wasmtime/runtime/types.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
use crate::prelude::*;
use core::fmt::{self, Display, Write};
use wasmtime_environ::{
EngineOrModuleTypeIndex, EntityType, Global, IndexType, Limits, Memory, ModuleTypes, Table,
TypeTrace, VMSharedTypeIndex, WasmArrayType, WasmCompositeType, WasmFieldType, WasmFuncType,
WasmHeapType, WasmRefType, WasmStorageType, WasmStructType, WasmSubType, WasmValType,
};
use crate::{type_registry::RegisteredType, Engine};
pub(crate) mod matching;
// Type Representations
// Type attributes
/// Indicator of whether a global value, struct's field, or array type's
/// elements are mutable or not.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq)]
pub enum Mutability {
/// The global value, struct field, or array elements are constant and the
/// value does not change.
Const,
/// The value of the global, struct field, or array elements can change over
/// time.
Var,
}
impl Mutability {
/// Is this constant?
#[inline]
pub fn is_const(&self) -> bool {
*self == Self::Const
}
/// Is this variable?
#[inline]
pub fn is_var(&self) -> bool {
*self == Self::Var
}
}
/// Indicator of whether a type is final or not.
///
/// Final types may not be the supertype of other types.
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq)]
pub enum Finality {
/// The associated type is final.
Final,
/// The associated type is not final.
NonFinal,
}
impl Finality {
/// Is this final?
#[inline]
pub fn is_final(&self) -> bool {
*self == Self::Final
}
/// Is this non-final?
#[inline]
pub fn is_non_final(&self) -> bool {
*self == Self::NonFinal
}
}
// Value Types
/// A list of all possible value types in WebAssembly.
///
/// # Subtyping and Equality
///
/// `ValType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`ValType::matches`] and [`Val::matches_ty`][crate::Val::matches_ty] methods
/// to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`ValType::eq`] method.
#[derive(Clone, Hash)]
pub enum ValType {
// NB: the ordering of variants here is intended to match the ordering in
// `wasmtime_environ::WasmType` to help improve codegen when converting.
//
/// Signed 32 bit integer.
I32,
/// Signed 64 bit integer.
I64,
/// Floating point 32 bit integer.
F32,
/// Floating point 64 bit integer.
F64,
/// A 128 bit number.
V128,
/// An opaque reference to some type on the heap.
Ref(RefType),
}
impl fmt::Debug for ValType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self, f)
}
}
impl Display for ValType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ValType::I32 => write!(f, "i32"),
ValType::I64 => write!(f, "i64"),
ValType::F32 => write!(f, "f32"),
ValType::F64 => write!(f, "f64"),
ValType::V128 => write!(f, "v128"),
ValType::Ref(r) => Display::fmt(r, f),
}
}
}
impl From<RefType> for ValType {
#[inline]
fn from(r: RefType) -> Self {
ValType::Ref(r)
}
}
impl ValType {
/// The `externref` type, aka `(ref null extern)`.
pub const EXTERNREF: Self = ValType::Ref(RefType::EXTERNREF);
/// The `nullexternref` type, aka `(ref null noextern)`.
pub const NULLEXTERNREF: Self = ValType::Ref(RefType::NULLEXTERNREF);
/// The `funcref` type, aka `(ref null func)`.
pub const FUNCREF: Self = ValType::Ref(RefType::FUNCREF);
/// The `nullfuncref` type, aka `(ref null nofunc)`.
pub const NULLFUNCREF: Self = ValType::Ref(RefType::NULLFUNCREF);
/// The `anyref` type, aka `(ref null any)`.
pub const ANYREF: Self = ValType::Ref(RefType::ANYREF);
/// The `eqref` type, aka `(ref null eq)`.
pub const EQREF: Self = ValType::Ref(RefType::EQREF);
/// The `i31ref` type, aka `(ref null i31)`.
pub const I31REF: Self = ValType::Ref(RefType::I31REF);
/// The `arrayref` type, aka `(ref null array)`.
pub const ARRAYREF: Self = ValType::Ref(RefType::ARRAYREF);
/// The `structref` type, aka `(ref null struct)`.
pub const STRUCTREF: Self = ValType::Ref(RefType::STRUCTREF);
/// The `nullref` type, aka `(ref null none)`.
pub const NULLREF: Self = ValType::Ref(RefType::NULLREF);
/// Returns true if `ValType` matches any of the numeric types. (e.g. `I32`,
/// `I64`, `F32`, `F64`).
#[inline]
pub fn is_num(&self) -> bool {
match self {
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 => true,
_ => false,
}
}
/// Is this the `i32` type?
#[inline]
pub fn is_i32(&self) -> bool {
matches!(self, ValType::I32)
}
/// Is this the `i64` type?
#[inline]
pub fn is_i64(&self) -> bool {
matches!(self, ValType::I64)
}
/// Is this the `f32` type?
#[inline]
pub fn is_f32(&self) -> bool {
matches!(self, ValType::F32)
}
/// Is this the `f64` type?
#[inline]
pub fn is_f64(&self) -> bool {
matches!(self, ValType::F64)
}
/// Is this the `v128` type?
#[inline]
pub fn is_v128(&self) -> bool {
matches!(self, ValType::V128)
}
/// Returns true if `ValType` is any kind of reference type.
#[inline]
pub fn is_ref(&self) -> bool {
matches!(self, ValType::Ref(_))
}
/// Is this the `funcref` (aka `(ref null func)`) type?
#[inline]
pub fn is_funcref(&self) -> bool {
matches!(
self,
ValType::Ref(RefType {
is_nullable: true,
heap_type: HeapType::Func
})
)
}
/// Is this the `externref` (aka `(ref null extern)`) type?
#[inline]
pub fn is_externref(&self) -> bool {
matches!(
self,
ValType::Ref(RefType {
is_nullable: true,
heap_type: HeapType::Extern
})
)
}
/// Is this the `anyref` (aka `(ref null any)`) type?
#[inline]
pub fn is_anyref(&self) -> bool {
matches!(
self,
ValType::Ref(RefType {
is_nullable: true,
heap_type: HeapType::Any
})
)
}
/// Get the underlying reference type, if this value type is a reference
/// type.
#[inline]
pub fn as_ref(&self) -> Option<&RefType> {
match self {
ValType::Ref(r) => Some(r),
_ => None,
}
}
/// Get the underlying reference type, panicking if this value type is not a
/// reference type.
#[inline]
pub fn unwrap_ref(&self) -> &RefType {
self.as_ref()
.expect("ValType::unwrap_ref on a non-reference type")
}
/// Does this value type match the other type?
///
/// That is, is this value type a subtype of the other?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &ValType) -> bool {
match (self, other) {
(Self::I32, Self::I32) => true,
(Self::I64, Self::I64) => true,
(Self::F32, Self::F32) => true,
(Self::F64, Self::F64) => true,
(Self::V128, Self::V128) => true,
(Self::Ref(a), Self::Ref(b)) => a.matches(b),
(Self::I32, _)
| (Self::I64, _)
| (Self::F32, _)
| (Self::F64, _)
| (Self::V128, _)
| (Self::Ref(_), _) => false,
}
}
/// Is value type `a` precisely equal to value type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same value type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine.
pub fn eq(a: &Self, b: &Self) -> bool {
a.matches(b) && b.matches(a)
}
/// Is this a `VMGcRef` type that is not i31 and is not an uninhabited
/// bottom type?
#[inline]
pub(crate) fn is_vmgcref_type_and_points_to_object(&self) -> bool {
match self {
ValType::Ref(r) => r.is_vmgcref_type_and_points_to_object(),
ValType::I32 | ValType::I64 | ValType::F32 | ValType::F64 | ValType::V128 => false,
}
}
pub(crate) fn ensure_matches(&self, engine: &Engine, other: &ValType) -> Result<()> {
if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
bail!("type used with wrong engine");
}
if self.matches(other) {
Ok(())
} else {
bail!("type mismatch: expected {other}, found {self}")
}
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
match self {
Self::I32 | Self::I64 | Self::F32 | Self::F64 | Self::V128 => true,
Self::Ref(r) => r.comes_from_same_engine(engine),
}
}
pub(crate) fn to_wasm_type(&self) -> WasmValType {
match self {
Self::I32 => WasmValType::I32,
Self::I64 => WasmValType::I64,
Self::F32 => WasmValType::F32,
Self::F64 => WasmValType::F64,
Self::V128 => WasmValType::V128,
Self::Ref(r) => WasmValType::Ref(r.to_wasm_type()),
}
}
#[inline]
pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmValType) -> Self {
match ty {
WasmValType::I32 => Self::I32,
WasmValType::I64 => Self::I64,
WasmValType::F32 => Self::F32,
WasmValType::F64 => Self::F64,
WasmValType::V128 => Self::V128,
WasmValType::Ref(r) => Self::Ref(RefType::from_wasm_type(engine, r)),
}
}
}
/// Opaque references to data in the Wasm heap or to host data.
///
/// # Subtyping and Equality
///
/// `RefType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`RefType::matches`] and [`Ref::matches_ty`][crate::Ref::matches_ty] methods
/// to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`RefType::eq`] method.
