[ConstOp::I64Const(offset)], IndexType::I64) => Some(offset.unsigned()),
                    _ => None,
                }
            }

            fn write(&mut self, memory: MemoryIndex, init: &StaticMemoryInitializer) -> bool {
                // Currently `Static` only applies to locally-defined memories,
                // so if a data segment references an imported memory then
                // transitioning to a `Static` memory initializer is not
                // possible.
                if self.module.defined_memory_index(memory).is_none() {
                    return false;
                };
                let info = &mut self.info[memory];
                let data_len = u64::from(init.data.end - init.data.start);
                if data_len > 0 {
                    info.data_size += data_len;
                    info.min_addr = info.min_addr.min(init.offset);
                    info.max_addr = info.max_addr.max(init.offset + data_len);
                    info.segments.push((self.idx, init.clone()));
                }
                self.idx += 1;
                true
            }
        }
        let ok = self
            .module
            .memory_initialization
            .init_memory(&mut InitMemoryAtCompileTime {
                idx: 0,
                module: &self.module,
                info: &mut info,
            });
        if !ok {
            return;
        }

        // Validate that the memory information collected is indeed valid for
        // static memory initialization.
        for (i, info) in info.iter().filter(|(_, info)| info.data_size > 0) {
            let image_size = info.max_addr - info.min_addr;

            // Simplify things for now by bailing out entirely if any memory has
            // a page size smaller than the host's page size. This fixes a case
            // where currently initializers are created in host-page-size units
            // of length which means that a larger-than-the-entire-memory
            // initializer can be created. This can be handled technically but
            // would require some more changes to help fix the assert elsewhere
            // that this protects against.
            if self.module.memory_plans[i].memory.page_size() < page_size {
                return;
            }

            // If the range of memory being initialized is less than twice the
            // total size of the data itself then it's assumed that static
            // initialization is ok. This means we'll at most double memory
            // consumption during the memory image creation process, which is
            // currently assumed to "probably be ok" but this will likely need
            // tweaks over time.
            if image_size < info.data_size.saturating_mul(2) {
                continue;
            }

            // If the memory initialization image is larger than the size of all
            // data, then we still allow memory initialization if the image will
            // be of a relatively modest size, such as 1MB here.
            if image_size < max_image_size_always_allowed {
                continue;
            }

            // At this point memory initialization is concluded to be too
            // expensive to do at compile time so it's entirely deferred to
            // happen at runtime.
            return;
        }

        // Here's where we've now committed to changing to static memory. The
        // memory initialization image is built here from the page data and then
        // it's converted to a single initializer.
        let data = mem::replace(&mut self.data, Vec::new());
        let mut map = PrimaryMap::with_capacity(info.len());
        let mut module_data_size = 0u32;
        for (memory, info) in info.iter() {
            // Create the in-memory `image` which is the initialized contents of
            // this linear memory.
            let extent = if info.segments.len() > 0 {
                (info.max_addr - info.min_addr) as usize
            } else {
                0
            };
            let mut image = Vec::with_capacity(extent);
            for (idx, init) in info.segments.iter() {
                let data = &data[*idx];
                assert_eq!(data.len(), init.data.len());
                let offset = usize::try_from(init.offset - info.min_addr).unwrap();
                if image.len() < offset {
                    image.resize(offset, 0u8);
                    image.extend_from_slice(data);
                } else {
                    image.splice(
                        offset..(offset + data.len()).min(image.len()),
                        data.iter().copied(),
                    );
                }
            }
            assert_eq!(image.len(), extent);
            assert_eq!(image.capacity(), extent);
            let mut offset = if info.segments.len() > 0 {
                info.min_addr
            } else {
                0
            };

            // Chop off trailing zeros from the image as memory is already
            // zero-initialized. Note that `i` is the position of a nonzero
            // entry here, so to not lose it we truncate to `i + 1`.
            if let Some(i) = image.iter().rposition(|i| *i != 0) {
                image.truncate(i + 1);
            }

            // Also chop off leading zeros, if any.
            if let Some(i) = image.iter().position(|i| *i != 0) {
                offset += i as u64;
                image.drain(..i);
            }
            let mut len = u64::try_from(image.len()).unwrap();

            // The goal is to enable mapping this image directly into memory, so
            // the offset into linear memory must be a multiple of the page
            // size. If that's not already the case then the image is padded at
            // the front and back with extra zeros as necessary
            if offset % page_size != 0 {
                let zero_padding = offset % page_size;
                self.data.push(vec![0; zero_padding as usize].into());
                offset -= zero_padding;
                len += zero_padding;
            }
            self.data.push(image.into());
            if len % page_size != 0 {
                let zero_padding = page_size - (len % page_size);
                self.data.push(vec![0; zero_padding as usize].into());
                len += zero_padding;
            }

            // Offset/length should now always be page-aligned.
            assert!(offset % page_size == 0);
            assert!(len % page_size == 0);

