wasmtime_internal_cranelift/
obj.rs

1//! Object file builder.
2//!
3//! Creates ELF image based on `Compilation` information. The ELF contains
4//! functions and trampolines in the ".text" section. It also contains all
5//! relocation records for the linking stage. If DWARF sections exist, their
6//! content will be written as well.
7//!
8//! The object file has symbols for each function and trampoline, as well as
9//! symbols that refer to libcalls.
10//!
11//! The function symbol names have format "_wasm_function_N", where N is
12//! `FuncIndex`. The defined wasm function symbols refer to a JIT compiled
13//! function body, the imported wasm function do not. The trampolines symbol
14//! names have format "_trampoline_N", where N is `SignatureIndex`.
15
16use crate::CompiledFunction;
17use anyhow::Result;
18use cranelift_codegen::TextSectionBuilder;
19use cranelift_codegen::isa::unwind::{UnwindInfo, systemv};
20use cranelift_control::ControlPlane;
21use gimli::RunTimeEndian;
22use gimli::write::{Address, EhFrame, EndianVec, FrameTable, Writer};
23use object::write::{Object, SectionId, StandardSegment, Symbol, SymbolId, SymbolSection};
24use object::{Architecture, SectionFlags, SectionKind, SymbolFlags, SymbolKind, SymbolScope};
25use std::ops::Range;
26use wasmtime_environ::{Compiler, TripleExt};
27use wasmtime_environ::{FuncKey, obj};
28
29const TEXT_SECTION_NAME: &[u8] = b".text";
30
31fn text_align(compiler: &dyn Compiler) -> u64 {
32    // text pages will not be made executable with pulley, so the section
33    // doesn't need to be padded out to page alignment boundaries.
34    if compiler.triple().is_pulley() {
35        0x1
36    } else {
37        compiler.page_size_align()
38    }
39}
40
41/// A helper structure used to assemble the final text section of an executable,
42/// plus unwinding information and other related details.
43///
44/// This builder relies on Cranelift-specific internals but assembles into a
45/// generic `Object` which will get further appended to in a compiler-agnostic
46/// fashion later.
47pub struct ModuleTextBuilder<'a> {
48    /// The target that we're compiling for, used to query target-specific
49    /// information as necessary.
50    compiler: &'a dyn Compiler,
51
52    /// The object file that we're generating code into.
53    obj: &'a mut Object<'static>,
54
55    /// The WebAssembly module we're generating code for.
56    text_section: SectionId,
57
58    unwind_info: UnwindInfoBuilder<'a>,
59
60    /// In-progress text section that we're using cranelift's `MachBuffer` to
61    /// build to resolve relocations (calls) between functions.
62    text: Box<dyn TextSectionBuilder>,
63
64    ctrl_plane: ControlPlane,
65}
66
67impl<'a> ModuleTextBuilder<'a> {
68    /// Creates a new builder for the text section of an executable.
69    ///
70    /// The `.text` section will be appended to the specified `obj` along with
71    /// any unwinding or such information as necessary. The `num_funcs`
72    /// parameter indicates the number of times the `append_func` function will
73    /// be called. The `finish` function will panic if this contract is not met.
74    pub fn new(
75        obj: &'a mut Object<'static>,
76        compiler: &'a dyn Compiler,
77        text: Box<dyn TextSectionBuilder>,
78    ) -> Self {
79        // Entire code (functions and trampolines) will be placed
80        // in the ".text" section.
81        let text_section = obj.add_section(
82            obj.segment_name(StandardSegment::Text).to_vec(),
83            TEXT_SECTION_NAME.to_vec(),
84            SectionKind::Text,
85        );
86
87        // If this target is Pulley then flag the text section as not needing the
88        // executable bit in virtual memory which means that the runtime won't
89        // try to call `Mmap::make_executable`, which makes Pulley more
90        // portable.
