arbitrary/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
// Copyright © 2019 The Rust Fuzz Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The `Arbitrary` trait crate.
//!
//! This trait provides an [`Arbitrary`] trait to
//! produce well-typed, structured values, from raw, byte buffers. It is
//! generally intended to be used with fuzzers like AFL or libFuzzer. See the
//! [`Arbitrary`] trait's documentation for details on
//! automatically deriving, implementing, and/or using the trait.
#![deny(bad_style)]
#![deny(missing_docs)]
#![deny(future_incompatible)]
#![deny(nonstandard_style)]
#![deny(rust_2018_compatibility)]
#![deny(rust_2018_idioms)]
#![deny(unused)]
mod error;
mod foreign;
pub mod size_hint;
pub mod unstructured;
#[cfg(test)]
mod tests;
pub use error::*;
#[cfg(feature = "derive_arbitrary")]
pub use derive_arbitrary::*;
#[doc(inline)]
pub use unstructured::Unstructured;
/// Error indicating that the maximum recursion depth has been reached while calculating [`Arbitrary::size_hint`]()
#[derive(Debug, Clone)]
#[non_exhaustive]
pub struct MaxRecursionReached {}
impl core::fmt::Display for MaxRecursionReached {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.write_str("Maximum recursion depth has been reached")
}
}
impl std::error::Error for MaxRecursionReached {}
/// Generate arbitrary structured values from raw, unstructured data.
///
/// The `Arbitrary` trait allows you to generate valid structured values, like
/// `HashMap`s, or ASTs, or `MyTomlConfig`, or any other data structure from
/// raw, unstructured bytes provided by a fuzzer.
///
/// # Deriving `Arbitrary`
///
/// Automatically deriving the `Arbitrary` trait is the recommended way to
/// implement `Arbitrary` for your types.
///
/// Using the custom derive requires that you enable the `"derive"` cargo
/// feature in your `Cargo.toml`:
///
/// ```toml
/// [dependencies]
/// arbitrary = { version = "1", features = ["derive"] }
/// ```
///
/// Then, you add the `#[derive(Arbitrary)]` annotation to your `struct` or
/// `enum` type definition:
///
/// ```
/// # #[cfg(feature = "derive")] mod foo {
/// use arbitrary::Arbitrary;
/// use std::collections::HashSet;
///
/// #[derive(Arbitrary)]
/// pub struct AddressBook {
/// friends: HashSet<Friend>,
/// }
///
/// #[derive(Arbitrary, Hash, Eq, PartialEq)]
/// pub enum Friend {
/// Buddy { name: String },
/// Pal { age: usize },
/// }
/// # }
/// ```
///
/// Every member of the `struct` or `enum` must also implement `Arbitrary`.
///
/// It is also possible to change the default bounds added by the derive:
///
/// ```
/// # #[cfg(feature = "derive")] mod foo {
/// use arbitrary::Arbitrary;
///
/// trait Trait {
/// type Assoc: for<'a> Arbitrary<'a>;
/// }
///
/// #[derive(Arbitrary)]
/// // The bounds are used verbatim, so any existing trait bounds will need to be repeated.
/// #[arbitrary(bound = "T: Trait")]
/// struct Point<T: Trait> {
/// x: T::Assoc,
/// }
/// # }
/// ```
///
/// # Implementing `Arbitrary` By Hand
///
/// Implementing `Arbitrary` mostly involves nested calls to other `Arbitrary`
/// arbitrary implementations for each of your `struct` or `enum`'s members. But
/// sometimes you need some amount of raw data, or you need to generate a
/// variably-sized collection type, or something of that sort. The
/// [`Unstructured`] type helps you with these tasks.
///
/// ```
/// # #[cfg(feature = "derive")] mod foo {
/// # pub struct MyCollection<T> { _t: std::marker::PhantomData<T> }
/// # impl<T> MyCollection<T> {
/// # pub fn new() -> Self { MyCollection { _t: std::marker::PhantomData } }
/// # pub fn insert(&mut self, element: T) {}
/// # }
/// use arbitrary::{Arbitrary, Result, Unstructured};
///
/// impl<'a, T> Arbitrary<'a> for MyCollection<T>
/// where
/// T: Arbitrary<'a>,
/// {
/// fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
/// // Get an iterator of arbitrary `T`s.
/// let iter = u.arbitrary_iter::<T>()?;
///
/// // And then create a collection!
