olpc_cjson/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
// Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: MIT OR Apache-2.0
//! `olpc-cjson` provides a [`serde_json::Formatter`] to serialize data as [canonical JSON], as
//! defined by OLPC and used in [TUF].
//!
//! [`serde_json::Formatter`]: ../serde_json/ser/trait.Formatter.html
//! [canonical JSON]: http://wiki.laptop.org/go/Canonical_JSON
//! [TUF]: https://theupdateframework.github.io/
//!
//! OLPC's canonical JSON specification is subtly different from other "canonical JSON"
//! specifications, and is also not a strict subset of JSON (specifically, ASCII control characters
//! 0x00–0x1f are printed literally, which is not valid JSON). Therefore, `serde_json` cannot
//! necessarily deserialize JSON produced by this formatter.
//!
//! This crate is not developed or endorsed by OLPC; use of the term is solely to distinguish this
//! specification of canonical JSON from [other specifications of canonical JSON][xkcd].
//!
//! [xkcd]: https://xkcd.com/927/
//!
//! ```rust
//! use olpc_cjson::CanonicalFormatter;
//! use serde::Serialize;
//! use serde_json::json;
//!
//! let value = json!({"b": 12, "a": "qwerty"});
//! let mut buf = Vec::new();
//! let mut ser = serde_json::Serializer::with_formatter(&mut buf, CanonicalFormatter::new());
//! value.serialize(&mut ser).unwrap();
//! assert_eq!(buf, br#"{"a":"qwerty","b":12}"#);
//! ```
#![deny(rust_2018_idioms)]
#![warn(clippy::pedantic)]
#![allow(clippy::must_use_candidate)]
use serde::Serialize;
use serde_json::ser::{CharEscape, CompactFormatter, Formatter, Serializer};
use std::collections::BTreeMap;
use std::io::{Error, ErrorKind, Result, Write};
use unicode_normalization::UnicodeNormalization;
/// A [`Formatter`] that produces canonical JSON.
///
/// See the [crate-level documentation](../index.html) for more detail.
///
/// [`Formatter`]: ../serde_json/ser/trait.Formatter.html
#[derive(Debug, Default)]
pub struct CanonicalFormatter {
object_stack: Vec<Object>,
}
/// Internal struct to keep track of an object in progress of being built.
///
/// As keys and values are received by `CanonicalFormatter`, they are written to `next_key` and
/// `next_value` by using the `CanonicalFormatter::writer` convenience method.
///
/// How this struct behaves when `Formatter` methods are called:
///
/// ```plain
/// [other methods] // values written to the writer received by method
/// begin_object // create this object
/// /-> begin_object_key // object.key_done = false;
/// | [other methods] // values written to object.next_key, writer received by method ignored
/// | end_object_key // object.key_done = true;
/// | begin_object_value // [nothing]
/// | [other methods] // values written to object.next_value
/// | end_object_value // object.next_key and object.next_value are inserted into object.obj
/// \---- // jump back if more values are present
/// end_object // write the object (sorted by its keys) to the writer received by the method
/// ```
#[derive(Debug, Default)]
struct Object {
obj: BTreeMap<Vec<u8>, Vec<u8>>,
next_key: Vec<u8>,
next_value: Vec<u8>,
key_done: bool,
}
impl CanonicalFormatter {
/// Create a new `CanonicalFormatter` object.
pub fn new() -> Self {
Self::default()
}
/// Convenience method to return the appropriate writer given the current context.
///
/// If we are currently writing an object (that is, if `!self.object_stack.is_empty()`), we
/// need to write the value to either the next key or next value depending on that state
/// machine. See the docstrings for `Object` for more detail.