            // Create the `StaticMemoryInitializer` which describes this image,
            // only needed if the image is actually present and has a nonzero
            // length. The `offset` has been calculates above, originally
            // sourced from `info.min_addr`. The `data` field is the extent
            // within the final data segment we'll emit to an ELF image, which
            // is the concatenation of `self.data`, so here it's the size of
            // the section-so-far plus the current segment we're appending.
            let len = u32::try_from(len).unwrap();
            let init = if len > 0 {
                Some(StaticMemoryInitializer {
                    offset,
                    data: module_data_size..module_data_size + len,
                })
            } else {
                None
            };
            let idx = map.push(init);
            assert_eq!(idx, memory);
            module_data_size += len;
        }
        self.data_align = Some(page_size);
        self.module.memory_initialization = MemoryInitialization::Static { map };
    }

    /// Attempts to convert the module's table initializers to
    /// FuncTable form where possible. This enables lazy table
    /// initialization later by providing a one-to-one map of initial
    /// table values, without having to parse all segments.
    pub fn try_func_table_init(&mut self) {
        // This should be large enough to support very large Wasm
        // modules with huge funcref tables, but small enough to avoid
        // OOMs or DoS on truly sparse tables.
        const MAX_FUNC_TABLE_SIZE: u64 = 1024 * 1024;

        // First convert any element-initialized tables to images of just that
        // single function if the minimum size of the table allows doing so.
        for ((_, init), (_, plan)) in self
            .module
            .table_initialization
            .initial_values
            .iter_mut()
            .zip(
                self.module
                    .table_plans
                    .iter()
                    .skip(self.module.num_imported_tables),
            )
        {
            let table_size = plan.table.limits.min;
            if table_size > MAX_FUNC_TABLE_SIZE {
                continue;
            }
            if let TableInitialValue::Expr(expr) = init {
                if let [ConstOp::RefFunc(f)] = expr.ops() {
                    *init = TableInitialValue::Null {
                        precomputed: vec![*f; table_size as usize],
                    };
                }
            }
        }

        let mut segments = mem::take(&mut self.module.table_initialization.segments)
            .into_iter()
            .peekable();

        // The goal of this loop is to interpret a table segment and apply it
        // "statically" to a local table. This will iterate over segments and
        // apply them one-by-one to each table.
        //
        // If any segment can't be applied, however, then this loop exits and
        // all remaining segments are placed back into the segment list. This is
        // because segments are supposed to be initialized one-at-a-time which
        // means that intermediate state is visible with respect to traps. If
        // anything isn't statically known to not trap it's pessimistically
        // assumed to trap meaning all further segment initializers must be
        // applied manually at instantiation time.
        while let Some(segment) = segments.peek() {
            let defined_index = match self.module.defined_table_index(segment.table_index) {
                Some(index) => index,
                // Skip imported tables: we can't provide a preconstructed
                // table for them, because their values depend on the
                // imported table overlaid with whatever segments we have.
                None => break,
            };

            // If the base of this segment is dynamic, then we can't
            // include it in the statically-built array of initial
            // contents.
            let offset = match segment.offset.ops() {
                &[ConstOp::I32Const(offset)] => u64::from(offset.unsigned()),
                &[ConstOp::I64Const(offset)] => offset.unsigned(),
                _ => break,
            };

            // Get the end of this segment. If out-of-bounds, or too
            // large for our dense table representation, then skip the
            // segment.
            let top = match offset.checked_add(segment.elements.len()) {
                Some(top) => top,
                None => break,
            };
            let table_size = self.module.table_plans[segment.table_index]
                .table
                .limits
                .min;
            if top > table_size || top > MAX_FUNC_TABLE_SIZE {
                break;
            }

            match self.module.table_plans[segment.table_index]
                .table
                .ref_type
                .heap_type
                .top()
            {
                WasmHeapTopType::Func => {}
                // If this is not a funcref table, then we can't support a
                // pre-computed table of function indices. Technically this
                // initializer won't trap so we could continue processing
                // segments, but that's left as a future optimization if
                // necessary.
                WasmHeapTopType::Any | WasmHeapTopType::Extern => break,
            }

            // Function indices can be optimized here, but fully general
            // expressions are deferred to get evaluated at runtime.
            let function_elements = match &segment.elements {
                TableSegmentElements::Functions(indices) => indices,
                TableSegmentElements::Expressions(_) => break,
            };

            let precomputed =
                match &mut self.module.table_initialization.initial_values[defined_index] {
                    TableInitialValue::Null { precomputed } => precomputed,

                    // If this table is still listed as an initial value here
                    // then that means the initial size of the table doesn't
                    // support a precomputed function list, so skip this.
                    // Technically this won't trap so it's possible to process
                    // further initializers, but that's left as a future
                    // optimization.
                    TableInitialValue::Expr(_) => break,
                };

            // At this point we're committing to pre-initializing the table
            // with the `segment` that's being iterated over. This segment is
            // applied to the `precomputed` list for the table by ensuring
            // it's large enough to hold the segment and then copying the
            // segment into the precomputed list.
            if precomputed.len() < top as usize {
                precomputed.resize(top as usize, FuncIndex::reserved_value());
            }
            let dst = &mut precomputed[offset as usize..top as usize];
            dst.copy_from_slice(&function_elements);

            // advance the iterator to see the next segment
            let _ = segments.next();
        }
        self.module.table_initialization.segments = segments.collect();
    }
}