91        if compiler.triple().is_pulley() {
92            let section = obj.section_mut(text_section);
93            assert!(matches!(section.flags, SectionFlags::None));
94            section.flags = SectionFlags::Elf {
95                sh_flags: obj::SH_WASMTIME_NOT_EXECUTED,
96            };
97        }
98
99        Self {
100            compiler,
101            obj,
102            text_section,
103            unwind_info: Default::default(),
104            text,
105            ctrl_plane: ControlPlane::default(),
106        }
107    }
108
109    /// Appends the `func` specified named `name` to this object.
110    ///
111    /// The `resolve_reloc_target` closure is used to resolve a relocation
112    /// target to an adjacent function which has already been added or will be
113    /// added to this object. The argument is the relocation target specified
114    /// within `CompiledFunction` and the return value must be an index where
115    /// the target will be defined by the `n`th call to `append_func`.
116    ///
117    /// Returns the symbol associated with the function as well as the range
118    /// that the function resides within the text section.
119    pub fn append_func(
120        &mut self,
121        name: &str,
122        compiled_func: &'a CompiledFunction,
123        resolve_reloc_target: impl Fn(wasmtime_environ::FuncKey) -> usize,
124    ) -> (SymbolId, Range<u64>) {
125        let body = compiled_func.buffer.data();
126        let alignment = compiled_func.alignment;
127        let body_len = body.len() as u64;
128        let off = self
129            .text
130            .append(true, &body, alignment, &mut self.ctrl_plane);
131
132        let symbol_id = self.obj.add_symbol(Symbol {
133            name: name.as_bytes().to_vec(),
134            value: off,
135            size: body_len,
136            kind: SymbolKind::Text,
137            scope: SymbolScope::Compilation,
138            weak: false,
139            section: SymbolSection::Section(self.text_section),
140            flags: SymbolFlags::None,
141        });
142
143        if let Some(info) = compiled_func.unwind_info() {
144            self.unwind_info.push(off, body_len, info);
145        }
146
147        for r in compiled_func.relocations() {
148            let reloc_offset = off + u64::from(r.offset);
149
150            // This relocation is used to fill in which hostcall id is
151            // desired within the `call_indirect_host` opcode of Pulley
152            // itself. The relocation target is the start of the instruction
153            // and the goal is to insert the static signature number, `n`,
154            // into the instruction.
155            //
156            // At this time the instruction looks like:
157            //
158            //      +------+------+------+------+
159            //      | OP   | OP_EXTENDED |  N   |
160            //      +------+------+------+------+
161            //
162            // This 4-byte encoding has `OP` indicating this is an "extended
163            // opcode" where `OP_EXTENDED` is a 16-bit extended opcode.
164            // The `N` byte is the index of the signature being called and
165            // is what's b eing filled in.
166            //
167            // See the `test_call_indirect_host_width` in
168            // `pulley/tests/all.rs` for this guarantee as well.
169            if let FuncKey::PulleyHostCall(host_call) = r.reloc_target {
170                #[cfg(feature = "pulley")]
171                {
172                    use pulley_interpreter::encode::Encode;
173                    assert_eq!(pulley_interpreter::CallIndirectHost::WIDTH, 4);
174                }
175                let n = host_call.index();
176                let byte = u8::try_from(n).unwrap();
177                self.text.write(reloc_offset + 3, &[byte]);
178                continue;
179            }
180
181            let target = resolve_reloc_target(r.reloc_target);
182            if self
183                .text
184                .resolve_reloc(reloc_offset, r.reloc, r.addend, target)
185            {
186                continue;
187            }
188
189            panic!("failed to resolve relocation: {r:?} -> {target}");
190        }
191
192        (symbol_id, off..off + body_len)
193    }
194
195    /// Forces "veneers" to be used for inter-function calls in the text
196    /// section which means that in-bounds optimized addresses are never used.
197    ///
198    /// This is only useful for debugging cranelift itself and typically this
199    /// option is disabled.
200    pub fn force_veneers(&mut self) {
201        self.text.force_veneers();
202    }
203
204    /// Appends the specified amount of bytes of padding into the text section.
205    ///
206    /// This is only useful when fuzzing and/or debugging cranelift itself and
207    /// for production scenarios `padding` is 0 and this function does nothing.