///
/// If we are not currently writing an object, pass through `writer`.
fn writer<'a, W: Write + ?Sized>(&'a mut self, writer: &'a mut W) -> Box<dyn Write + 'a> {
self.object_stack
.last_mut()
.map_or(Box::new(writer), |object| {
if object.key_done {
Box::new(&mut object.next_value)
} else {
Box::new(&mut object.next_key)
}
})
}
/// Returns a mutable reference to the top of the object stack.
fn obj_mut(&mut self) -> Result<&mut Object> {
self.object_stack.last_mut().ok_or_else(|| {
Error::new(
ErrorKind::Other,
"serde_json called an object method without calling begin_object first",
)
})
}
}
/// Wraps `serde_json::CompactFormatter` to use the appropriate writer (see
/// `CanonicalFormatter::writer`).
macro_rules! wrapper {
($f:ident) => {
fn $f<W: Write + ?Sized>(&mut self, writer: &mut W) -> Result<()> {
CompactFormatter.$f(&mut self.writer(writer))
}
};
($f:ident, $t:ty) => {
fn $f<W: Write + ?Sized>(&mut self, writer: &mut W, arg: $t) -> Result<()> {
CompactFormatter.$f(&mut self.writer(writer), arg)
}
};
}
/// This is used in three places. Write it once.
macro_rules! float_err {
() => {
Err(Error::new(
ErrorKind::InvalidInput,
"floating point numbers are not allowed in canonical JSON",
))
};
}
impl Formatter for CanonicalFormatter {
wrapper!(write_null);
wrapper!(write_bool, bool);
wrapper!(write_i8, i8);
wrapper!(write_i16, i16);
wrapper!(write_i32, i32);
wrapper!(write_i64, i64);
wrapper!(write_i128, i128);
wrapper!(write_u8, u8);
wrapper!(write_u16, u16);
wrapper!(write_u32, u32);
wrapper!(write_u64, u64);
wrapper!(write_u128, u128);
fn write_f32<W: Write + ?Sized>(&mut self, _writer: &mut W, _value: f32) -> Result<()> {
float_err!()
}
fn write_f64<W: Write + ?Sized>(&mut self, _writer: &mut W, _value: f64) -> Result<()> {
float_err!()
}
// By default this is only used for u128/i128. If serde_json's `arbitrary_precision` feature is
// enabled, all numbers are internally stored as strings, and this method is always used (even
// for floating point values).
fn write_number_str<W: Write + ?Sized>(&mut self, writer: &mut W, value: &str) -> Result<()> {
if value.chars().any(|c| c == '.' || c == 'e' || c == 'E') {
float_err!()
} else {
CompactFormatter.write_number_str(&mut self.writer(writer), value)
}
}
wrapper!(begin_string);
wrapper!(end_string);
// Strings are normalized as Normalization Form C (NFC). `str::nfc` is provided by the
// `UnicodeNormalization` trait and returns an iterator of `char`s.
fn write_string_fragment<W: Write + ?Sized>(
&mut self,
writer: &mut W,
fragment: &str,
) -> Result<()> {
fragment.nfc().try_for_each(|ch| {
self.writer(writer)
.write_all(ch.encode_utf8(&mut [0; 4]).as_bytes())
})
}
// Only quotes and backslashes are escaped in canonical JSON.
fn write_char_escape<W: Write + ?Sized>(
&mut self,
writer: &mut W,
char_escape: CharEscape,
) -> Result<()> {
match char_escape {
CharEscape::Quote | CharEscape::ReverseSolidus => {
self.writer(writer).write_all(b"\\")?;
}
_ => {}
}
self.writer(writer).write_all(&[match char_escape {
CharEscape::Quote => b'\"',
CharEscape::ReverseSolidus => b'\\',
CharEscape::Solidus => b'/',
CharEscape::Backspace => b'\x08',
CharEscape::FormFeed => b'\x0c',
CharEscape::LineFeed => b'\n',
CharEscape::CarriageReturn => b'\r',
CharEscape::Tab => b'\t',
CharEscape::AsciiControl(byte) => byte,
}])
}
wrapper!(begin_array);
wrapper!(end_array);
wrapper!(begin_array_value, bool); // hack: this passes through the `first` argument
wrapper!(end_array_value);
// Here are the object methods. Because keys must be sorted, we serialize the object's keys and
// values in memory as a `BTreeMap`, then write it all out when `end_object_value` is called.