#[derive(Clone, Hash)]
pub struct RefType {
is_nullable: bool,
heap_type: HeapType,
}
impl fmt::Debug for RefType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Display::fmt(self, f)
}
}
impl fmt::Display for RefType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(ref ")?;
if self.is_nullable() {
write!(f, "null ")?;
}
write!(f, "{})", self.heap_type())
}
}
impl RefType {
/// The `externref` type, aka `(ref null extern)`.
pub const EXTERNREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Extern,
};
/// The `nullexternref` type, aka `(ref null noextern)`.
pub const NULLEXTERNREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::NoExtern,
};
/// The `funcref` type, aka `(ref null func)`.
pub const FUNCREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Func,
};
/// The `nullfuncref` type, aka `(ref null nofunc)`.
pub const NULLFUNCREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::NoFunc,
};
/// The `anyref` type, aka `(ref null any)`.
pub const ANYREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Any,
};
/// The `eqref` type, aka `(ref null eq)`.
pub const EQREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Eq,
};
/// The `i31ref` type, aka `(ref null i31)`.
pub const I31REF: Self = RefType {
is_nullable: true,
heap_type: HeapType::I31,
};
/// The `arrayref` type, aka `(ref null array)`.
pub const ARRAYREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Array,
};
/// The `structref` type, aka `(ref null struct)`.
pub const STRUCTREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::Struct,
};
/// The `nullref` type, aka `(ref null none)`.
pub const NULLREF: Self = RefType {
is_nullable: true,
heap_type: HeapType::None,
};
/// Construct a new reference type.
pub fn new(is_nullable: bool, heap_type: HeapType) -> RefType {
RefType {
is_nullable,
heap_type,
}
}
/// Can this type of reference be null?
pub fn is_nullable(&self) -> bool {
self.is_nullable
}
/// The heap type that this is a reference to.
#[inline]
pub fn heap_type(&self) -> &HeapType {
&self.heap_type
}
/// Does this reference type match the other?
///
/// That is, is this reference type a subtype of the other?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &RefType) -> bool {
if self.is_nullable() && !other.is_nullable() {
return false;
}
self.heap_type().matches(other.heap_type())
}
/// Is reference type `a` precisely equal to reference type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same reference type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine.
pub fn eq(a: &RefType, b: &RefType) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn ensure_matches(&self, engine: &Engine, other: &RefType) -> Result<()> {
if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
bail!("type used with wrong engine");
}
if self.matches(other) {
Ok(())
} else {
bail!("type mismatch: expected {other}, found {self}")
}
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
self.heap_type().comes_from_same_engine(engine)
}
pub(crate) fn to_wasm_type(&self) -> WasmRefType {
WasmRefType {
nullable: self.is_nullable(),
heap_type: self.heap_type().to_wasm_type(),
}
}
pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmRefType) -> RefType {
RefType {
is_nullable: ty.nullable,
heap_type: HeapType::from_wasm_type(engine, &ty.heap_type),
}
}
pub(crate) fn is_vmgcref_type_and_points_to_object(&self) -> bool {
self.heap_type().is_vmgcref_type_and_points_to_object()
}
}
/// The heap types that can Wasm can have references to.
///
/// # Subtyping Hierarchy
///
/// Wasm has three different heap type hierarchies:
///
/// 1. Function types
/// 2. External types
/// 3. Internal types
///
/// Each hierarchy has a top type (the common supertype of which everything else
/// in its hierarchy is a subtype of) and a bottom type (the common subtype of
/// which everything else in its hierarchy is supertype of).
///
/// ## Function Types Hierarchy
///
/// The top of the function types hierarchy is `func`; the bottom is
/// `nofunc`. In between are all the concrete function types.
///
/// ```text
/// func
/// / / \ \
/// ,---------------- / \ -------------------------.
/// / / \ \
/// | ,---- -----------. |
/// | | | |
/// | | | |
/// (func) (func (param i32)) (func (param i32 i32)) ...
/// | | | |
/// | | | |
/// | `---. ,----------' |
/// \ \ / /
/// `---------------. \ / ,------------------------'
/// \ \ / /
/// nofunc
/// ```
///
/// Additionally, some concrete function types are sub- or supertypes of other
/// concrete function types, if that was declared in their definition. For
/// simplicity, this isn't depicted in the diagram above.
///
/// ## External
///
/// The top of the external types hierarchy is `extern`; the bottom is
/// `noextern`. There are no concrete types in this hierarchy.
///
/// ```text
/// extern
/// |
/// noextern
/// ```
///
/// ## Internal
///
/// The top of the internal types hierarchy is `any`; the bottom is `none`. The
/// `eq` type is the common supertype of all types that can be compared for
/// equality. The `struct` and `array` types are the common supertypes of all
/// concrete struct and array types respectively. The `i31` type represents
/// unboxed 31-bit integers.
///
/// ```text
/// any
/// / | \
/// ,----------------------------' | `--------------------------.
/// / | \
/// | .--------' |
/// | | |
/// | struct array
/// | / | \ / | \
/// i31 ,-----' | '-----. ,-----' | `-----.
/// | / | \ / | \
/// | | | | | | |
/// | (struct) (struct i32) ... (array i32) (array i64) ...
/// | | | | | | |
/// | \ | / \ | /
/// \ `-----. | ,-----' `-----. | ,-----'
/// \ \ | / \ | /
/// \ \ | / \ | /
/// \ \| / \| /
/// \ |/ |/
/// \ | |
/// \ | /
/// \ '--------. /
/// \ | /
/// `--------------------. | ,-----------------------'
/// \ | /
/// none
/// ```
///
/// Additionally, concrete struct and array types can be subtypes of other
/// concrete struct and array types respectively, if that was declared in their
/// definitions. Once again, this is omitted from the above diagram for
/// simplicity.
///
/// # Subtyping and Equality
///
/// `HeapType` does not implement `Eq`, because heap types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`HeapType::matches`] method to perform these types of checks. If, however,
/// you are in that 0.01% scenario where you need to check precise equality
/// between types, you can use the [`HeapType::eq`] method.
#[derive(Debug, Clone, Hash)]
pub enum HeapType {
/// The abstract `extern` heap type represents external host data.
///
/// This is the top type for the external type hierarchy, and therefore is
/// the common supertype of all external reference types.
Extern,
/// The abstract `noextern` heap type represents the null external
/// reference.
///
/// This is the bottom type for the external type hierarchy, and therefore
/// is the common subtype of all external reference types.
NoExtern,
/// The abstract `func` heap type represents a reference to any kind of
/// function.
///
/// This is the top type for the function references type hierarchy, and is
/// therefore a supertype of every function reference.
Func,
/// A reference to a function of a specific, concrete type.
///
/// These are subtypes of `func` and supertypes of `nofunc`.
ConcreteFunc(FuncType),
/// The abstract `nofunc` heap type represents the null function reference.
///
/// This is the bottom type for the function references type hierarchy, and
/// therefore `nofunc` is a subtype of all function reference types.
NoFunc,
/// The abstract `any` heap type represents all internal Wasm data.
///
/// This is the top type of the internal type hierarchy, and is therefore a
/// supertype of all internal types (such as `eq`, `i31`, `struct`s, and
/// `array`s).
Any,
/// The abstract `eq` heap type represenets all internal Wasm references
/// that can be compared for equality.
///
/// This is a subtype of `any` and a supertype of `i31`, `array`, `struct`,
/// and `none` heap types.
Eq,
/// The `i31` heap type represents unboxed 31-bit integers.
///
/// This is a subtype of `any` and `eq`, and a supertype of `none`.
I31,
/// The abstract `array` heap type represents a reference to any kind of
/// array.
///
/// This is a subtype of `any` and `eq`, and a supertype of all concrete
/// array types, as well as a supertype of the abstract `none` heap type.
Array,
/// A reference to an array of a specific, concrete type.
///
/// These are subtypes of the `array` heap type (therefore also a subtype of
/// `any` and `eq`) and supertypes of the `none` heap type.
ConcreteArray(ArrayType),
/// The abstract `struct` heap type represents a reference to any kind of
/// struct.
///
/// This is a subtype of `any` and `eq`, and a supertype of all concrete
/// struct types, as well as a supertype of the abstract `none` heap type.
Struct,
/// A reference to an struct of a specific, concrete type.
///
/// These are subtypes of the `struct` heap type (therefore also a subtype
/// of `any` and `eq`) and supertypes of the `none` heap type.
ConcreteStruct(StructType),
/// The abstract `none` heap type represents the null internal reference.
///
/// This is the bottom type for the internal type hierarchy, and therefore
/// `none` is a subtype of internal types.
None,
}
impl Display for HeapType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
HeapType::Extern => write!(f, "extern"),
HeapType::NoExtern => write!(f, "noextern"),
HeapType::Func => write!(f, "func"),
HeapType::NoFunc => write!(f, "nofunc"),
HeapType::Any => write!(f, "any"),
HeapType::Eq => write!(f, "eq"),
HeapType::I31 => write!(f, "i31"),
HeapType::Array => write!(f, "array"),
HeapType::Struct => write!(f, "struct"),
HeapType::None => write!(f, "none"),
HeapType::ConcreteFunc(ty) => write!(f, "(concrete func {:?})", ty.type_index()),
HeapType::ConcreteArray(ty) => write!(f, "(concrete array {:?})", ty.type_index()),
HeapType::ConcreteStruct(ty) => write!(f, "(concrete struct {:?})", ty.type_index()),
}
}
}
impl From<FuncType> for HeapType {
#[inline]
fn from(f: FuncType) -> Self {
HeapType::ConcreteFunc(f)
}
}
impl From<ArrayType> for HeapType {
#[inline]
fn from(a: ArrayType) -> Self {
HeapType::ConcreteArray(a)
}
}
impl From<StructType> for HeapType {
#[inline]
fn from(s: StructType) -> Self {
HeapType::ConcreteStruct(s)
}
}
impl HeapType {
/// Is this the abstract `extern` heap type?
pub fn is_extern(&self) -> bool {
matches!(self, HeapType::Extern)
}
/// Is this the abstract `func` heap type?
pub fn is_func(&self) -> bool {
matches!(self, HeapType::Func)
}
/// Is this the abstract `nofunc` heap type?
pub fn is_no_func(&self) -> bool {
matches!(self, HeapType::NoFunc)
}
/// Is this the abstract `any` heap type?
pub fn is_any(&self) -> bool {
matches!(self, HeapType::Any)
}
/// Is this the abstract `i31` heap type?
pub fn is_i31(&self) -> bool {
matches!(self, HeapType::I31)
}
/// Is this the abstract `none` heap type?
pub fn is_none(&self) -> bool {
matches!(self, HeapType::None)
}
/// Is this an abstract type?