208    pub fn append_padding(&mut self, padding: usize) {
209        if padding == 0 {
210            return;
211        }
212        self.text
213            .append(false, &vec![0; padding], 1, &mut self.ctrl_plane);
214    }
215
216    /// Indicates that the text section has been written completely and this
217    /// will finish appending it to the original object.
218    ///
219    /// Note that this will also write out the unwind information sections if
220    /// necessary.
221    pub fn finish(mut self) {
222        // Finish up the text section now that we're done adding functions.
223        let text = self.text.finish(&mut self.ctrl_plane);
224        self.obj
225            .section_mut(self.text_section)
226            .set_data(text, text_align(self.compiler));
227
228        // Append the unwind information for all our functions, if necessary.
229        self.unwind_info
230            .append_section(self.compiler, self.obj, self.text_section);
231    }
232}
233
234/// Builder used to create unwind information for a set of functions added to a
235/// text section.
236#[derive(Default)]
237struct UnwindInfoBuilder<'a> {
238    windows_xdata: Vec<u8>,
239    windows_pdata: Vec<RUNTIME_FUNCTION>,
240    systemv_unwind_info: Vec<(u64, &'a systemv::UnwindInfo)>,
241}
242
243// This is a mirror of `RUNTIME_FUNCTION` in the Windows API, but defined here
244// to ensure everything is always `u32` and to have it available on all
245// platforms. Note that all of these specifiers here are relative to a "base
246// address" which we define as the base of where the text section is eventually
247// loaded.
248#[expect(non_camel_case_types, reason = "matching Windows style, not Rust")]
249struct RUNTIME_FUNCTION {
250    begin: u32,
251    end: u32,
252    unwind_address: u32,
253}
254
255impl<'a> UnwindInfoBuilder<'a> {
256    /// Pushes the unwind information for a function into this builder.
257    ///
258    /// The function being described must be located at `function_offset` within
259    /// the text section itself, and the function's size is specified by
260    /// `function_len`.
261    ///
262    /// The `info` should come from Cranelift. and is handled here depending on
263    /// its flavor.
264    fn push(&mut self, function_offset: u64, function_len: u64, info: &'a UnwindInfo) {
265        match info {
266            // Windows unwind information is stored in two locations:
267            //
268            // * First is the actual unwinding information which is stored
269            //   in the `.xdata` section. This is where `info`'s emitted
270            //   information will go into.
271            // * Second are pointers to connect all this unwind information,
272            //   stored in the `.pdata` section. The `.pdata` section is an
273            //   array of `RUNTIME_FUNCTION` structures.
274            //
275            // Due to how these will be loaded at runtime the `.pdata` isn't
276            // actually assembled byte-wise here. Instead that's deferred to
277            // happen later during `write_windows_unwind_info` which will apply
278            // a further offset to `unwind_address`.
279            //
280            // FIXME: in theory we could "intern" the `unwind_info` value
281            // here within the `.xdata` section. Most of our unwind
282            // information for functions is probably pretty similar in which
283            // case the `.xdata` could be quite small and `.pdata` could
284            // have multiple functions point to the same unwinding
285            // information.
286            UnwindInfo::WindowsX64(info) => {
287                let unwind_size = info.emit_size();
288                let mut unwind_info = vec![0; unwind_size];
289                info.emit(&mut unwind_info);
290
291                // `.xdata` entries are always 4-byte aligned
292                while self.windows_xdata.len() % 4 != 0 {
293                    self.windows_xdata.push(0x00);
294                }
295                let unwind_address = self.windows_xdata.len();
296                self.windows_xdata.extend_from_slice(&unwind_info);
297
298                // Record a `RUNTIME_FUNCTION` which this will point to.
299                self.windows_pdata.push(RUNTIME_FUNCTION {
300                    begin: u32::try_from(function_offset).unwrap(),
301                    end: u32::try_from(function_offset + function_len).unwrap(),
302                    unwind_address: u32::try_from(unwind_address).unwrap(),
303                });
304            }
305
306            // See https://learn.microsoft.com/en-us/cpp/build/arm64-exception-handling
307            UnwindInfo::WindowsArm64(info) => {
308                let code_words = info.code_words();
309                let mut unwind_codes = vec![0; (code_words * 4) as usize];
310                info.emit(&mut unwind_codes);
311
312                // `.xdata` entries are always 4-byte aligned
313                while self.windows_xdata.len() % 4 != 0 {
314                    self.windows_xdata.push(0x00);
315                }
316
317                // First word:
318                // 0-17:    Function Length
319                // 18-19:   Version (must be 0)
320                // 20:      X bit (is exception data present?)