fn begin_object<W: Write + ?Sized>(&mut self, writer: &mut W) -> Result<()> {
CompactFormatter.begin_object(&mut self.writer(writer))?;
self.object_stack.push(Object::default());
Ok(())
}
fn end_object<W: Write + ?Sized>(&mut self, writer: &mut W) -> Result<()> {
let object = self.object_stack.pop().ok_or_else(|| {
Error::new(
ErrorKind::Other,
"serde_json called Formatter::end_object object method
without calling begin_object first",
)
})?;
let mut writer = self.writer(writer);
let mut first = true;
for (key, value) in object.obj {
CompactFormatter.begin_object_key(&mut writer, first)?;
writer.write_all(&key)?;
CompactFormatter.end_object_key(&mut writer)?;
CompactFormatter.begin_object_value(&mut writer)?;
writer.write_all(&value)?;
CompactFormatter.end_object_value(&mut writer)?;
first = false;
}
CompactFormatter.end_object(&mut writer)
}
fn begin_object_key<W: Write + ?Sized>(&mut self, _writer: &mut W, _first: bool) -> Result<()> {
let object = self.obj_mut()?;
object.key_done = false;
Ok(())
}
fn end_object_key<W: Write + ?Sized>(&mut self, _writer: &mut W) -> Result<()> {
let object = self.obj_mut()?;
object.key_done = true;
Ok(())
}
fn begin_object_value<W: Write + ?Sized>(&mut self, _writer: &mut W) -> Result<()> {
Ok(())
}
fn end_object_value<W: Write + ?Sized>(&mut self, _writer: &mut W) -> Result<()> {
let object = self.obj_mut()?;
let key = std::mem::take(&mut object.next_key);
let value = std::mem::take(&mut object.next_value);
object.obj.insert(key, value);
Ok(())
}
// This is for serde_json's `raw_value` feature, which provides a RawValue type that is passed
// through as-is. That's not good enough for canonical JSON, so we parse it and immediately
// write it back out... as canonical JSON.
fn write_raw_fragment<W: Write + ?Sized>(
&mut self,
writer: &mut W,
fragment: &str,
) -> Result<()> {
let mut ser = Serializer::with_formatter(self.writer(writer), Self::new());
serde_json::from_str::<serde_json::Value>(fragment)?.serialize(&mut ser)?;
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::CanonicalFormatter;
use serde::Serialize;
use serde_json::Serializer;
use std::io::Result;
/// Small wrapper around the `serde_json` json! macro to encode the value as canonical JSON.
macro_rules! encode {
($($tt:tt)+) => {
(|v: serde_json::Value| -> Result<Vec<u8>> {
let mut buf = Vec::new();
let mut ser = Serializer::with_formatter(&mut buf, CanonicalFormatter::new());
v.serialize(&mut ser)?;
Ok(buf)
})(serde_json::json!($($tt)+))
};
}
/// These smoke tests come from securesystemslib, the library used by the TUF reference
/// implementation.
///
/// `<https://github.com/secure-systems-lab/securesystemslib/blob/f466266014aff529510216b8c2f8c8f39de279ec/tests/test_formats.py#L354-L389>`
#[test]
fn securesystemslib_asserts() -> Result<()> {
assert_eq!(encode!([1, 2, 3])?, b"[1,2,3]");
assert_eq!(encode!([1, 2, 3])?, b"[1,2,3]");
assert_eq!(encode!([])?, b"[]");
assert_eq!(encode!({})?, b"{}");
assert_eq!(encode!({"A": [99]})?, br#"{"A":[99]}"#);
assert_eq!(encode!({"A": true})?, br#"{"A":true}"#);
assert_eq!(encode!({"B": false})?, br#"{"B":false}"#);
assert_eq!(encode!({"x": 3, "y": 2})?, br#"{"x":3,"y":2}"#);
assert_eq!(encode!({"x": 3, "y": null})?, br#"{"x":3,"y":null}"#);
// Test conditions for invalid arguments.
assert!(encode!(8.0).is_err());
assert!(encode!({"x": 8.0}).is_err());
Ok(())
}
/// Canonical JSON prints literal ASCII control characters instead of escaping them. Check
/// ASCII 0x00 - 0x1f, plus backslash and double quote (the only escaped characters).
