cranelift_codegen/isa/pulley_shared/inst/
emit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//! Pulley binary code emission.

use super::*;
use crate::ir::{self, Endianness};
use crate::isa;
use crate::isa::pulley_shared::abi::PulleyMachineDeps;
use crate::isa::pulley_shared::PointerWidth;
use core::marker::PhantomData;
use cranelift_control::ControlPlane;
use pulley_interpreter::encode as enc;
use pulley_interpreter::regs::BinaryOperands;

pub struct EmitInfo {
    call_conv: isa::CallConv,
    shared_flags: settings::Flags,
    isa_flags: crate::isa::pulley_shared::settings::Flags,
}

impl EmitInfo {
    pub(crate) fn new(
        call_conv: isa::CallConv,
        shared_flags: settings::Flags,
        isa_flags: crate::isa::pulley_shared::settings::Flags,
    ) -> Self {
        Self {
            call_conv,
            shared_flags,
            isa_flags,
        }
    }

    fn endianness(&self, flags: MemFlags) -> Endianness {
        flags.endianness(self.isa_flags.endianness())
    }
}

/// State carried between emissions of a sequence of instructions.
#[derive(Default, Clone, Debug)]
pub struct EmitState<P>
where
    P: PulleyTargetKind,
{
    _phantom: PhantomData<P>,
    ctrl_plane: ControlPlane,
    user_stack_map: Option<ir::UserStackMap>,
    frame_layout: FrameLayout,
}

impl<P> EmitState<P>
where
    P: PulleyTargetKind,
{
    fn take_stack_map(&mut self) -> Option<ir::UserStackMap> {
        self.user_stack_map.take()
    }
}

impl<P> MachInstEmitState<InstAndKind<P>> for EmitState<P>
where
    P: PulleyTargetKind,
{
    fn new(abi: &Callee<PulleyMachineDeps<P>>, ctrl_plane: ControlPlane) -> Self {
        EmitState {
            _phantom: PhantomData,
            ctrl_plane,
            user_stack_map: None,
            frame_layout: abi.frame_layout().clone(),
        }
    }

    fn pre_safepoint(&mut self, user_stack_map: Option<ir::UserStackMap>) {
        self.user_stack_map = user_stack_map;
    }

    fn ctrl_plane_mut(&mut self) -> &mut ControlPlane {
        &mut self.ctrl_plane
    }

    fn take_ctrl_plane(self) -> ControlPlane {
        self.ctrl_plane
    }

    fn frame_layout(&self) -> &FrameLayout {
        &self.frame_layout
    }
}

impl<P> MachInstEmit for InstAndKind<P>
where
    P: PulleyTargetKind,
{
    type State = EmitState<P>;
    type Info = EmitInfo;

    fn emit(&self, sink: &mut MachBuffer<Self>, emit_info: &Self::Info, state: &mut Self::State) {
        // N.B.: we *must* not exceed the "worst-case size" used to compute
        // where to insert islands, except when islands are explicitly triggered
        // (with an `EmitIsland`). We check this in debug builds. This is `mut`
        // to allow disabling the check for `JTSequence`, which is always
        // emitted following an `EmitIsland`.
        let mut start = sink.cur_offset();
        pulley_emit(self, sink, emit_info, state, &mut start);

        let end = sink.cur_offset();
        assert!(
            (end - start) <= InstAndKind::<P>::worst_case_size(),
            "encoded inst {self:?} longer than worst-case size: length: {}, Inst::worst_case_size() = {}",
            end - start,
            InstAndKind::<P>::worst_case_size()
        );
    }

    fn pretty_print_inst(&self, state: &mut Self::State) -> String {
        self.print_with_state(state)
    }
}

fn pulley_emit<P>(
    inst: &Inst,
    sink: &mut MachBuffer<InstAndKind<P>>,
    emit_info: &EmitInfo,
    state: &mut EmitState<P>,
    start_offset: &mut u32,
) where
    P: PulleyTargetKind,
{
    match inst {
        // Pseduo-instructions that don't actually encode to anything.
        Inst::Args { .. } | Inst::Rets { .. } | Inst::DummyUse { .. } => {}