321                // 21:      E bit (has single packed epilogue?)
322                // 22-26:   Epilogue count
323                // 27-31:   Code words count
324                let requires_extended_counts = code_words > (1 << 5);
325                let encoded_function_len = function_len / 4;
326                assert!(encoded_function_len < (1 << 18), "function too large");
327                let mut word1 = u32::try_from(encoded_function_len).unwrap();
328                if !requires_extended_counts {
329                    word1 |= u32::from(code_words) << 27;
330                }
331                let unwind_address = self.windows_xdata.len();
332                self.windows_xdata.extend_from_slice(&word1.to_le_bytes());
333
334                if requires_extended_counts {
335                    // Extended counts word:
336                    // 0-15:    Epilogue count
337                    // 16-23:   Code words count
338                    let extended_counts_word = (code_words as u32) << 16;
339                    self.windows_xdata
340                        .extend_from_slice(&extended_counts_word.to_le_bytes());
341                }
342
343                // Skip epilogue information: Per comment on [`UnwindInst`], we
344                // do not emit information about epilogues.
345
346                // Emit the unwind codes.
347                self.windows_xdata.extend_from_slice(&unwind_codes);
348
349                // Record a `RUNTIME_FUNCTION` which this will point to.
350                // NOTE: `end` is not used, so leave it as 0.
351                self.windows_pdata.push(RUNTIME_FUNCTION {
352                    begin: u32::try_from(function_offset).unwrap(),
353                    end: 0,
354                    unwind_address: u32::try_from(unwind_address).unwrap(),
355                });
356            }
357
358            // System-V is different enough that we just record the unwinding
359            // information to get processed at a later time.
360            UnwindInfo::SystemV(info) => {
361                self.systemv_unwind_info.push((function_offset, info));
362            }
363
364            _ => panic!("some unwind info isn't handled here"),
365        }
366    }
367
368    /// Appends the unwind information section, if any, to the `obj` specified.
369    ///
370    /// This function must be called immediately after the text section was
371    /// added to a builder. The unwind information section must trail the text
372    /// section immediately.
373    ///
374    /// The `text_section`'s section identifier is passed into this function.
375    fn append_section(
376        &self,
377        compiler: &dyn Compiler,
378        obj: &mut Object<'_>,
379        text_section: SectionId,
380    ) {
381        // This write will align the text section to a page boundary and then
382        // return the offset at that point. This gives us the full size of the
383        // text section at that point, after alignment.
384        let text_section_size = obj.append_section_data(text_section, &[], text_align(compiler));
385
386        if self.windows_xdata.len() > 0 {
387            assert!(self.systemv_unwind_info.len() == 0);
388            // The `.xdata` section must come first to be just-after the `.text`
389            // section for the reasons documented in `write_windows_unwind_info`
390            // below.
391            let segment = obj.segment_name(StandardSegment::Data).to_vec();
392            let xdata_id = obj.add_section(segment, b".xdata".to_vec(), SectionKind::ReadOnlyData);
393            let segment = obj.segment_name(StandardSegment::Data).to_vec();
394            let pdata_id = obj.add_section(segment, b".pdata".to_vec(), SectionKind::ReadOnlyData);
395            self.write_windows_unwind_info(obj, xdata_id, pdata_id, text_section_size);
396        }
397
398        if self.systemv_unwind_info.len() > 0 {
399            let segment = obj.segment_name(StandardSegment::Data).to_vec();
400            let section_id =
401                obj.add_section(segment, b".eh_frame".to_vec(), SectionKind::ReadOnlyData);
402            self.write_systemv_unwind_info(compiler, obj, section_id, text_section_size)
403        }
404    }
405
406    /// This function appends a nonstandard section to the object which is only
407    /// used during `CodeMemory::publish`.