///
/// Types that are not abstract are concrete, user-defined types.
pub fn is_abstract(&self) -> bool {
!self.is_concrete()
}
/// Is this a concrete, user-defined heap type?
///
/// Types that are not concrete, user-defined types are abstract types.
#[inline]
pub fn is_concrete(&self) -> bool {
matches!(
self,
HeapType::ConcreteFunc(_) | HeapType::ConcreteArray(_) | HeapType::ConcreteStruct(_)
)
}
/// Is this a concrete, user-defined function type?
pub fn is_concrete_func(&self) -> bool {
matches!(self, HeapType::ConcreteFunc(_))
}
/// Get the underlying concrete, user-defined function type, if any.
///
/// Returns `None` if this is not a concrete function type.
pub fn as_concrete_func(&self) -> Option<&FuncType> {
match self {
HeapType::ConcreteFunc(f) => Some(f),
_ => None,
}
}
/// Get the underlying concrete, user-defined type, panicking if this is not
/// a concrete function type.
pub fn unwrap_concrete_func(&self) -> &FuncType {
self.as_concrete_func().unwrap()
}
/// Is this a concrete, user-defined array type?
pub fn is_concrete_array(&self) -> bool {
matches!(self, HeapType::ConcreteArray(_))
}
/// Get the underlying concrete, user-defined array type, if any.
///
/// Returns `None` for if this is not a concrete array type.
pub fn as_concrete_array(&self) -> Option<&ArrayType> {
match self {
HeapType::ConcreteArray(f) => Some(f),
_ => None,
}
}
/// Get the underlying concrete, user-defined type, panicking if this is not
/// a concrete array type.
pub fn unwrap_concrete_array(&self) -> &ArrayType {
self.as_concrete_array().unwrap()
}
/// Is this a concrete, user-defined struct type?
pub fn is_concrete_struct(&self) -> bool {
matches!(self, HeapType::ConcreteStruct(_))
}
/// Get the underlying concrete, user-defined struct type, if any.
///
/// Returns `None` for if this is not a concrete struct type.
pub fn as_concrete_struct(&self) -> Option<&StructType> {
match self {
HeapType::ConcreteStruct(f) => Some(f),
_ => None,
}
}
/// Get the underlying concrete, user-defined type, panicking if this is not
/// a concrete struct type.
pub fn unwrap_concrete_struct(&self) -> &StructType {
self.as_concrete_struct().unwrap()
}
/// Get the top type of this heap type's type hierarchy.
///
/// The returned heap type is a supertype of all types in this heap type's
/// type hierarchy.
#[inline]
pub fn top(&self) -> HeapType {
match self {
HeapType::Func | HeapType::ConcreteFunc(_) | HeapType::NoFunc => HeapType::Func,
HeapType::Extern | HeapType::NoExtern => HeapType::Extern,
HeapType::Any
| HeapType::Eq
| HeapType::I31
| HeapType::Array
| HeapType::ConcreteArray(_)
| HeapType::Struct
| HeapType::ConcreteStruct(_)
| HeapType::None => HeapType::Any,
}
}
/// Is this the top type within its type hierarchy?
#[inline]
pub fn is_top(&self) -> bool {
match self {
HeapType::Any | HeapType::Extern | HeapType::Func => true,
_ => false,
}
}
/// Get the bottom type of this heap type's type hierarchy.
///
/// The returned heap type is a subtype of all types in this heap type's
/// type hierarchy.
#[inline]
pub fn bottom(&self) -> HeapType {
match self {
HeapType::Extern | HeapType::NoExtern => HeapType::NoExtern,
HeapType::Func | HeapType::ConcreteFunc(_) | HeapType::NoFunc => HeapType::NoFunc,
HeapType::Any
| HeapType::Eq
| HeapType::I31
| HeapType::Array
| HeapType::ConcreteArray(_)
| HeapType::Struct
| HeapType::ConcreteStruct(_)
| HeapType::None => HeapType::None,
}
}
/// Is this the bottom type within its type hierarchy?
#[inline]
pub fn is_bottom(&self) -> bool {
match self {
HeapType::None | HeapType::NoExtern | HeapType::NoFunc => true,
_ => false,
}
}
/// Does this heap type match the other heap type?
///
/// That is, is this heap type a subtype of the other?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &HeapType) -> bool {
match (self, other) {
(HeapType::Extern, HeapType::Extern) => true,
(HeapType::Extern, _) => false,
(HeapType::NoExtern, HeapType::NoExtern | HeapType::Extern) => true,
(HeapType::NoExtern, _) => false,
(HeapType::NoFunc, HeapType::NoFunc | HeapType::ConcreteFunc(_) | HeapType::Func) => {
true
}
(HeapType::NoFunc, _) => false,
(HeapType::ConcreteFunc(_), HeapType::Func) => true,
(HeapType::ConcreteFunc(a), HeapType::ConcreteFunc(b)) => {
assert!(a.comes_from_same_engine(b.engine()));
a.engine()
.signatures()
.is_subtype(a.type_index(), b.type_index())
}
(HeapType::ConcreteFunc(_), _) => false,
(HeapType::Func, HeapType::Func) => true,
(HeapType::Func, _) => false,
(
HeapType::None,
HeapType::None
| HeapType::ConcreteArray(_)
| HeapType::Array
| HeapType::ConcreteStruct(_)
| HeapType::Struct
| HeapType::I31
| HeapType::Eq
| HeapType::Any,
) => true,
(HeapType::None, _) => false,
(HeapType::ConcreteArray(_), HeapType::Array | HeapType::Eq | HeapType::Any) => true,
(HeapType::ConcreteArray(a), HeapType::ConcreteArray(b)) => {
assert!(a.comes_from_same_engine(b.engine()));
a.engine()
.signatures()
.is_subtype(a.type_index(), b.type_index())
}
(HeapType::ConcreteArray(_), _) => false,
(HeapType::Array, HeapType::Array | HeapType::Eq | HeapType::Any) => true,
(HeapType::Array, _) => false,
(HeapType::ConcreteStruct(_), HeapType::Struct | HeapType::Eq | HeapType::Any) => true,
(HeapType::ConcreteStruct(a), HeapType::ConcreteStruct(b)) => {
assert!(a.comes_from_same_engine(b.engine()));
a.engine()
.signatures()
.is_subtype(a.type_index(), b.type_index())
}
(HeapType::ConcreteStruct(_), _) => false,
(HeapType::Struct, HeapType::Struct | HeapType::Eq | HeapType::Any) => true,
(HeapType::Struct, _) => false,
(HeapType::I31, HeapType::I31 | HeapType::Eq | HeapType::Any) => true,
(HeapType::I31, _) => false,
(HeapType::Eq, HeapType::Eq | HeapType::Any) => true,
(HeapType::Eq, _) => false,
(HeapType::Any, HeapType::Any) => true,
(HeapType::Any, _) => false,
}
}
/// Is heap type `a` precisely equal to heap type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same heap type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &HeapType, b: &HeapType) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn ensure_matches(&self, engine: &Engine, other: &HeapType) -> Result<()> {
if !self.comes_from_same_engine(engine) || !other.comes_from_same_engine(engine) {
bail!("type used with wrong engine");
}
if self.matches(other) {
Ok(())
} else {
bail!("type mismatch: expected {other}, found {self}");
}
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
match self {
HeapType::Extern
| HeapType::NoExtern
| HeapType::Func
| HeapType::NoFunc
| HeapType::Any
| HeapType::Eq
| HeapType::I31
| HeapType::Array
| HeapType::Struct
| HeapType::None => true,
HeapType::ConcreteFunc(ty) => ty.comes_from_same_engine(engine),
HeapType::ConcreteArray(ty) => ty.comes_from_same_engine(engine),
HeapType::ConcreteStruct(ty) => ty.comes_from_same_engine(engine),
}
}
pub(crate) fn to_wasm_type(&self) -> WasmHeapType {
match self {
HeapType::Extern => WasmHeapType::Extern,
HeapType::NoExtern => WasmHeapType::NoExtern,
HeapType::Func => WasmHeapType::Func,
HeapType::NoFunc => WasmHeapType::NoFunc,
HeapType::Any => WasmHeapType::Any,
HeapType::Eq => WasmHeapType::Eq,
HeapType::I31 => WasmHeapType::I31,
HeapType::Array => WasmHeapType::Array,
HeapType::Struct => WasmHeapType::Struct,
HeapType::None => WasmHeapType::None,
HeapType::ConcreteFunc(f) => {
WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::Engine(f.type_index()))
}
HeapType::ConcreteArray(a) => {
WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::Engine(a.type_index()))
}
HeapType::ConcreteStruct(a) => {
WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::Engine(a.type_index()))
}
}
}
pub(crate) fn from_wasm_type(engine: &Engine, ty: &WasmHeapType) -> HeapType {
match ty {
WasmHeapType::Extern => HeapType::Extern,
WasmHeapType::NoExtern => HeapType::NoExtern,
WasmHeapType::Func => HeapType::Func,
WasmHeapType::NoFunc => HeapType::NoFunc,
WasmHeapType::Any => HeapType::Any,
WasmHeapType::Eq => HeapType::Eq,
WasmHeapType::I31 => HeapType::I31,
WasmHeapType::Array => HeapType::Array,
WasmHeapType::Struct => HeapType::Struct,
WasmHeapType::None => HeapType::None,
WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::Engine(idx)) => {
HeapType::ConcreteFunc(FuncType::from_shared_type_index(engine, *idx))
}
WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::Engine(idx)) => {
HeapType::ConcreteArray(ArrayType::from_shared_type_index(engine, *idx))
}
WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::Engine(idx)) => {
HeapType::ConcreteStruct(StructType::from_shared_type_index(engine, *idx))
}
WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::Module(_))
| WasmHeapType::ConcreteFunc(EngineOrModuleTypeIndex::RecGroup(_))
| WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::Module(_))
| WasmHeapType::ConcreteArray(EngineOrModuleTypeIndex::RecGroup(_))
| WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::Module(_))
| WasmHeapType::ConcreteStruct(EngineOrModuleTypeIndex::RecGroup(_)) => {
panic!("HeapType::from_wasm_type on non-canonicalized-for-runtime-usage heap type")
}
}
}
pub(crate) fn as_registered_type(&self) -> Option<&RegisteredType> {
match self {
HeapType::ConcreteFunc(f) => Some(&f.registered_type),
HeapType::ConcreteArray(a) => Some(&a.registered_type),
HeapType::ConcreteStruct(a) => Some(&a.registered_type),
HeapType::Extern
| HeapType::NoExtern
| HeapType::Func
| HeapType::NoFunc
| HeapType::Any
| HeapType::Eq
| HeapType::I31
| HeapType::Array
| HeapType::Struct
| HeapType::None => None,
}
}
#[inline]
pub(crate) fn is_vmgcref_type(&self) -> bool {
match self.top() {
Self::Any | Self::Extern => true,
Self::Func => false,
ty => unreachable!("not a top type: {ty:?}"),
}
}
/// Is this a `VMGcRef` type that is not i31 and is not an uninhabited
/// bottom type?