        Inst::TrapIf { cond, code } => {
            let trap = sink.defer_trap(*code);
            let not_trap = sink.get_label();

            <InstAndKind<P>>::from(Inst::BrIf {
                cond: cond.clone(),
                taken: trap,
                not_taken: not_trap,
            })
            .emit(sink, emit_info, state);
            sink.bind_label(not_trap, &mut state.ctrl_plane);
        }

        Inst::Nop => todo!(),

        Inst::GetSpecial { dst, reg } => enc::xmov(sink, dst, reg),

        Inst::LoadExtName { .. } => todo!(),

        Inst::Call { info } => {
            let offset = sink.cur_offset();

            // If arguments happen to already be in the right register for the
            // ABI then remove them from this list. Otherwise emit the
            // appropriate `Call` instruction depending on how many arguments we
            // have that aren't already in their correct register according to
            // ABI conventions.
            let mut args = &info.dest.args[..];
            while !args.is_empty() && args.last().copied() == XReg::new(x_reg(args.len() - 1)) {
                args = &args[..args.len() - 1];
            }
            match args {
                [] => enc::call(sink, 0),
                [x0] => enc::call1(sink, x0, 0),
                [x0, x1] => enc::call2(sink, x0, x1, 0),
                [x0, x1, x2] => enc::call3(sink, x0, x1, x2, 0),
                [x0, x1, x2, x3] => enc::call4(sink, x0, x1, x2, x3, 0),
                _ => unreachable!(),
            }
            let end = sink.cur_offset();
            sink.add_reloc_at_offset(
                end - 4,
                // TODO: is it actually okay to reuse this reloc here?
                Reloc::X86CallPCRel4,
                &info.dest.name,
                // This addend adjusts for the difference between the start of
                // the instruction and the beginning of the immediate offset
                // field which is always the final 4 bytes of the instruction.
                -i64::from(end - offset - 4),
            );
            if let Some(s) = state.take_stack_map() {
                let offset = sink.cur_offset();
                sink.push_user_stack_map(state, offset, s);
            }
            sink.add_call_site();

            let adjust = -i32::try_from(info.callee_pop_size).unwrap();
            for i in PulleyMachineDeps::<P>::gen_sp_reg_adjust(adjust) {
                <InstAndKind<P>>::from(i).emit(sink, emit_info, state);
            }
        }

        Inst::IndirectCall { info } => {
            enc::call_indirect(sink, info.dest);

            if let Some(s) = state.take_stack_map() {
                let offset = sink.cur_offset();
                sink.push_user_stack_map(state, offset, s);
            }

            sink.add_call_site();

            let adjust = -i32::try_from(info.callee_pop_size).unwrap();
            for i in PulleyMachineDeps::<P>::gen_sp_reg_adjust(adjust) {
                <InstAndKind<P>>::from(i).emit(sink, emit_info, state);
            }
        }

        Inst::ReturnCall { info } => {
            emit_return_call_common_sequence(sink, emit_info, state, &info);

            // Emit an unconditional jump which is quite similar to `Inst::Call`
            // except that a `jump` opcode is used instead of a `call` opcode.
            sink.put1(pulley_interpreter::Opcode::Jump as u8);
            sink.add_reloc(Reloc::X86CallPCRel4, &info.dest, -1);
            sink.put4(0);

            // Islands were manually handled in
            // `emit_return_call_common_sequence`.
            *start_offset = sink.cur_offset();
        }

        Inst::ReturnIndirectCall { info } => {
            emit_return_call_common_sequence(sink, emit_info, state, &info);
            enc::xjump(sink, info.dest);

            // Islands were manually handled in
            // `emit_return_call_common_sequence`.
            *start_offset = sink.cur_offset();
        }

        Inst::IndirectCallHost { info } => {
            // Emit a relocation to fill in the actual immediate argument here
            // in `call_indirect_host`.
            sink.add_reloc(Reloc::PulleyCallIndirectHost, &info.dest, 0);
            enc::call_indirect_host(sink, 0_u8);

            if let Some(s) = state.take_stack_map() {
                let offset = sink.cur_offset();
                sink.push_user_stack_map(state, offset, s);
            }
            sink.add_call_site();