408    ///
409    /// This custom section effectively stores a `[RUNTIME_FUNCTION; N]` into
410    /// the object file itself. This way registration of unwind info can simply
411    /// pass this slice to the OS itself and there's no need to recalculate
412    /// anything on the other end of loading a module from a precompiled object.
413    ///
414    /// Support for reading this is in `crates/jit/src/unwind/winx64.rs`.
415    fn write_windows_unwind_info(
416        &self,
417        obj: &mut Object<'_>,
418        xdata_id: SectionId,
419        pdata_id: SectionId,
420        text_section_size: u64,
421    ) {
422        // Append the `.xdata` section, or the actual unwinding information
423        // codes and such which were built as we found unwind information for
424        // functions.
425        obj.append_section_data(xdata_id, &self.windows_xdata, 4);
426
427        // Next append the `.pdata` section, or the array of `RUNTIME_FUNCTION`
428        // structures stored in the binary.
429        //
430        // This memory will be passed at runtime to `RtlAddFunctionTable` which
431        // takes a "base address" and the entries within `RUNTIME_FUNCTION` are
432        // all relative to this base address. The base address we pass is the
433        // address of the text section itself so all the pointers here must be
434        // text-section-relative. The `begin` and `end` fields for the function
435        // it describes are already text-section-relative, but the
436        // `unwind_address` field needs to be updated here since the value
437        // stored right now is `xdata`-section-relative. We know that the
438        // `xdata` section follows the `.text` section so the
439        // `text_section_size` is added in to calculate the final
440        // `.text`-section-relative address of the unwind information.
441        let xdata_rva = |address| {
442            let address = u64::from(address);
443            let address = address + text_section_size;
444            u32::try_from(address).unwrap()
445        };
446        let pdata = match obj.architecture() {
447            Architecture::X86_64 => {
448                let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 3 * 4);
449                for info in self.windows_pdata.iter() {
450                    pdata.extend_from_slice(&info.begin.to_le_bytes());
451                    pdata.extend_from_slice(&info.end.to_le_bytes());
452                    pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
453                }
454                pdata
455            }
456
457            Architecture::Aarch64 => {
458                // Windows Arm64 .pdata also supports packed unwind data, but
459                // we're not currently using that.
460                let mut pdata = Vec::with_capacity(self.windows_pdata.len() * 2 * 4);
461                for info in self.windows_pdata.iter() {
462                    pdata.extend_from_slice(&info.begin.to_le_bytes());
463                    pdata.extend_from_slice(&xdata_rva(info.unwind_address).to_le_bytes());
464                }
465                pdata
466            }
467
468            _ => unimplemented!("unsupported architecture for windows unwind info"),
469        };
470        obj.append_section_data(pdata_id, &pdata, 4);
471    }
472
473    /// This function appends a nonstandard section to the object which is only
474    /// used during `CodeMemory::publish`.
475    ///
476    /// This will generate a `.eh_frame` section, but not one that can be
477    /// naively loaded. The goal of this section is that we can create the
478    /// section once here and never again does it need to change. To describe
479    /// dynamically loaded functions though each individual FDE needs to talk
480    /// about the function's absolute address that it's referencing. Naturally
481    /// we don't actually know the function's absolute address when we're
482    /// creating an object here.
483    ///
484    /// To solve this problem the FDE address encoding mode is set to
485    /// `DW_EH_PE_pcrel`. This means that the actual effective address that the
486    /// FDE describes is a relative to the address of the FDE itself. By
487    /// leveraging this relative-ness we can assume that the relative distance
488    /// between the FDE and the function it describes is constant, which should
489    /// allow us to generate an FDE ahead-of-time here.
490    ///
491    /// For now this assumes that all the code of functions will start at a
492    /// page-aligned address when loaded into memory. The eh_frame encoded here
493    /// then assumes that the text section is itself page aligned to its size
494    /// and the eh_frame will follow just after the text section. This means
495    /// that the relative offsets we're using here is the FDE going backwards
496    /// into the text section itself.