/// let mut my_collection = MyCollection::new();
/// for elem_result in iter {
/// let elem = elem_result?;
/// my_collection.insert(elem);
/// }
///
/// Ok(my_collection)
/// }
/// }
/// # }
/// ```
///
/// # A Note On Output Distributions
///
/// There is no requirement for a particular distribution of the values. For
/// example, it is not required that every value appears with the same
/// probability. That being said, the main use for `Arbitrary` is for fuzzing,
/// so in many cases a uniform distribution will make the most sense in order to
/// provide the best coverage of the domain. In other cases this is not
/// desirable or even possible, for example when sampling from a uniform
/// distribution is computationally expensive or in the case of collections that
/// may grow indefinitely.
pub trait Arbitrary<'a>: Sized {
/// Generate an arbitrary value of `Self` from the given unstructured data.
///
/// Calling `Arbitrary::arbitrary` requires that you have some raw data,
/// perhaps given to you by a fuzzer like AFL or libFuzzer. You wrap this
/// raw data in an `Unstructured`, and then you can call `<MyType as
/// Arbitrary>::arbitrary` to construct an arbitrary instance of `MyType`
/// from that unstructured data.
///
/// Implementations may return an error if there is not enough data to
/// construct a full instance of `Self`, or they may fill out the rest of
/// `Self` with dummy values. Using dummy values when the underlying data is
/// exhausted can help avoid accidentally "defeating" some of the fuzzer's
/// mutations to the underlying byte stream that might otherwise lead to
/// interesting runtime behavior or new code coverage if only we had just a
/// few more bytes. However, it also requires that implementations for
/// recursive types (e.g. `struct Foo(Option<Box<Foo>>)`) avoid infinite
/// recursion when the underlying data is exhausted.
///
/// ```
/// # #[cfg(feature = "derive")] fn foo() {
/// use arbitrary::{Arbitrary, Unstructured};
///
/// #[derive(Arbitrary)]
/// pub struct MyType {
/// // ...
/// }
///
/// // Get the raw data from the fuzzer or wherever else.
/// # let get_raw_data_from_fuzzer = || &[];
/// let raw_data: &[u8] = get_raw_data_from_fuzzer();
///
/// // Wrap that raw data in an `Unstructured`.
/// let mut unstructured = Unstructured::new(raw_data);
///
/// // Generate an arbitrary instance of `MyType` and do stuff with it.
/// if let Ok(value) = MyType::arbitrary(&mut unstructured) {
/// # let do_stuff = |_| {};
/// do_stuff(value);
/// }
/// # }
/// ```
///
/// See also the documentation for [`Unstructured`].
fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self>;
/// Generate an arbitrary value of `Self` from the entirety of the given
/// unstructured data.
///
/// This is similar to Arbitrary::arbitrary, however it assumes that it is
/// the last consumer of the given data, and is thus able to consume it all
/// if it needs. See also the documentation for
/// [`Unstructured`].
fn arbitrary_take_rest(mut u: Unstructured<'a>) -> Result<Self> {
Self::arbitrary(&mut u)
}
/// Get a size hint for how many bytes out of an `Unstructured` this type
/// needs to construct itself.
///
/// This is useful for determining how many elements we should insert when
/// creating an arbitrary collection.
///
/// The return value is similar to [`Iterator::size_hint`]: it returns a
/// tuple where the first element is a lower bound on the number of bytes
/// required, and the second element is an optional upper bound.
///
/// The default implementation return `(0, None)` which is correct for any
/// type, but not ultimately that useful. Using `#[derive(Arbitrary)]` will
/// create a better implementation. If you are writing an `Arbitrary`
/// implementation by hand, and your type can be part of a dynamically sized
/// collection (such as `Vec`), you are strongly encouraged to override this
/// default with a better implementation, and also override
/// [`try_size_hint`].
