Struct async_nats::jetstream::consumer::pull::FetchBuilder

source ·
pub struct FetchBuilder<'a> { /* private fields */ }
Expand description

Used for building configuration for a Batch with fetch() semantics. Created by a FetchBuilder on a Consumer.

§Examples

use async_nats::jetstream::consumer::PullConsumer;
use futures::StreamExt;
let client = async_nats::connect("localhost:4222").await?;
let jetstream = async_nats::jetstream::new(client);

let consumer: PullConsumer = jetstream
    .get_stream("events")
    .await?
    .get_consumer("pull")
    .await?;

let mut messages = consumer
    .fetch()
    .max_messages(100)
    .max_bytes(1024)
    .messages()
    .await?;

while let Some(message) = messages.next().await {
    let message = message?;
    println!("message: {:?}", message);
    message.ack().await?;
}

Implementations§

source§

impl<'a> FetchBuilder<'a>

source

pub fn new(consumer: &'a Consumer<Config>) -> Self

source

pub fn max_bytes(self, max_bytes: usize) -> Self

Sets max bytes that can be buffered on the Client while processing already received messages. Higher values will yield better performance, but also potentially increase memory usage if application is acknowledging messages much slower than they arrive.

Default values should provide reasonable balance between performance and memory usage.

§Examples
use futures::StreamExt;
let client = async_nats::connect("localhost:4222").await?;
let jetstream = async_nats::jetstream::new(client);

let consumer = jetstream
    .get_stream("events")
    .await?
    .get_consumer("pull")
    .await?;

let mut messages = consumer.fetch().max_bytes(1024).messages().await?;

while let Some(message) = messages.next().await {
    let message = message?;
    println!("message: {:?}", message);
    message.ack().await?;
}
source

pub fn max_messages(self, batch: usize) -> Self

Sets max number of messages that can be buffered on the Client while processing already received messages. Higher values will yield better performance, but also potentially increase memory usage if application is acknowledging messages much slower than they arrive.

Default values should provide reasonable balance between performance and memory usage.

§Examples
use futures::StreamExt;
let client = async_nats::connect("localhost:4222").await?;
let jetstream = async_nats::jetstream::new(client);

let consumer = jetstream
    .get_stream("events")
    .await?
    .get_consumer("pull")
    .await?;

let mut messages = consumer.fetch().max_messages(100).messages().await?;

while let Some(message) = messages.next().await {
    let message = message?;
    println!("message: {:?}", message);
    message.ack().await?;
}
source

pub fn heartbeat(self, heartbeat: Duration) -> Self

Sets heartbeat which will be send by the server if there are no messages for a given Consumer pending.

§Examples
use async_nats::jetstream::consumer::PullConsumer;
use futures::StreamExt;
let client = async_nats::connect("localhost:4222").await?;
let jetstream = async_nats::jetstream::new(client);

let consumer = jetstream
    .get_stream("events")
    .await?
    .get_consumer("pull")
    .await?;

let mut messages = consumer
    .fetch()
    .heartbeat(std::time::Duration::from_secs(10))
    .messages()
    .await?;

while let Some(message) = messages.next().await {
    let message = message?;
    println!("message: {:?}", message);
    message.ack().await?;
}
source

pub fn expires(self, expires: Duration) -> Self

Low level API that does not need tweaking for most use cases. Sets how long each batch request waits for whole batch of messages before timing out. Consumer pending.

§Examples
use async_nats::jetstream::consumer::PullConsumer;
use futures::StreamExt;

let client = async_nats::connect("localhost:4222").await?;
let jetstream = async_nats::jetstream::new(client);

let consumer: PullConsumer = jetstream
    .get_stream("events")
    .await?
    .get_consumer("pull")
    .await?;

let mut messages = consumer
    .fetch()
    .expires(std::time::Duration::from_secs(30))
    .messages()
    .await?;

while let Some(message) = messages.next().await {
    let message = message?;
    println!("message: {:?}", message);
    message.ack().await?;
}
source

pub async fn messages(self) -> Result<Batch, BatchError>

Creates actual Stream with provided configuration.

§Examples
use async_nats::jetstream::consumer::PullConsumer;
use futures::StreamExt;
let client = async_nats::connect("localhost:4222").await?;
let jetstream = async_nats::jetstream::new(client);

let consumer: PullConsumer = jetstream
    .get_stream("events")
    .await?
    .get_consumer("pull")
    .await?;

let mut messages = consumer.fetch().max_messages(100).messages().await?;

while let Some(message) = messages.next().await {
    let message = message?;
    println!("message: {:?}", message);
    message.ack().await?;
}

Auto Trait Implementations§

§

impl<'a> Freeze for FetchBuilder<'a>

§

impl<'a> !RefUnwindSafe for FetchBuilder<'a>

§

impl<'a> Send for FetchBuilder<'a>

§

impl<'a> Sync for FetchBuilder<'a>

§

impl<'a> Unpin for FetchBuilder<'a>

§

impl<'a> !UnwindSafe for FetchBuilder<'a>

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> Same for T

source§

type Output = T

Should always be Self
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more