#[inline]
pub(crate) fn is_vmgcref_type_and_points_to_object(&self) -> bool {
self.is_vmgcref_type()
&& !matches!(
self,
HeapType::I31 | HeapType::NoExtern | HeapType::NoFunc | HeapType::None
)
}
}
// External Types
/// A list of all possible types which can be externally referenced from a
/// WebAssembly module.
///
/// This list can be found in [`ImportType`] or [`ExportType`], so these types
/// can either be imported or exported.
#[derive(Debug, Clone)]
pub enum ExternType {
/// This external type is the type of a WebAssembly function.
Func(FuncType),
/// This external type is the type of a WebAssembly global.
Global(GlobalType),
/// This external type is the type of a WebAssembly table.
Table(TableType),
/// This external type is the type of a WebAssembly memory.
Memory(MemoryType),
}
macro_rules! extern_type_accessors {
($(($variant:ident($ty:ty) $get:ident $unwrap:ident))*) => ($(
/// Attempt to return the underlying type of this external type,
/// returning `None` if it is a different type.
pub fn $get(&self) -> Option<&$ty> {
if let ExternType::$variant(e) = self {
Some(e)
} else {
None
}
}
/// Returns the underlying descriptor of this [`ExternType`], panicking
/// if it is a different type.
///
/// # Panics
///
/// Panics if `self` is not of the right type.
pub fn $unwrap(&self) -> &$ty {
self.$get().expect(concat!("expected ", stringify!($ty)))
}
)*)
}
impl ExternType {
extern_type_accessors! {
(Func(FuncType) func unwrap_func)
(Global(GlobalType) global unwrap_global)
(Table(TableType) table unwrap_table)
(Memory(MemoryType) memory unwrap_memory)
}
pub(crate) fn from_wasmtime(
engine: &Engine,
types: &ModuleTypes,
ty: &EntityType,
) -> ExternType {
match ty {
EntityType::Function(idx) => match idx {
EngineOrModuleTypeIndex::Engine(e) => {
FuncType::from_shared_type_index(engine, *e).into()
}
EngineOrModuleTypeIndex::Module(m) => {
let subty = &types[*m];
FuncType::from_wasm_func_type(
engine,
subty.is_final,
subty.supertype,
subty.unwrap_func().clone(),
)
.into()
}
EngineOrModuleTypeIndex::RecGroup(_) => unreachable!(),
},
EntityType::Global(ty) => GlobalType::from_wasmtime_global(engine, ty).into(),
EntityType::Memory(ty) => MemoryType::from_wasmtime_memory(ty).into(),
EntityType::Table(ty) => TableType::from_wasmtime_table(engine, ty).into(),
EntityType::Tag(_) => unimplemented!("wasm tag support"),
}
}
}
impl From<FuncType> for ExternType {
fn from(ty: FuncType) -> ExternType {
ExternType::Func(ty)
}
}
impl From<GlobalType> for ExternType {
fn from(ty: GlobalType) -> ExternType {
ExternType::Global(ty)
}
}
impl From<MemoryType> for ExternType {
fn from(ty: MemoryType) -> ExternType {
ExternType::Memory(ty)
}
}
impl From<TableType> for ExternType {
fn from(ty: TableType) -> ExternType {
ExternType::Table(ty)
}
}
/// The storage type of a `struct` field or `array` element.
///
/// This is either a packed 8- or -16 bit integer, or else it is some unpacked
/// Wasm value type.
#[derive(Clone, Hash)]
pub enum StorageType {
/// `i8`, an 8-bit integer.
I8,
/// `i16`, a 16-bit integer.
I16,
/// A value type.
ValType(ValType),
}
impl fmt::Display for StorageType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
StorageType::I8 => write!(f, "i8"),
StorageType::I16 => write!(f, "i16"),
StorageType::ValType(ty) => fmt::Display::fmt(ty, f),
}
}
}
impl From<ValType> for StorageType {
#[inline]
fn from(v: ValType) -> Self {
StorageType::ValType(v)
}
}
impl StorageType {
/// Is this an `i8`?
#[inline]
pub fn is_i8(&self) -> bool {
matches!(self, Self::I8)
}
/// Is this an `i16`?
#[inline]
pub fn is_i16(&self) -> bool {
matches!(self, Self::I16)
}
/// Is this a Wasm value type?
#[inline]
pub fn is_val_type(&self) -> bool {
matches!(self, Self::I16)
}
/// Get this storage type's underlying value type, if any.
///
/// Returns `None` if this storage type is not a value type.
#[inline]
pub fn as_val_type(&self) -> Option<&ValType> {
match self {
Self::ValType(v) => Some(v),
_ => None,
}
}
/// Get this storage type's underlying value type, panicking if it is not a
/// value type.
pub fn unwrap_val_type(&self) -> &ValType {
self.as_val_type().unwrap()
}
/// Unpack this (possibly packed) storage type into a full `ValType`.
///
/// If this is a `StorageType::ValType`, then the inner `ValType` is
/// returned as-is.
///
/// If this is a packed `StorageType::I8` or `StorageType::I16, then a
/// `ValType::I32` is returned.
pub fn unpack(&self) -> &ValType {
match self {
StorageType::I8 | StorageType::I16 => &ValType::I32,
StorageType::ValType(ty) => ty,
}
}
/// Does this field type match the other field type?
///
/// That is, is this field type a subtype of the other field type?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &Self) -> bool {
match (self, other) {
(StorageType::I8, StorageType::I8) => true,
(StorageType::I8, _) => false,
(StorageType::I16, StorageType::I16) => true,
(StorageType::I16, _) => false,
(StorageType::ValType(a), StorageType::ValType(b)) => a.matches(b),
(StorageType::ValType(_), _) => false,
}
}
/// Is field type `a` precisely equal to field type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same field type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &Self, b: &Self) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
match self {
StorageType::I8 | StorageType::I16 => true,
StorageType::ValType(v) => v.comes_from_same_engine(engine),
}
}
pub(crate) fn from_wasm_storage_type(engine: &Engine, ty: &WasmStorageType) -> Self {
match ty {
WasmStorageType::I8 => Self::I8,
WasmStorageType::I16 => Self::I16,
WasmStorageType::Val(v) => ValType::from_wasm_type(engine, &v).into(),
}
}
pub(crate) fn to_wasm_storage_type(&self) -> WasmStorageType {
match self {
Self::I8 => WasmStorageType::I8,
Self::I16 => WasmStorageType::I16,
Self::ValType(v) => WasmStorageType::Val(v.to_wasm_type()),
}
}
/// The byte size of this type, if it has a defined size in the spec.
///
/// See
/// https://webassembly.github.io/gc/core/syntax/types.html#bitwidth-fieldtype
/// and
/// https://webassembly.github.io/gc/core/syntax/types.html#bitwidth-valtype
pub(crate) fn data_byte_size(&self) -> Option<u32> {
match self {
StorageType::I8 => Some(1),
StorageType::I16 => Some(2),
StorageType::ValType(ValType::I32 | ValType::F32) => Some(4),
StorageType::ValType(ValType::I64 | ValType::F64) => Some(8),
StorageType::ValType(ValType::V128) => Some(16),
StorageType::ValType(ValType::Ref(_)) => None,
}
}
}
/// The type of a `struct` field or an `array`'s elements.
///
/// This is a pair of both the field's storage type and its mutability
/// (i.e. whether the field can be updated or not).
#[derive(Clone, Hash)]
pub struct FieldType {
mutability: Mutability,
element_type: StorageType,
}
impl fmt::Display for FieldType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.mutability.is_var() {
write!(f, "(mut {})", self.element_type)
} else {
fmt::Display::fmt(&self.element_type, f)
}
}
}
impl FieldType {
/// Construct a new field type from the given parts.
#[inline]
pub fn new(mutability: Mutability, element_type: StorageType) -> Self {
Self {
mutability,
element_type,
}
}
/// Get whether or not this field type is mutable.
#[inline]
pub fn mutability(&self) -> Mutability {
self.mutability
}
/// Get this field type's storage type.
#[inline]
pub fn element_type(&self) -> &StorageType {
&self.element_type
}
/// Does this field type match the other field type?
///
/// That is, is this field type a subtype of the other field type?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &Self) -> bool {
(other.mutability == Mutability::Var || self.mutability == Mutability::Const)
&& self.element_type.matches(&other.element_type)
}
/// Is field type `a` precisely equal to field type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same field type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &Self, b: &Self) -> bool {
a.matches(b) && b.matches(a)
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
self.element_type.comes_from_same_engine(engine)
}
pub(crate) fn from_wasm_field_type(engine: &Engine, ty: &WasmFieldType) -> Self {
Self {
mutability: if ty.mutable {
Mutability::Var
} else {
Mutability::Const
},
element_type: StorageType::from_wasm_storage_type(engine, &ty.element_type),
}
}
pub(crate) fn to_wasm_field_type(&self) -> WasmFieldType {
WasmFieldType {
element_type: self.element_type.to_wasm_storage_type(),
mutable: matches!(self.mutability, Mutability::Var),
}
}
}
/// The type of a WebAssembly struct.