            // If a callee pop is happening here that means that something has
            // messed up, these are expected to be "very simple" signatures.
            assert!(info.callee_pop_size == 0);
        }

        Inst::Jump { label } => {
            sink.use_label_at_offset(*start_offset + 1, *label, LabelUse::Jump(1));
            sink.add_uncond_branch(*start_offset, *start_offset + 5, *label);
            enc::jump(sink, 0x00000000);
        }

        Inst::BrIf {
            cond,
            taken,
            not_taken,
        } => {
            // Encode the inverted form of the branch. Branches always have
            // their trailing 4 bytes as the relative offset which is what we're
            // going to target here within the `MachBuffer`.
            let mut inverted = SmallVec::<[u8; 16]>::new();
            cond.invert().encode(&mut inverted);
            let len = inverted.len() as u32;
            debug_assert!(len > 4);

            // Use the `taken` label 4 bytes before the end of the instruction
            // we're about to emit as that's the base of `PcRelOffset`. Note
            // that the `Jump` here factors in the offset from the start of the
            // instruction to the start of the relative offset, hence `len - 4`
            // as the factor to adjust by.
            let taken_end = *start_offset + len;
            sink.use_label_at_offset(taken_end - 4, *taken, LabelUse::Jump(len - 4));
            sink.add_cond_branch(*start_offset, taken_end, *taken, &inverted);
            cond.encode(sink);
            debug_assert_eq!(sink.cur_offset(), taken_end);

            // For the not-taken branch use an unconditional jump to the
            // relevant label, and we know that the jump instruction is 5 bytes
            // long where the final 4 bytes are the offset to jump by.
            let not_taken_start = taken_end + 1;
            let not_taken_end = not_taken_start + 4;
            sink.use_label_at_offset(not_taken_start, *not_taken, LabelUse::Jump(1));
            sink.add_uncond_branch(taken_end, not_taken_end, *not_taken);
            enc::jump(sink, 0x00000000);
            assert_eq!(sink.cur_offset(), not_taken_end);
        }

        Inst::LoadAddr { dst, mem } => {
            let base = mem.get_base_register();
            let offset = mem.get_offset_with_state(state);

            if let Some(base) = base {
                if offset == 0 {
                    enc::xmov(sink, dst, base);
                } else {
                    if let Ok(offset) = i8::try_from(offset) {
                        enc::xconst8(sink, dst, offset);
                    } else if let Ok(offset) = i16::try_from(offset) {
                        enc::xconst16(sink, dst, offset);
                    } else {
                        enc::xconst32(sink, dst, offset);
                    }

                    match P::pointer_width() {
                        PointerWidth::PointerWidth32 => {
                            enc::xadd32(sink, BinaryOperands::new(dst, base, dst))
                        }
                        PointerWidth::PointerWidth64 => {
                            enc::xadd64(sink, BinaryOperands::new(dst, base, dst))
                        }
                    }
                }
            } else {
                unreachable!("all pulley amodes have a base register right now")
            }
        }

        Inst::XLoad {
            dst,
            mem,
            ty,
            flags,
        } => {
            use Endianness as E;
            assert!(flags.trap_code().is_none());
            let addr = AddrO32::Base {
                addr: mem.get_base_register().unwrap(),
                offset: mem.get_offset_with_state(state),
            };
            let endian = emit_info.endianness(*flags);
            match *ty {
                I8 => enc::xload8_u32_o32(sink, dst, addr),
                I16 => match endian {
                    E::Little => enc::xload16le_s32_o32(sink, dst, addr),
                    E::Big => enc::xload16be_s32_o32(sink, dst, addr),
                },
                I32 => match endian {
                    E::Little => enc::xload32le_o32(sink, dst, addr),
                    E::Big => enc::xload32be_o32(sink, dst, addr),
                },
                I64 => match endian {
                    E::Little => enc::xload64le_o32(sink, dst, addr),
                    E::Big => enc::xload64be_o32(sink, dst, addr),
                },
                _ => unimplemented!("xload ty={ty:?}"),
            }
        }