///
/// The accepted strings were validated with securesystemslib, commit
/// f466266014aff529510216b8c2f8c8f39de279ec.
///
/// ```python
/// import securesystemslib.formats
/// encode = securesystemslib.formats.encode_canonical
/// for c in range(0x20):
/// print(repr(encode(chr(c))))
/// print(repr(encode('\\')))
/// print(repr(encode('"')))
/// ```
///
/// This can be a little difficult to wrap a mental string parser around. But you can verify
/// that all the control characters result in a 3-byte JSON string:
///
/// ```python
/// >>> all(map(lambda c: len(encode(chr(c))) == 3, range(0x20)))
/// True
/// ```
#[test]
fn ascii_control_characters() -> Result<()> {
assert_eq!(encode!("\x00")?, b"\"\x00\"");
assert_eq!(encode!("\x01")?, b"\"\x01\"");
assert_eq!(encode!("\x02")?, b"\"\x02\"");
assert_eq!(encode!("\x03")?, b"\"\x03\"");
assert_eq!(encode!("\x04")?, b"\"\x04\"");
assert_eq!(encode!("\x05")?, b"\"\x05\"");
assert_eq!(encode!("\x06")?, b"\"\x06\"");
assert_eq!(encode!("\x07")?, b"\"\x07\"");
assert_eq!(encode!("\x08")?, b"\"\x08\"");
assert_eq!(encode!("\x09")?, b"\"\x09\"");
assert_eq!(encode!("\x0a")?, b"\"\x0a\"");
assert_eq!(encode!("\x0b")?, b"\"\x0b\"");
assert_eq!(encode!("\x0c")?, b"\"\x0c\"");
assert_eq!(encode!("\x0d")?, b"\"\x0d\"");
assert_eq!(encode!("\x0e")?, b"\"\x0e\"");
assert_eq!(encode!("\x0f")?, b"\"\x0f\"");
assert_eq!(encode!("\x10")?, b"\"\x10\"");
assert_eq!(encode!("\x11")?, b"\"\x11\"");
assert_eq!(encode!("\x12")?, b"\"\x12\"");
assert_eq!(encode!("\x13")?, b"\"\x13\"");
assert_eq!(encode!("\x14")?, b"\"\x14\"");
assert_eq!(encode!("\x15")?, b"\"\x15\"");
assert_eq!(encode!("\x16")?, b"\"\x16\"");
assert_eq!(encode!("\x17")?, b"\"\x17\"");
assert_eq!(encode!("\x18")?, b"\"\x18\"");
assert_eq!(encode!("\x19")?, b"\"\x19\"");
assert_eq!(encode!("\x1a")?, b"\"\x1a\"");
assert_eq!(encode!("\x1b")?, b"\"\x1b\"");
assert_eq!(encode!("\x1c")?, b"\"\x1c\"");
assert_eq!(encode!("\x1d")?, b"\"\x1d\"");
assert_eq!(encode!("\x1e")?, b"\"\x1e\"");
assert_eq!(encode!("\x1f")?, b"\"\x1f\"");
// Try to trigger a panic in our unsafe blocks (from_utf8_unchecked)...
assert_eq!(encode!({"\t": "\n"})?, b"{\"\t\":\"\n\"}");
assert_eq!(encode!("\\")?, b"\"\\\\\"");
assert_eq!(encode!("\"")?, b"\"\\\"\"");
Ok(())
}
/// A more involved test than any of the above for olpc-cjson's core competency: ordering
/// things.
#[test]
fn ordered_nested_object() -> Result<()> {
assert_eq!(
encode!({
"nested": {
"bad": true,
"good": false
},
"b": 2,
"a": 1,
"c": {
"h": {
"h": -5,
"i": 3
},
"a": null,
"x": {}
}
})?,
br#"{"a":1,"b":2,"c":{"a":null,"h":{"h":-5,"i":3},"x":{}},"nested":{"bad":true,"good":false}}"#.to_vec(),
);
Ok(())
}
/// This test asserts that the canonical representation of some real-world data always comes
/// out the same.