///
/// WebAssembly structs are a static, fixed-length, ordered sequence of
/// fields. Fields are named by index, not an identifier. Each field is mutable
/// or constant and stores unpacked [`Val`][crate::Val]s or packed 8-/16-bit
/// integers.
///
/// # Subtyping and Equality
///
/// `StructType` does not implement `Eq`, because reference types have a
/// subtyping relationship, and so 99.99% of the time you actually want to check
/// whether one type matches (i.e. is a subtype of) another type. You can use
/// the [`StructType::matches`] method to perform these types of checks. If,
/// however, you are in that 0.01% scenario where you need to check precise
/// equality between types, you can use the [`StructType::eq`] method.
//
// TODO: Once we have struct values, update above docs with a reference to the
// future `Struct::matches_ty` method
#[derive(Debug, Clone, Hash)]
pub struct StructType {
registered_type: RegisteredType,
}
impl fmt::Display for StructType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(struct")?;
for field in self.fields() {
write!(f, " (field {field})")?;
}
write!(f, ")")?;
Ok(())
}
}
impl StructType {
/// Construct a new `StructType` with the given field types.
///
/// This `StructType` will be final and without a supertype.
///
/// The result will be associated with the given engine, and attempts to use
/// it with other engines will panic (for example, checking whether it is a
/// subtype of another struct type that is associated with a different
/// engine).
///
/// Returns an error if the number of fields exceeds the implementation
/// limit.
///
/// # Panics
///
/// Panics if any given field type is not associated with the given engine.
pub fn new(engine: &Engine, fields: impl IntoIterator<Item = FieldType>) -> Result<Self> {
Self::with_finality_and_supertype(engine, Finality::Final, None, fields)
}
/// Construct a new `StructType` with the given finality, supertype, and
/// fields.
///
/// The result will be associated with the given engine, and attempts to use
/// it with other engines will panic (for example, checking whether it is a
/// subtype of another struct type that is associated with a different
/// engine).
///
/// Returns an error if the number of fields exceeds the implementation
/// limit, if the supertype is final, or if this type does not match the
/// supertype.
///
/// # Panics
///
/// Panics if any given field type is not associated with the given engine.
pub fn with_finality_and_supertype(
engine: &Engine,
finality: Finality,
supertype: Option<&Self>,
fields: impl IntoIterator<Item = FieldType>,
) -> Result<Self> {
let fields = fields.into_iter();
let mut wasmtime_fields = Vec::with_capacity({
let size_hint = fields.size_hint();
let cap = size_hint.1.unwrap_or(size_hint.0);
// Only reserve space if we have a supertype, as that is the only time
// that this vec is used.
supertype.is_some() as usize * cap
});
// Same as in `FuncType::new`: we must prevent any `RegisteredType`s
// from being reclaimed while constructing this struct type.
let mut registrations = smallvec::SmallVec::<[_; 4]>::new();
let fields = fields
.map(|ty: FieldType| {
assert!(ty.comes_from_same_engine(engine));
if supertype.is_some() {
wasmtime_fields.push(ty.clone());
}
if let Some(r) = ty.element_type.as_val_type().and_then(|v| v.as_ref()) {
if let Some(r) = r.heap_type().as_registered_type() {
registrations.push(r.clone());
}
}
ty.to_wasm_field_type()
})
.collect();
if let Some(supertype) = supertype {
ensure!(
supertype.finality().is_non_final(),
"cannot create a subtype of a final supertype"
);
ensure!(
Self::fields_match(wasmtime_fields.into_iter(), supertype.fields()),
"struct fields must match their supertype's fields"
);
}
Self::from_wasm_struct_type(
engine,
finality.is_final(),
supertype.map(|ty| ty.type_index().into()),
WasmStructType { fields },
)
}
/// Get the engine that this struct type is associated with.
pub fn engine(&self) -> &Engine {
self.registered_type.engine()
}
/// Get the finality of this struct type.
pub fn finality(&self) -> Finality {
match self.registered_type.is_final {
true => Finality::Final,
false => Finality::NonFinal,
}
}
/// Get the supertype of this struct type, if any.
pub fn supertype(&self) -> Option<Self> {
self.registered_type
.supertype
.map(|ty| Self::from_shared_type_index(self.engine(), ty.unwrap_engine_type_index()))
}
/// Get the `i`th field type.
///
/// Returns `None` if `i` is out of bounds.
pub fn field(&self, i: usize) -> Option<FieldType> {
let engine = self.engine();
self.as_wasm_struct_type()
.fields
.get(i)
.map(|ty| FieldType::from_wasm_field_type(engine, ty))
}
/// Returns the list of field types for this function.
#[inline]
pub fn fields(&self) -> impl ExactSizeIterator<Item = FieldType> + '_ {
let engine = self.engine();
self.as_wasm_struct_type()
.fields
.iter()
.map(|ty| FieldType::from_wasm_field_type(engine, ty))
}
/// Does this struct type match the other struct type?
///
/// That is, is this function type a subtype of the other struct type?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &StructType) -> bool {
assert!(self.comes_from_same_engine(other.engine()));
// Avoid matching on structure for subtyping checks when we have
// precisely the same type.
if self.type_index() == other.type_index() {
return true;
}
Self::fields_match(self.fields(), other.fields())
}
fn fields_match(
a: impl ExactSizeIterator<Item = FieldType>,
b: impl ExactSizeIterator<Item = FieldType>,
) -> bool {
a.len() >= b.len() && a.zip(b).all(|(a, b)| a.matches(&b))
}
/// Is struct type `a` precisely equal to struct type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same struct type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &StructType, b: &StructType) -> bool {
assert!(a.comes_from_same_engine(b.engine()));
a.type_index() == b.type_index()
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
Engine::same(self.registered_type().engine(), engine)
}
pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
self.registered_type().index()
}
pub(crate) fn as_wasm_struct_type(&self) -> &WasmStructType {
self.registered_type().unwrap_struct()
}
pub(crate) fn registered_type(&self) -> &RegisteredType {
&self.registered_type
}
/// Construct a `StructType` from a `WasmStructType`.
///
/// This method should only be used when something has already registered --
/// and is *keeping registered* -- any other concrete Wasm types referenced
/// by the given `WasmStructType`.
///
/// For example, this method may be called to convert an struct type from
/// within a Wasm module's `ModuleTypes` since the Wasm module itself is
/// holding a strong reference to all of its types, including any `(ref null
/// <index>)` types used as the element type for this struct type.
pub(crate) fn from_wasm_struct_type(
engine: &Engine,
is_final: bool,
supertype: Option<EngineOrModuleTypeIndex>,
ty: WasmStructType,
) -> Result<StructType> {
const MAX_FIELDS: usize = 10_000;
let fields_len = ty.fields.len();
ensure!(
fields_len <= MAX_FIELDS,
"attempted to define a struct type with {fields_len} fields, but \
that is more than the maximum supported number of fields \
({MAX_FIELDS})",
);
let ty = RegisteredType::new(
engine,
WasmSubType {
is_final,
supertype,
composite_type: WasmCompositeType::Struct(ty),
},
);
Ok(Self {
registered_type: ty,
})
}
pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> StructType {
let ty = RegisteredType::root(engine, index).expect(
"VMSharedTypeIndex is not registered in the Engine! Wrong \
engine? Didn't root the index somewhere?",
);
Self::from_registered_type(ty)
}
pub(crate) fn from_registered_type(registered_type: RegisteredType) -> Self {
debug_assert!(registered_type.is_struct());
Self { registered_type }
}
}
/// The type of a WebAssembly array.
///
/// WebAssembly arrays are dynamically-sized, but not resizable. They contain
/// either unpacked [`Val`][crate::Val]s or packed 8-/16-bit integers.
///
/// # Subtyping and Equality
///
/// `ArrayType` does not implement `Eq`, because reference types have a
/// subtyping relationship, and so 99.99% of the time you actually want to check
/// whether one type matches (i.e. is a subtype of) another type. You can use
/// the [`ArrayType::matches`] method to perform these types of checks. If,
/// however, you are in that 0.01% scenario where you need to check precise
/// equality between types, you can use the [`ArrayType::eq`] method.
//
// TODO: Once we have array values, update above docs with a reference to the
// future `Array::matches_ty` method
#[derive(Debug, Clone, Hash)]
pub struct ArrayType {
registered_type: RegisteredType,
}
impl fmt::Display for ArrayType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let field_ty = self.field_type();
write!(f, "(array (field {field_ty}))")?;
Ok(())
}
}
impl ArrayType {
/// Construct a new `ArrayType` with the given field type's mutability and
/// storage type.
///
/// The new `ArrayType` will be final and without a supertype.
///
/// The result will be associated with the given engine, and attempts to use
/// it with other engines will panic (for example, checking whether it is a
/// subtype of another array type that is associated with a different
/// engine).
///
/// # Panics
///
/// Panics if the given field type is not associated with the given engine.
pub fn new(engine: &Engine, field_type: FieldType) -> Self {
Self::with_finality_and_supertype(engine, Finality::Final, None, field_type)
.expect("cannot fail without a supertype")
}
/// Construct a new `StructType` with the given finality, supertype, and
/// fields.
///
/// The result will be associated with the given engine, and attempts to use
/// it with other engines will panic (for example, checking whether it is a
/// subtype of another struct type that is associated with a different
/// engine).
///
/// Returns an error if the supertype is final, or if this type does not
/// match the supertype.