        Inst::FLoad {
            dst,
            mem,
            ty,
            flags,
        } => {
            use Endianness as E;
            assert!(flags.trap_code().is_none());
            let addr = AddrO32::Base {
                addr: mem.get_base_register().unwrap(),
                offset: mem.get_offset_with_state(state),
            };
            let endian = emit_info.endianness(*flags);
            match *ty {
                F32 => match endian {
                    E::Little => enc::fload32le_o32(sink, dst, addr),
                    E::Big => enc::fload32be_o32(sink, dst, addr),
                },
                F64 => match endian {
                    E::Little => enc::fload64le_o32(sink, dst, addr),
                    E::Big => enc::fload64be_o32(sink, dst, addr),
                },
                _ => unimplemented!("fload ty={ty:?}"),
            }
        }

        Inst::VLoad {
            dst,
            mem,
            ty,
            flags,
        } => {
            assert!(flags.trap_code().is_none());
            let addr = AddrO32::Base {
                addr: mem.get_base_register().unwrap(),
                offset: mem.get_offset_with_state(state),
            };
            let endian = emit_info.endianness(*flags);
            assert_eq!(endian, Endianness::Little);
            assert_eq!(ty.bytes(), 16);
            enc::vload128le_o32(sink, dst, addr);
        }

        Inst::XStore {
            mem,
            src,
            ty,
            flags,
        } => {
            use Endianness as E;
            assert!(flags.trap_code().is_none());
            let addr = AddrO32::Base {
                addr: mem.get_base_register().unwrap(),
                offset: mem.get_offset_with_state(state),
            };
            let endian = emit_info.endianness(*flags);
            match *ty {
                I8 => enc::xstore8_o32(sink, addr, src),
                I16 => match endian {
                    E::Little => enc::xstore16le_o32(sink, addr, src),
                    E::Big => enc::xstore16be_o32(sink, addr, src),
                },
                I32 => match endian {
                    E::Little => enc::xstore32le_o32(sink, addr, src),
                    E::Big => enc::xstore32be_o32(sink, addr, src),
                },
                I64 => match endian {
                    E::Little => enc::xstore64le_o32(sink, addr, src),
                    E::Big => enc::xstore64be_o32(sink, addr, src),
                },
                _ => unimplemented!("xstore ty={ty:?}"),
            }
        }

        Inst::FStore {
            mem,
            src,
            ty,
            flags,
        } => {
            use Endianness as E;
            assert!(flags.trap_code().is_none());
            let addr = AddrO32::Base {
                addr: mem.get_base_register().unwrap(),
                offset: mem.get_offset_with_state(state),
            };
            let endian = emit_info.endianness(*flags);
            match *ty {
                F32 => match endian {
                    E::Little => enc::fstore32le_o32(sink, addr, src),
                    E::Big => enc::fstore32be_o32(sink, addr, src),
                },
                F64 => match endian {
                    E::Little => enc::fstore64le_o32(sink, addr, src),
                    E::Big => enc::fstore64be_o32(sink, addr, src),
                },
                _ => unimplemented!("fstore ty={ty:?}"),
            }
        }

        Inst::VStore {
            mem,
            src,
            ty,
            flags,
        } => {
            assert!(flags.trap_code().is_none());
            let addr = AddrO32::Base {
                addr: mem.get_base_register().unwrap(),
                offset: mem.get_offset_with_state(state),
            };
            let endian = emit_info.endianness(*flags);
            assert_eq!(endian, Endianness::Little);
            assert_eq!(ty.bytes(), 16);
            enc::vstore128le_o32(sink, addr, src);
        }

        Inst::BrTable {
            idx,
            default,
            targets,
        } => {
            // Encode the `br_table32` instruction directly which expects the
            // next `amt` 4-byte integers to all be relative offsets. Each
            // offset is the pc-relative offset of the branch destination.
            //
            // Pulley clamps the branch targets to the `amt` specified so the
            // final branch target is the default jump target.
            //
            // Note that this instruction may have many branch targets so it
            // manually checks to see if an island is needed. If so we emit a
            // jump around the island before the `br_table32` itself gets
            // emitted.
            let amt = u32::try_from(targets.len() + 1).expect("too many branch targets");
            let br_table_size = amt * 4 + 6;
            if sink.island_needed(br_table_size) {
                let label = sink.get_label();
                <InstAndKind<P>>::from(Inst::Jump { label }).emit(sink, emit_info, state);
                sink.emit_island(br_table_size, &mut state.ctrl_plane);
                sink.bind_label(label, &mut state.ctrl_plane);
            }
            enc::br_table32(sink, *idx, amt);
            for target in targets.iter() {
                let offset = sink.cur_offset();
                sink.use_label_at_offset(offset, *target, LabelUse::Jump(0));
                sink.put4(0);
            }
            let offset = sink.cur_offset();
            sink.use_label_at_offset(offset, *default, LabelUse::Jump(0));
            sink.put4(0);