///
/// ## How to implement this
///
/// If the size hint calculation is a trivial constant and does not recurse
/// into any other `size_hint` call, you should implement it in `size_hint`:
///
/// ```
/// use arbitrary::{size_hint, Arbitrary, Result, Unstructured};
///
/// struct SomeStruct(u8);
///
/// impl<'a> Arbitrary<'a> for SomeStruct {
/// fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
/// let buf = &mut [0];
/// u.fill_buffer(buf)?;
/// Ok(SomeStruct(buf[0]))
/// }
///
/// #[inline]
/// fn size_hint(depth: usize) -> (usize, Option<usize>) {
/// let _ = depth;
/// (1, Some(1))
/// }
/// }
/// ```
///
/// Otherwise, it should instead be implemented in [`try_size_hint`],
/// and the `size_hint` implementation should forward to it:
///
/// ```
/// use arbitrary::{size_hint, Arbitrary, MaxRecursionReached, Result, Unstructured};
///
/// struct SomeStruct<A, B> {
/// a: A,
/// b: B,
/// }
///
/// impl<'a, A: Arbitrary<'a>, B: Arbitrary<'a>> Arbitrary<'a> for SomeStruct<A, B> {
/// fn arbitrary(u: &mut Unstructured<'a>) -> Result<Self> {
/// // ...
/// # todo!()
/// }
///
/// fn size_hint(depth: usize) -> (usize, Option<usize>) {
/// // Return the value of try_size_hint
/// //
/// // If the recursion fails, return the default, always valid `(0, None)`
/// Self::try_size_hint(depth).unwrap_or_default()
/// }
///
/// fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> {
/// // Protect against potential infinite recursion with
/// // `try_recursion_guard`.
/// size_hint::try_recursion_guard(depth, |depth| {
/// // If we aren't too deep, then `recursion_guard` calls
/// // this closure, which implements the natural size hint.
/// // Don't forget to use the new `depth` in all nested
/// // `try_size_hint` calls! We recommend shadowing the
/// // parameter, like what is done here, so that you can't
/// // accidentally use the wrong depth.
/// Ok(size_hint::and(
/// <A as Arbitrary>::try_size_hint(depth)?,
/// <B as Arbitrary>::try_size_hint(depth)?,
/// ))
/// })
/// }
/// }
/// ```
///
/// ## Invariant
///
/// It must be possible to construct every possible output using only inputs
/// of lengths bounded by these parameters. This applies to both
/// [`Arbitrary::arbitrary`] and [`Arbitrary::arbitrary_take_rest`].
///
/// This is trivially true for `(0, None)`. To restrict this further, it
/// must be proven that all inputs that are now excluded produced redundant
/// outputs which are still possible to produce using the reduced input
/// space.
///
/// [iterator-size-hint]: https://doc.rust-lang.org/stable/std/iter/trait.Iterator.html#method.size_hint
/// [`try_size_hint`]: Arbitrary::try_size_hint
#[inline]
fn size_hint(depth: usize) -> (usize, Option<usize>) {
let _ = depth;
(0, None)
}
/// Get a size hint for how many bytes out of an `Unstructured` this type
/// needs to construct itself.
///
/// Unlike [`size_hint`], this function keeps the information that the
/// recursion limit was reached. This is required to "short circuit" the
/// calculation and avoid exponential blowup with recursive structures.
///
/// If you are implementing [`size_hint`] for a struct that could be
/// recursive, you should implement `try_size_hint` and call the
/// `try_size_hint` when recursing
///
///
/// The return value is similar to [`core::iter::Iterator::size_hint`]: it
/// returns a tuple where the first element is a lower bound on the number
/// of bytes required, and the second element is an optional upper bound.
///
/// The default implementation returns the value of [`size_hint`] which is
/// correct for any type, but might lead to exponential blowup when dealing
/// with recursive types.
///
/// ## Invariant
///
/// It must be possible to construct every possible output using only inputs
/// of lengths bounded by these parameters. This applies to both
/// [`Arbitrary::arbitrary`] and [`Arbitrary::arbitrary_take_rest`].
///
/// This is trivially true for `(0, None)`. To restrict this further, it
/// must be proven that all inputs that are now excluded produced redundant
/// outputs which are still possible to produce using the reduced input
/// space.
///
/// ## When to implement `try_size_hint`
///
/// If you 100% know that the type you are implementing `Arbitrary` for is
/// not a recursive type, or your implementation is not transitively calling
/// any other `size_hint` methods, you may implement [`size_hint`], and the
/// default `try_size_hint` implementation will use it.
///
/// Note that if you are implementing `Arbitrary` for a generic type, you
/// cannot guarantee the lack of type recursion!
///
/// Otherwise, when there is possible type recursion, you should implement
/// `try_size_hint` instead.