///
/// # Panics
///
/// Panics if the given field type is not associated with the given engine.
pub fn with_finality_and_supertype(
engine: &Engine,
finality: Finality,
supertype: Option<&Self>,
field_type: FieldType,
) -> Result<Self> {
if let Some(supertype) = supertype {
assert!(supertype.comes_from_same_engine(engine));
ensure!(
supertype.finality().is_non_final(),
"cannot create a subtype of a final supertype"
);
ensure!(
field_type.matches(&supertype.field_type()),
"array field type must match its supertype's field type"
);
}
// Same as in `FuncType::new`: we must prevent any `RegisteredType` in
// `field_type` from being reclaimed while constructing this array type.
let _registration = field_type
.element_type
.as_val_type()
.and_then(|v| v.as_ref())
.and_then(|r| r.heap_type().as_registered_type());
assert!(field_type.comes_from_same_engine(engine));
let wasm_ty = WasmArrayType(field_type.to_wasm_field_type());
Ok(Self::from_wasm_array_type(
engine,
finality.is_final(),
supertype.map(|ty| ty.type_index().into()),
wasm_ty,
))
}
/// Get the engine that this array type is associated with.
pub fn engine(&self) -> &Engine {
self.registered_type.engine()
}
/// Get the finality of this array type.
pub fn finality(&self) -> Finality {
match self.registered_type.is_final {
true => Finality::Final,
false => Finality::NonFinal,
}
}
/// Get the supertype of this array type, if any.
pub fn supertype(&self) -> Option<Self> {
self.registered_type
.supertype
.map(|ty| Self::from_shared_type_index(self.engine(), ty.unwrap_engine_type_index()))
}
/// Get this array's underlying field type.
///
/// The field type contains information about both this array type's
/// mutability and the storage type used for its elements.
pub fn field_type(&self) -> FieldType {
FieldType::from_wasm_field_type(self.engine(), &self.as_wasm_array_type().0)
}
/// Get this array type's mutability and whether its instances' elements can
/// be updated or not.
///
/// This is a convenience method providing a short-hand for
/// `my_array_type.field_type().mutability()`.
pub fn mutability(&self) -> Mutability {
if self.as_wasm_array_type().0.mutable {
Mutability::Var
} else {
Mutability::Const
}
}
/// Get the storage type used for this array type's elements.
///
/// This is a convenience method providing a short-hand for
/// `my_array_type.field_type().element_type()`.
pub fn element_type(&self) -> StorageType {
StorageType::from_wasm_storage_type(
self.engine(),
&self.registered_type.unwrap_array().0.element_type,
)
}
/// Does this array type match the other array type?
///
/// That is, is this function type a subtype of the other array type?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &ArrayType) -> bool {
assert!(self.comes_from_same_engine(other.engine()));
// Avoid matching on structure for subtyping checks when we have
// precisely the same type.
if self.type_index() == other.type_index() {
return true;
}
self.field_type().matches(&other.field_type())
}
/// Is array type `a` precisely equal to array type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same array type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &ArrayType, b: &ArrayType) -> bool {
assert!(a.comes_from_same_engine(b.engine()));
a.type_index() == b.type_index()
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
Engine::same(self.registered_type.engine(), engine)
}
pub(crate) fn registered_type(&self) -> &RegisteredType {
&self.registered_type
}
pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
self.registered_type.index()
}
pub(crate) fn as_wasm_array_type(&self) -> &WasmArrayType {
self.registered_type.unwrap_array()
}
/// Construct a `ArrayType` from a `WasmArrayType`.
///
/// This method should only be used when something has already registered --
/// and is *keeping registered* -- any other concrete Wasm types referenced
/// by the given `WasmArrayType`.
///
/// For example, this method may be called to convert an array type from
/// within a Wasm module's `ModuleTypes` since the Wasm module itself is
/// holding a strong reference to all of its types, including any `(ref null
/// <index>)` types used as the element type for this array type.
pub(crate) fn from_wasm_array_type(
engine: &Engine,
is_final: bool,
supertype: Option<EngineOrModuleTypeIndex>,
ty: WasmArrayType,
) -> ArrayType {
let ty = RegisteredType::new(
engine,
WasmSubType {
is_final,
supertype,
composite_type: WasmCompositeType::Array(ty),
},
);
Self {
registered_type: ty,
}
}
pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> ArrayType {
let ty = RegisteredType::root(engine, index).expect(
"VMSharedTypeIndex is not registered in the Engine! Wrong \
engine? Didn't root the index somewhere?",
);
Self::from_registered_type(ty)
}
pub(crate) fn from_registered_type(registered_type: RegisteredType) -> Self {
debug_assert!(registered_type.is_array());
Self { registered_type }
}
}
/// The type of a WebAssembly function.
///
/// WebAssembly functions can have 0 or more parameters and results.
///
/// # Subtyping and Equality
///
/// `FuncType` does not implement `Eq`, because reference types have a subtyping
/// relationship, and so 99.99% of the time you actually want to check whether
/// one type matches (i.e. is a subtype of) another type. You can use the
/// [`FuncType::matches`] and [`Func::matches_ty`][crate::Func::matches_ty]
/// methods to perform these types of checks. If, however, you are in that 0.01%
/// scenario where you need to check precise equality between types, you can use
/// the [`FuncType::eq`] method.
#[derive(Debug, Clone, Hash)]
pub struct FuncType {
registered_type: RegisteredType,
}
impl Display for FuncType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "(type (func")?;
if self.params().len() > 0 {
write!(f, " (param")?;
for p in self.params() {
write!(f, " {p}")?;
}
write!(f, ")")?;
}
if self.results().len() > 0 {
write!(f, " (result")?;
for r in self.results() {
write!(f, " {r}")?;
}
write!(f, ")")?;
}
write!(f, "))")
}
}
impl FuncType {
/// Creates a new function type from the given parameters and results.
///
/// The function type returned will represent a function which takes
/// `params` as arguments and returns `results` when it is finished.
///
/// The resulting function type will be final and without a supertype.
///
/// # Panics
///
/// Panics if any parameter or value type is not associated with the given
/// engine.
pub fn new(
engine: &Engine,
params: impl IntoIterator<Item = ValType>,
results: impl IntoIterator<Item = ValType>,
) -> FuncType {
Self::with_finality_and_supertype(engine, Finality::Final, None, params, results)
.expect("cannot fail without a supertype")
}
/// Create a new function type with the given finality, supertype, parameter
/// types, and result types.
///
/// Returns an error if the supertype is final, or if this function type
/// does not match the supertype.
///
/// # Panics
///
/// Panics if any parameter or value type is not associated with the given
/// engine.
pub fn with_finality_and_supertype(
engine: &Engine,
finality: Finality,
supertype: Option<&Self>,
params: impl IntoIterator<Item = ValType>,
results: impl IntoIterator<Item = ValType>,
) -> Result<Self> {
let params = params.into_iter();
let results = results.into_iter();
let mut wasmtime_params = Vec::with_capacity({
let size_hint = params.size_hint();
let cap = size_hint.1.unwrap_or(size_hint.0);
// Only reserve space if we have a supertype, as that is the only time
// that this vec is used.
supertype.is_some() as usize * cap
});
let mut wasmtime_results = Vec::with_capacity({
let size_hint = results.size_hint();
let cap = size_hint.1.unwrap_or(size_hint.0);
// Same as above.
supertype.is_some() as usize * cap
});
// Keep any of our parameters' and results' `RegisteredType`s alive
// across `Self::from_wasm_func_type`. If one of our given `ValType`s is
// the only thing keeping a type in the registry, we don't want to
// unregister it when we convert the `ValType` into a `WasmValType` just
// before we register our new `WasmFuncType` that will reference it.
let mut registrations = smallvec::SmallVec::<[_; 4]>::new();
let mut to_wasm_type = |ty: ValType, vec: &mut Vec<_>| {
assert!(ty.comes_from_same_engine(engine));
if supertype.is_some() {
vec.push(ty.clone());
}
if let Some(r) = ty.as_ref() {
if let Some(r) = r.heap_type().as_registered_type() {
registrations.push(r.clone());
}
}
ty.to_wasm_type()
};
let wasm_func_ty = WasmFuncType::new(
params
.map(|p| to_wasm_type(p, &mut wasmtime_params))
.collect(),
results
.map(|r| to_wasm_type(r, &mut wasmtime_results))
.collect(),
);
if let Some(supertype) = supertype {
assert!(supertype.comes_from_same_engine(engine));
ensure!(
supertype.finality().is_non_final(),
"cannot create a subtype of a final supertype"
);
ensure!(
Self::matches_impl(
wasmtime_params.iter().cloned(),
supertype.params(),
wasmtime_results.iter().cloned(),
supertype.results()
),
"function type must match its supertype: found (func{params}{results}), expected \
{supertype}",
params = if wasmtime_params.is_empty() {
String::new()
} else {
let mut s = format!(" (params");
for p in &wasmtime_params {
write!(&mut s, " {p}").unwrap();
}
s.push(')');
s
},
results = if wasmtime_results.is_empty() {
String::new()
} else {
let mut s = format!(" (results");
for r in &wasmtime_results {
write!(&mut s, " {r}").unwrap();
}
s.push(')');
s
},
);
}
Ok(Self::from_wasm_func_type(
engine,
finality.is_final(),
supertype.map(|ty| ty.type_index().into()),
wasm_func_ty,
))
}
/// Get the engine that this function type is associated with.
pub fn engine(&self) -> &Engine {
self.registered_type.engine()
}
/// Get the finality of this function type.
pub fn finality(&self) -> Finality {
match self.registered_type.is_final {
true => Finality::Final,
false => Finality::NonFinal,
}
}
/// Get the supertype of this function type, if any.
pub fn supertype(&self) -> Option<Self> {
self.registered_type
.supertype
.map(|ty| Self::from_shared_type_index(self.engine(), ty.unwrap_engine_type_index()))
}
/// Get the `i`th parameter type.
///
/// Returns `None` if `i` is out of bounds.
pub fn param(&self, i: usize) -> Option<ValType> {
let engine = self.engine();
self.registered_type
.unwrap_func()
.params()
.get(i)
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Returns the list of parameter types for this function.