497    ///
498    /// Note that the library we're using to create the FDEs, `gimli`, doesn't
499    /// actually encode addresses relative to the FDE itself. Instead the
500    /// addresses are encoded relative to the start of the `.eh_frame` section.
501    /// This makes it much easier for us where we provide the relative offset
502    /// from the start of `.eh_frame` to the function in the text section, which
503    /// given our layout basically means the offset of the function in the text
504    /// section from the end of the text section.
505    ///
506    /// A final note is that the reason we page-align the text section's size is
507    /// so the .eh_frame lives on a separate page from the text section itself.
508    /// This allows `.eh_frame` to have different virtual memory permissions,
509    /// such as being purely read-only instead of read/execute like the code
510    /// bits.
511    fn write_systemv_unwind_info(
512        &self,
513        compiler: &dyn Compiler,
514        obj: &mut Object<'_>,
515        section_id: SectionId,
516        text_section_size: u64,
517    ) {
518        let mut cie = match compiler.create_systemv_cie() {
519            Some(cie) => cie,
520            None => return,
521        };
522        let mut table = FrameTable::default();
523        cie.fde_address_encoding = gimli::constants::DW_EH_PE_pcrel;
524        let cie_id = table.add_cie(cie);
525
526        for (text_section_off, unwind_info) in self.systemv_unwind_info.iter() {
527            let backwards_off = text_section_size - text_section_off;
528            let actual_offset = -i64::try_from(backwards_off).unwrap();
529            // Note that gimli wants an unsigned 64-bit integer here, but
530            // unwinders just use this constant for a relative addition with the
531            // address of the FDE, which means that the sign doesn't actually
532            // matter.
533            let fde = unwind_info.to_fde(Address::Constant(actual_offset.cast_unsigned()));
534            table.add_fde(cie_id, fde);
535        }
536        let endian = match compiler.triple().endianness().unwrap() {
537            target_lexicon::Endianness::Little => RunTimeEndian::Little,
538            target_lexicon::Endianness::Big => RunTimeEndian::Big,
539        };
540        let mut eh_frame = EhFrame(MyVec(EndianVec::new(endian)));
541        table.write_eh_frame(&mut eh_frame).unwrap();
542
543        // Some unwinding implementations expect a terminating "empty" length so
544        // a 0 is written at the end of the table for those implementations.
545        let mut endian_vec = (eh_frame.0).0;
546        endian_vec.write_u32(0).unwrap();
547        obj.append_section_data(section_id, endian_vec.slice(), 1);
548
549        use gimli::constants;
550        use gimli::write::Error;
551
552        struct MyVec(EndianVec<RunTimeEndian>);
553
554        impl Writer for MyVec {
555            type Endian = RunTimeEndian;
556
557            fn endian(&self) -> RunTimeEndian {
558                self.0.endian()
559            }
560
561            fn len(&self) -> usize {
562                self.0.len()
563            }
564
565            fn write(&mut self, buf: &[u8]) -> Result<(), Error> {
566                self.0.write(buf)
567            }
568
569            fn write_at(&mut self, pos: usize, buf: &[u8]) -> Result<(), Error> {
570                self.0.write_at(pos, buf)
571            }
572
573            // FIXME(gimli-rs/gimli#576) this is the definition we want for
574            // `write_eh_pointer` but the default implementation, at the time
575            // of this writing, uses `offset - val` instead of `val - offset`.
576            // A PR has been merged to fix this but until that's published we
577            // can't use it.
578            fn write_eh_pointer(
579                &mut self,
580                address: Address,
581                eh_pe: constants::DwEhPe,
582                size: u8,
583            ) -> Result<(), Error> {
584                let val = match address {
585                    Address::Constant(val) => val,
586                    Address::Symbol { .. } => unreachable!(),
587                };
588                assert_eq!(eh_pe.application(), constants::DW_EH_PE_pcrel);
589                let offset = self.len() as u64;
590                let val = val.wrapping_sub(offset);
591                self.write_eh_pointer_data(val, eh_pe.format(), size)
592            }
593        }
594    }
595}