#[allow(clippy::unreadable_literal)]
#[test]
fn actual_tuf_signed() {
let encode_result = encode!(
{
"signed": {
"_type": "timestamp",
"spec_version": "1.0.0",
"version": 1604605512,
"expires": "2020-11-12T19:45:12.613154979Z",
"meta": {
"snapshot.json": {
"length": 1278,
"hashes": {
"sha256": "56c4ecc3b331f6154d9a5005f6e2978e4198cc8c3b79746c25a592043a2d83d4"
},
"version": 1604605512
}
}
}
}
);
let encoded = encode_result.unwrap();
let expected: Vec<u8> = vec![
123, 34, 115, 105, 103, 110, 101, 100, 34, 58, 123, 34, 95, 116, 121, 112, 101, 34, 58,
34, 116, 105, 109, 101, 115, 116, 97, 109, 112, 34, 44, 34, 101, 120, 112, 105, 114,
101, 115, 34, 58, 34, 50, 48, 50, 48, 45, 49, 49, 45, 49, 50, 84, 49, 57, 58, 52, 53,
58, 49, 50, 46, 54, 49, 51, 49, 53, 52, 57, 55, 57, 90, 34, 44, 34, 109, 101, 116, 97,
34, 58, 123, 34, 115, 110, 97, 112, 115, 104, 111, 116, 46, 106, 115, 111, 110, 34, 58,
123, 34, 104, 97, 115, 104, 101, 115, 34, 58, 123, 34, 115, 104, 97, 50, 53, 54, 34,
58, 34, 53, 54, 99, 52, 101, 99, 99, 51, 98, 51, 51, 49, 102, 54, 49, 53, 52, 100, 57,
97, 53, 48, 48, 53, 102, 54, 101, 50, 57, 55, 56, 101, 52, 49, 57, 56, 99, 99, 56, 99,
51, 98, 55, 57, 55, 52, 54, 99, 50, 53, 97, 53, 57, 50, 48, 52, 51, 97, 50, 100, 56,
51, 100, 52, 34, 125, 44, 34, 108, 101, 110, 103, 116, 104, 34, 58, 49, 50, 55, 56, 44,
34, 118, 101, 114, 115, 105, 111, 110, 34, 58, 49, 54, 48, 52, 54, 48, 53, 53, 49, 50,
125, 125, 44, 34, 115, 112, 101, 99, 95, 118, 101, 114, 115, 105, 111, 110, 34, 58, 34,
49, 46, 48, 46, 48, 34, 44, 34, 118, 101, 114, 115, 105, 111, 110, 34, 58, 49, 54, 48,
52, 54, 48, 53, 53, 49, 50, 125, 125,
];
assert_eq!(expected, encoded);
}
#[test]
fn encode_u128_i128() {
#[derive(serde_derive::Serialize)]
struct Object {
u128: u128,
i128: i128,
}
let value = Object {
u128: u128::MAX,
i128: i128::MIN,
};
let mut buf = Vec::new();
let mut ser = Serializer::with_formatter(&mut buf, CanonicalFormatter::new());
value.serialize(&mut ser).unwrap();
let expected = [
123, 34, 105, 49, 50, 56, 34, 58, 45, 49, 55, 48, 49, 52, 49, 49, 56, 51, 52, 54, 48,
52, 54, 57, 50, 51, 49, 55, 51, 49, 54, 56, 55, 51, 48, 51, 55, 49, 53, 56, 56, 52, 49,
48, 53, 55, 50, 56, 44, 34, 117, 49, 50, 56, 34, 58, 51, 52, 48, 50, 56, 50, 51, 54,
54, 57, 50, 48, 57, 51, 56, 52, 54, 51, 52, 54, 51, 51, 55, 52, 54, 48, 55, 52, 51, 49,
55, 54, 56, 50, 49, 49, 52, 53, 53, 125,
];
assert_eq!(buf, expected);
}
}