#[inline]
pub fn params(&self) -> impl ExactSizeIterator<Item = ValType> + '_ {
let engine = self.engine();
self.registered_type
.unwrap_func()
.params()
.iter()
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Get the `i`th result type.
///
/// Returns `None` if `i` is out of bounds.
pub fn result(&self, i: usize) -> Option<ValType> {
let engine = self.engine();
self.registered_type
.unwrap_func()
.returns()
.get(i)
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Returns the list of result types for this function.
#[inline]
pub fn results(&self) -> impl ExactSizeIterator<Item = ValType> + '_ {
let engine = self.engine();
self.registered_type
.unwrap_func()
.returns()
.iter()
.map(|ty| ValType::from_wasm_type(engine, ty))
}
/// Does this function type match the other function type?
///
/// That is, is this function type a subtype of the other function type?
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn matches(&self, other: &FuncType) -> bool {
assert!(self.comes_from_same_engine(other.engine()));
// Avoid matching on structure for subtyping checks when we have
// precisely the same type.
if self.type_index() == other.type_index() {
return true;
}
Self::matches_impl(
self.params(),
other.params(),
self.results(),
other.results(),
)
}
fn matches_impl(
a_params: impl ExactSizeIterator<Item = ValType>,
b_params: impl ExactSizeIterator<Item = ValType>,
a_results: impl ExactSizeIterator<Item = ValType>,
b_results: impl ExactSizeIterator<Item = ValType>,
) -> bool {
a_params.len() == b_params.len()
&& a_results.len() == b_results.len()
// Params are contravariant and results are covariant. For more
// details and a refresher on variance, read
// https://github.com/bytecodealliance/wasm-tools/blob/f1d89a4/crates/wasmparser/src/readers/core/types/matches.rs#L137-L174
&& a_params
.zip(b_params)
.all(|(a, b)| b.matches(&a))
&& a_results
.zip(b_results)
.all(|(a, b)| a.matches(&b))
}
/// Is function type `a` precisely equal to function type `b`?
///
/// Returns `false` even if `a` is a subtype of `b` or vice versa, if they
/// are not exactly the same function type.
///
/// # Panics
///
/// Panics if either type is associated with a different engine from the
/// other.
pub fn eq(a: &FuncType, b: &FuncType) -> bool {
assert!(a.comes_from_same_engine(b.engine()));
a.type_index() == b.type_index()
}
pub(crate) fn comes_from_same_engine(&self, engine: &Engine) -> bool {
Engine::same(self.registered_type.engine(), engine)
}
pub(crate) fn type_index(&self) -> VMSharedTypeIndex {
self.registered_type.index()
}
pub(crate) fn as_wasm_func_type(&self) -> &WasmFuncType {
self.registered_type.unwrap_func()
}
pub(crate) fn into_registered_type(self) -> RegisteredType {
self.registered_type
}
/// Construct a `FuncType` from a `WasmFuncType`.
///
/// This method should only be used when something has already registered --
/// and is *keeping registered* -- any other concrete Wasm types referenced
/// by the given `WasmFuncType`.
///
/// For example, this method may be called to convert a function type from
/// within a Wasm module's `ModuleTypes` since the Wasm module itself is
/// holding a strong reference to all of its types, including any `(ref null
/// <index>)` types used in the function's parameters and results.
pub(crate) fn from_wasm_func_type(
engine: &Engine,
is_final: bool,
supertype: Option<EngineOrModuleTypeIndex>,
ty: WasmFuncType,
) -> FuncType {
let ty = RegisteredType::new(
engine,
WasmSubType {
is_final,
supertype,
composite_type: WasmCompositeType::Func(ty),
},
);
Self {
registered_type: ty,
}
}
pub(crate) fn from_shared_type_index(engine: &Engine, index: VMSharedTypeIndex) -> FuncType {
let ty = RegisteredType::root(engine, index).expect(
"VMSharedTypeIndex is not registered in the Engine! Wrong \
engine? Didn't root the index somewhere?",
);
Self::from_registered_type(ty)
}
pub(crate) fn from_registered_type(registered_type: RegisteredType) -> Self {
debug_assert!(registered_type.is_func());
Self { registered_type }
}
}
// Global Types
/// A WebAssembly global descriptor.
///
/// This type describes an instance of a global in a WebAssembly module. Globals
/// are local to an [`Instance`](crate::Instance) and are either immutable or
/// mutable.
#[derive(Debug, Clone, Hash)]
pub struct GlobalType {
content: ValType,
mutability: Mutability,
}
impl GlobalType {
/// Creates a new global descriptor of the specified `content` type and
/// whether or not it's mutable.
pub fn new(content: ValType, mutability: Mutability) -> GlobalType {
GlobalType {
content,
mutability,
}
}
/// Returns the value type of this global descriptor.
pub fn content(&self) -> &ValType {
&self.content
}
/// Returns whether or not this global is mutable.
pub fn mutability(&self) -> Mutability {
self.mutability
}
pub(crate) fn to_wasm_type(&self) -> Global {
let wasm_ty = self.content().to_wasm_type();
let mutability = matches!(self.mutability(), Mutability::Var);
Global {
wasm_ty,
mutability,
}
}
/// Returns `None` if the wasmtime global has a type that we can't
/// represent, but that should only very rarely happen and indicate a bug.
pub(crate) fn from_wasmtime_global(engine: &Engine, global: &Global) -> GlobalType {
let ty = ValType::from_wasm_type(engine, &global.wasm_ty);
let mutability = if global.mutability {
Mutability::Var
} else {
Mutability::Const
};
GlobalType::new(ty, mutability)
}
}
// Table Types
/// A descriptor for a table in a WebAssembly module.
///
/// Tables are contiguous chunks of a specific element, typically a `funcref` or
/// an `externref`. The most common use for tables is a function table through
/// which `call_indirect` can invoke other functions.
#[derive(Debug, Clone, Hash)]
pub struct TableType {
// Keep a `wasmtime::RefType` so that `TableType::element` doesn't need to
// take an `&Engine`.
element: RefType,
ty: Table,
}
impl TableType {
/// Creates a new table descriptor which will contain the specified
/// `element` and have the `limits` applied to its length.
pub fn new(element: RefType, min: u32, max: Option<u32>) -> TableType {
let ref_type = element.to_wasm_type();
debug_assert!(
ref_type.is_canonicalized_for_runtime_usage(),
"should be canonicalized for runtime usage: {ref_type:?}"
);
let limits = Limits {
min: u64::from(min),
max: max.map(|x| u64::from(x)),
};
TableType {
element,
ty: Table {
idx_type: IndexType::I32,
limits,
ref_type,
},
}
}
/// Crates a new descriptor for a 64-bit table.
///
/// Note that 64-bit tables are part of the memory64 proposal for
/// WebAssembly which is not standardized yet.
pub fn new64(element: RefType, min: u64, max: Option<u64>) -> TableType {
let ref_type = element.to_wasm_type();
debug_assert!(
ref_type.is_canonicalized_for_runtime_usage(),
"should be canonicalized for runtime usage: {ref_type:?}"
);
TableType {
element,
ty: Table {
ref_type,
idx_type: IndexType::I64,
limits: Limits { min, max },
},
}
}
/// Returns whether or not this table is a 64-bit table.
///
/// Note that 64-bit tables are part of the memory64 proposal for
/// WebAssembly which is not standardized yet.
pub fn is_64(&self) -> bool {
matches!(self.ty.idx_type, IndexType::I64)
}
/// Returns the element value type of this table.
pub fn element(&self) -> &RefType {
&self.element
}
/// Returns minimum number of elements this table must have
pub fn minimum(&self) -> u64 {
self.ty.limits.min
}
/// Returns the optionally-specified maximum number of elements this table
/// can have.
///
/// If this returns `None` then the table is not limited in size.
pub fn maximum(&self) -> Option<u64> {
self.ty.limits.max
}
pub(crate) fn from_wasmtime_table(engine: &Engine, table: &Table) -> TableType {
let element = RefType::from_wasm_type(engine, &table.ref_type);
TableType {
element,
ty: *table,
}
}
pub(crate) fn wasmtime_table(&self) -> &Table {
&self.ty
}
}
// Memory Types
/// A builder for [`MemoryType`][crate::MemoryType]s.
///
/// A new builder can be constructed via its `Default` implementation.
///
/// When you're done configuring, get the underlying
/// [`MemoryType`][crate::MemoryType] by calling the
/// [`build`][crate::MemoryTypeBuilder::build] method.
///
/// # Example
///
/// ```
/// # fn foo() -> wasmtime::Result<()> {
/// use wasmtime::MemoryTypeBuilder;
///
/// let memory_type = MemoryTypeBuilder::default()
/// // Set the minimum size, in pages.
/// .min(4096)
/// // Set the maximum size, in pages.
/// .max(Some(4096))
/// // Set the page size to 1 byte (aka 2**0).
/// .page_size_log2(0)
/// // Get the underlying memory type.
/// .build()?;
/// # Ok(())
/// # }
/// ```
pub struct MemoryTypeBuilder {
ty: Memory,
}
impl Default for MemoryTypeBuilder {
fn default() -> Self {
MemoryTypeBuilder {
ty: Memory {
idx_type: IndexType::I32,
limits: Limits { min: 0, max: None },
shared: false,
page_size_log2: Memory::DEFAULT_PAGE_SIZE_LOG2,
},
}
}
}
impl MemoryTypeBuilder {
fn validate(&self) -> Result<()> {
if self
.ty
.limits
.max
.map_or(false, |max| max < self.ty.limits.min)
{
bail!("maximum page size cannot be smaller than the minimum page size");
}
match self.ty.page_size_log2 {
0 | Memory::DEFAULT_PAGE_SIZE_LOG2 => {}
x => bail!(
"page size must be 2**16 or 2**0, but was given 2**{x}; note \
that future Wasm extensions might allow any power of two page \
size, but only 2**16 and 2**0 are currently valid",
),
}
if self.ty.shared && self.ty.limits.max.is_none() {
bail!("shared memories must have a maximum size");
}
let absolute_max = self.ty.max_size_based_on_index_type();
let min = self
.ty
.minimum_byte_size()
.err2anyhow()
.context("memory's minimum byte size must fit in a u64")?;
if min > absolute_max {
bail!("minimum size is too large for this memory type's index type");
}
if self
.ty
.maximum_byte_size()
.map_or(false, |max| max > absolute_max)
{
bail!("maximum size is too large for this memory type's index type");
}
Ok(())
}
/// Set the minimum size, in units of pages, for the memory type being
/// built.