///
/// ## The `depth` parameter
///
/// When implementing `try_size_hint`, you need to use
/// [`arbitrary::size_hint::try_recursion_guard(depth)`][crate::size_hint::try_recursion_guard]
/// to prevent potential infinite recursion when calculating size hints for
/// potentially recursive types:
///
/// ```
/// use arbitrary::{size_hint, Arbitrary, MaxRecursionReached, Unstructured};
///
/// // This can potentially be a recursive type if `L` or `R` contain
/// // something like `Box<Option<MyEither<L, R>>>`!
/// enum MyEither<L, R> {
/// Left(L),
/// Right(R),
/// }
///
/// impl<'a, L, R> Arbitrary<'a> for MyEither<L, R>
/// where
/// L: Arbitrary<'a>,
/// R: Arbitrary<'a>,
/// {
/// fn arbitrary(u: &mut Unstructured) -> arbitrary::Result<Self> {
/// // ...
/// # unimplemented!()
/// }
///
/// fn size_hint(depth: usize) -> (usize, Option<usize>) {
/// // Return the value of `try_size_hint`
/// //
/// // If the recursion fails, return the default `(0, None)` range,
/// // which is always valid.
/// Self::try_size_hint(depth).unwrap_or_default()
/// }
///
/// fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> {
/// // Protect against potential infinite recursion with
/// // `try_recursion_guard`.
/// size_hint::try_recursion_guard(depth, |depth| {
/// // If we aren't too deep, then `recursion_guard` calls
/// // this closure, which implements the natural size hint.
/// // Don't forget to use the new `depth` in all nested
/// // `try_size_hint` calls! We recommend shadowing the
/// // parameter, like what is done here, so that you can't
/// // accidentally use the wrong depth.
/// Ok(size_hint::or(
/// <L as Arbitrary>::try_size_hint(depth)?,
/// <R as Arbitrary>::try_size_hint(depth)?,
/// ))
/// })
/// }
/// }
/// ```
#[inline]
fn try_size_hint(depth: usize) -> Result<(usize, Option<usize>), MaxRecursionReached> {
Ok(Self::size_hint(depth))
}
}
/// Multiple conflicting arbitrary attributes are used on the same field:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// struct Point {
/// #[arbitrary(value = 2)]
/// #[arbitrary(value = 2)]
/// x: i32,
/// }
/// ```
///
/// An unknown attribute:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// struct Point {
/// #[arbitrary(unknown_attr)]
/// x: i32,
/// }
/// ```
///
/// An unknown attribute with a value:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// struct Point {
/// #[arbitrary(unknown_attr = 13)]
/// x: i32,
/// }
/// ```
///
/// `value` without RHS:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// struct Point {
/// #[arbitrary(value)]
/// x: i32,
/// }
/// ```
///
/// `with` without RHS:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// struct Point {
/// #[arbitrary(with)]
/// x: i32,
/// }
/// ```
///
/// Multiple conflicting bounds at the container-level:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// #[arbitrary(bound = "T: Default")]
/// #[arbitrary(bound = "T: Default")]
/// struct Point<T: Default> {
/// #[arbitrary(default)]
/// x: T,
/// }
/// ```
///
/// Multiple conflicting bounds in a single bound attribute:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// #[arbitrary(bound = "T: Default, T: Default")]
/// struct Point<T: Default> {
/// #[arbitrary(default)]
/// x: T,
/// }
/// ```
///
/// Multiple conflicting bounds in multiple bound attributes:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// #[arbitrary(bound = "T: Default", bound = "T: Default")]
/// struct Point<T: Default> {
/// #[arbitrary(default)]
/// x: T,
/// }
/// ```
///
/// Too many bounds supplied:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// #[arbitrary(bound = "T: Default")]
/// struct Point {
/// x: i32,
/// }
/// ```
///
/// Too many bounds supplied across multiple attributes:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// #[arbitrary(bound = "T: Default")]
/// #[arbitrary(bound = "U: Default")]
/// struct Point<T: Default> {
/// #[arbitrary(default)]
/// x: T,
/// }
/// ```
///
/// Attempt to use the derive attribute on an enum variant:
/// ```compile_fail
/// #[derive(::arbitrary::Arbitrary)]
/// enum Enum<T: Default> {
/// #[arbitrary(default)]
/// Variant(T),
/// }
/// ```
#[cfg(all(doctest, feature = "derive"))]
pub struct CompileFailTests;