            // We manually handled `emit_island` above when dealing with
            // `island_needed` so update the starting offset to the current
            // offset so this instruction doesn't accidentally trigger
            // the assertion that we're always under worst-case-size.
            *start_offset = sink.cur_offset();
        }

        Inst::Raw { raw } => {
            match raw {
                RawInst::PushFrame
                | RawInst::StackAlloc32 { .. }
                | RawInst::PushFrameSave { .. } => {
                    sink.add_trap(ir::TrapCode::STACK_OVERFLOW);
                }
                _ => {}
            }
            super::generated::emit(raw, sink)
        }
    }
}

fn emit_return_call_common_sequence<T, P>(
    sink: &mut MachBuffer<InstAndKind<P>>,
    emit_info: &EmitInfo,
    state: &mut EmitState<P>,
    info: &ReturnCallInfo<T>,
) where
    P: PulleyTargetKind,
{
    // The return call sequence can potentially emit a lot of instructions, so
    // lets emit an island here if we need it.
    //
    // It is difficult to calculate exactly how many instructions are going to
    // be emitted, so we calculate it by emitting it into a disposable buffer,
    // and then checking how many instructions were actually emitted.
    let mut buffer = MachBuffer::new();
    let mut fake_emit_state = state.clone();

    return_call_emit_impl(&mut buffer, emit_info, &mut fake_emit_state, info);

    // Finalize the buffer and get the number of bytes emitted.
    let buffer = buffer.finish(&Default::default(), &mut Default::default());
    let length = buffer.data().len() as u32;

    // And now emit the island inline with this instruction.
    if sink.island_needed(length) {
        let jump_around_label = sink.get_label();
        <InstAndKind<P>>::gen_jump(jump_around_label).emit(sink, emit_info, state);
        sink.emit_island(length + 4, &mut state.ctrl_plane);
        sink.bind_label(jump_around_label, &mut state.ctrl_plane);
    }

    // Now that we're done, emit the *actual* return sequence.
    return_call_emit_impl(sink, emit_info, state, info);
}

/// This should not be called directly, Instead prefer to call [emit_return_call_common_sequence].
fn return_call_emit_impl<T, P>(
    sink: &mut MachBuffer<InstAndKind<P>>,
    emit_info: &EmitInfo,
    state: &mut EmitState<P>,
    info: &ReturnCallInfo<T>,
) where
    P: PulleyTargetKind,
{
    let epilogue = <PulleyMachineDeps<P>>::gen_epilogue_frame_restore(
        emit_info.call_conv,
        &emit_info.shared_flags,
        &emit_info.isa_flags,
        &state.frame_layout,
    );

    for inst in epilogue {
        inst.emit(sink, emit_info, state);
    }

    // Now that `sp` is restored to what it was on function entry it may need to
    // be adjusted if the stack arguments of our own function differ from the
    // stack arguments of the callee. Perform any necessary adjustment here.
    //
    // Note that this means that there's a brief window where stack arguments
    // might be below `sp` in the case that the callee has more stack arguments
    // than ourselves. That's in theory ok though as we're inventing the pulley
    // ABI and nothing like async signals are happening that we have to worry
    // about.
    let incoming_args_diff =
        i64::from(state.frame_layout().tail_args_size - info.new_stack_arg_size);

    if incoming_args_diff != 0 {
        let amt = i32::try_from(incoming_args_diff).unwrap();
        for inst in PulleyMachineDeps::<P>::gen_sp_reg_adjust(amt) {
            <InstAndKind<P>>::from(inst).emit(sink, emit_info, state);
        }
    }
}