///
/// The default minimum is `0`.
pub fn min(&mut self, minimum: u64) -> &mut Self {
self.ty.limits.min = minimum;
self
}
/// Set the maximum size, in units of pages, for the memory type being
/// built.
///
/// The default maximum is `None`.
pub fn max(&mut self, maximum: Option<u64>) -> &mut Self {
self.ty.limits.max = maximum;
self
}
/// Set whether this is a 64-bit memory or not.
///
/// If a memory is not a 64-bit memory, then it is a 32-bit memory.
///
/// The default is `false`, aka 32-bit memories.
///
/// Note that 64-bit memories are part of [the memory64
/// proposal](https://github.com/WebAssembly/memory64) for WebAssembly which
/// is not fully standardized yet.
pub fn memory64(&mut self, memory64: bool) -> &mut Self {
self.ty.idx_type = match memory64 {
true => IndexType::I64,
false => IndexType::I32,
};
self
}
/// Set the sharedness for the memory type being built.
///
/// The default is `false`, aka unshared.
///
/// Note that shared memories are part of [the threads
/// proposal](https://github.com/WebAssembly/threads) for WebAssembly which
/// is not fully standardized yet.
pub fn shared(&mut self, shared: bool) -> &mut Self {
self.ty.shared = shared;
self
}
/// Set the log base 2 of the page size, in bytes, for the memory type being
/// built.
///
/// The default value is `16`, which results in the default Wasm page size
/// of 64KiB (aka 2<sup>16</sup> or 65536).
///
/// Other than `16`, the only valid value is `0`, which results in a page
/// size of one byte (aka 2<sup>0</sup>). Single-byte page sizes can be used
/// to get fine-grained control over a Wasm memory's resource consumption
/// and run Wasm in embedded environments with less than 64KiB of RAM, for
/// example.
///
/// Future extensions to the core WebAssembly language might relax these
/// constraints and introduce more valid page sizes, such as any power of
/// two between 1 and 65536 inclusive.
///
/// Note that non-default page sizes are part of [the custom-page-sizes
/// proposal](https://github.com/WebAssembly/custom-page-sizes) for
/// WebAssembly which is not fully standardized yet.
pub fn page_size_log2(&mut self, page_size_log2: u8) -> &mut Self {
self.ty.page_size_log2 = page_size_log2;
self
}
/// Get the underlying memory type that this builder has been building.
///
/// # Errors
///
/// Returns an error if the configured memory type is invalid, for example
/// if the maximum size is smaller than the minimum size.
pub fn build(&self) -> Result<MemoryType> {
self.validate()?;
Ok(MemoryType { ty: self.ty })
}
}
/// A descriptor for a WebAssembly memory type.
///
/// Memories are described in units of pages (64KB) and represent contiguous
/// chunks of addressable memory.
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
pub struct MemoryType {
ty: Memory,
}
impl MemoryType {
/// Creates a new descriptor for a 32-bit WebAssembly memory given the
/// specified limits of the memory.
///
/// The `minimum` and `maximum` values here are specified in units of
/// WebAssembly pages, which are 64KiB by default. Use
/// [`MemoryTypeBuilder`][crate::MemoryTypeBuilder] if you want a
/// non-default page size.
///
/// # Panics
///
/// Panics if the minimum is greater than the maximum or if the minimum or
/// maximum number of pages can result in a byte size that is not
/// addressable with a 32-bit integer.
pub fn new(minimum: u32, maximum: Option<u32>) -> MemoryType {
MemoryTypeBuilder::default()
.min(minimum.into())
.max(maximum.map(Into::into))
.build()
.unwrap()
}
/// Creates a new descriptor for a 64-bit WebAssembly memory given the
/// specified limits of the memory.
///
/// The `minimum` and `maximum` values here are specified in units of
/// WebAssembly pages, which are 64KiB by default. Use
/// [`MemoryTypeBuilder`][crate::MemoryTypeBuilder] if you want a
/// non-default page size.
///
/// Note that 64-bit memories are part of [the memory64
/// proposal](https://github.com/WebAssembly/memory64) for WebAssembly which
/// is not fully standardized yet.
///
/// # Panics
///
/// Panics if the minimum is greater than the maximum or if the minimum or
/// maximum number of pages can result in a byte size that is not
/// addressable with a 64-bit integer.
pub fn new64(minimum: u64, maximum: Option<u64>) -> MemoryType {
MemoryTypeBuilder::default()
.memory64(true)
.min(minimum)
.max(maximum)
.build()
.unwrap()
}
/// Creates a new descriptor for shared WebAssembly memory given the
/// specified limits of the memory.
///
/// The `minimum` and `maximum` values here are specified in units of
/// WebAssembly pages, which are 64KiB by default. Use
/// [`MemoryTypeBuilder`][crate::MemoryTypeBuilder] if you want a
/// non-default page size.
///
/// Note that shared memories are part of [the threads
/// proposal](https://github.com/WebAssembly/threads) for WebAssembly which
/// is not fully standardized yet.
///
/// # Panics
///
/// Panics if the minimum is greater than the maximum or if the minimum or
/// maximum number of pages can result in a byte size that is not
/// addressable with a 32-bit integer.
pub fn shared(minimum: u32, maximum: u32) -> MemoryType {
MemoryTypeBuilder::default()
.shared(true)
.min(minimum.into())
.max(Some(maximum.into()))
.build()
.unwrap()
}
/// Returns whether this is a 64-bit memory or not.
///
/// Note that 64-bit memories are part of the memory64 proposal for
/// WebAssembly which is not standardized yet.
pub fn is_64(&self) -> bool {
matches!(self.ty.idx_type, IndexType::I64)
}
/// Returns whether this is a shared memory or not.
///
/// Note that shared memories are part of the threads proposal for
/// WebAssembly which is not standardized yet.
pub fn is_shared(&self) -> bool {
self.ty.shared
}
/// Returns minimum number of WebAssembly pages this memory must have.
///
/// Note that the return value, while a `u64`, will always fit into a `u32`
/// for 32-bit memories.
pub fn minimum(&self) -> u64 {
self.ty.limits.min
}
/// Returns the optionally-specified maximum number of pages this memory
/// can have.
///
/// If this returns `None` then the memory is not limited in size.
///
/// Note that the return value, while a `u64`, will always fit into a `u32`
/// for 32-bit memories.
pub fn maximum(&self) -> Option<u64> {
self.ty.limits.max
}
/// This memory's page size, in bytes.
pub fn page_size(&self) -> u64 {
self.ty.page_size()
}
/// The log2 of this memory's page size, in bytes.
pub fn page_size_log2(&self) -> u8 {
self.ty.page_size_log2
}
pub(crate) fn from_wasmtime_memory(memory: &Memory) -> MemoryType {
MemoryType { ty: *memory }
}
pub(crate) fn wasmtime_memory(&self) -> &Memory {
&self.ty
}
}
// Import Types
/// A descriptor for an imported value into a wasm module.
///
/// This type is primarily accessed from the
/// [`Module::imports`](crate::Module::imports) API. Each [`ImportType`]
/// describes an import into the wasm module with the module/name that it's
/// imported from as well as the type of item that's being imported.
#[derive(Clone)]
pub struct ImportType<'module> {
/// The module of the import.
module: &'module str,
/// The field of the import.
name: &'module str,
/// The type of the import.
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
}
impl<'module> ImportType<'module> {
/// Creates a new import descriptor which comes from `module` and `name` and
/// is of type `ty`.
pub(crate) fn new(
module: &'module str,
name: &'module str,
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
) -> ImportType<'module> {
assert!(ty.is_canonicalized_for_runtime_usage());
ImportType {
module,
name,
ty,
types,
engine,
}
}
/// Returns the module name that this import is expected to come from.
pub fn module(&self) -> &'module str {
self.module
}
/// Returns the field name of the module that this import is expected to
/// come from.
pub fn name(&self) -> &'module str {
self.name
}
/// Returns the expected type of this import.
pub fn ty(&self) -> ExternType {
ExternType::from_wasmtime(self.engine, self.types, &self.ty)
}
}
impl<'module> fmt::Debug for ImportType<'module> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ImportType")
.field("module", &self.module())
.field("name", &self.name())
.field("ty", &self.ty())
.finish()
}
}
// Export Types
/// A descriptor for an exported WebAssembly value.
///
/// This type is primarily accessed from the
/// [`Module::exports`](crate::Module::exports) accessor and describes what
/// names are exported from a wasm module and the type of the item that is
/// exported.
#[derive(Clone)]
pub struct ExportType<'module> {
/// The name of the export.
name: &'module str,
/// The type of the export.
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
}
impl<'module> ExportType<'module> {
/// Creates a new export which is exported with the given `name` and has the
/// given `ty`.
pub(crate) fn new(
name: &'module str,
ty: EntityType,
types: &'module ModuleTypes,
engine: &'module Engine,
) -> ExportType<'module> {
ExportType {
name,
ty,
types,
engine,
}
}
/// Returns the name by which this export is known.
pub fn name(&self) -> &'module str {
self.name
}
/// Returns the type of this export.
pub fn ty(&self) -> ExternType {
ExternType::from_wasmtime(self.engine, self.types, &self.ty)
}
}
impl<'module> fmt::Debug for ExportType<'module> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("ExportType")
.field("name", &self.name().to_owned())
.field("ty", &self.ty())
.finish()
}
}