aws_smithy_async/future/rendezvous.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0
*/
//! Rendezvous channel implementation
//!
//! Rendezvous channels are equivalent to a channel with a 0-sized buffer: A sender cannot send
//! until there is an active receiver waiting. This implementation uses a Semaphore to record demand
//! and coordinate with the receiver.
//!
//! Rendezvous channels should be used with careāit's inherently easy to deadlock unless they're being
//! used from separate tasks or an a coroutine setup (e.g. [`crate::future::pagination_stream::fn_stream::FnStream`])
use std::future::poll_fn;
use std::sync::Arc;
use std::task::{Context, Poll};
use tokio::sync::Semaphore;
/// Create a new rendezvous channel
///
/// Rendezvous channels are equivalent to a channel with a 0-sized buffer: A sender cannot send
/// until this is an active receiver waiting. This implementation uses a semaphore to record demand
/// and coordinate with the receiver.
pub fn channel<T>() -> (Sender<T>, Receiver<T>) {
let (tx, rx) = tokio::sync::mpsc::channel(1);
let semaphore = Arc::new(Semaphore::new(0));
(
Sender {
semaphore: semaphore.clone(),
chan: tx,
},
Receiver {
semaphore,
chan: rx,
needs_permit: false,
},
)
}
/// Errors for rendezvous channel
pub mod error {
use std::fmt;
use tokio::sync::mpsc::error::SendError as TokioSendError;
/// Error when [crate::future::rendezvous::Sender] fails to send a value to the associated `Receiver`
#[derive(Debug)]
pub struct SendError<T> {
source: TokioSendError<T>,
}
impl<T> SendError<T> {
pub(crate) fn tokio_send_error(source: TokioSendError<T>) -> Self {
Self { source }
}
}
impl<T> fmt::Display for SendError<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "failed to send value to the receiver")
}
}
impl<T: fmt::Debug + 'static> std::error::Error for SendError<T> {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
Some(&self.source)
}
}
}
#[derive(Debug)]
/// Sender-half of a channel
pub struct Sender<T> {
semaphore: Arc<Semaphore>,
chan: tokio::sync::mpsc::Sender<T>,
}
impl<T> Sender<T> {
/// Send `item` into the channel waiting until there is matching demand
///
/// Unlike something like `tokio::sync::mpsc::Channel` where sending a value will be buffered until
/// demand exists, a rendezvous sender will wait until matching demand exists before this function will return.
pub async fn send(&self, item: T) -> Result<(), error::SendError<T>> {
let result = self.chan.send(item).await;
// If this is an error, the rx half has been dropped. We will never get demand.
if result.is_ok() {
// The key here is that we block _after_ the send until more demand exists
self.semaphore
.acquire()
.await
.expect("semaphore is never closed")
.forget();
}
result.map_err(error::SendError::tokio_send_error)
}
}
#[derive(Debug)]
/// Receiver half of the rendezvous channel
pub struct Receiver<T> {
semaphore: Arc<Semaphore>,
chan: tokio::sync::mpsc::Receiver<T>,
needs_permit: bool,
}
impl<T> Receiver<T> {
/// Polls to receive an item from the channel
pub async fn recv(&mut self) -> Option<T> {
poll_fn(|cx| self.poll_recv(cx)).await
}
pub(crate) fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
// This uses `needs_permit` to track whether this is the first poll since we last returned an item.
// If it is, we will grant a permit to the semaphore. Otherwise, we'll just forward the response through.
let resp = self.chan.poll_recv(cx);
// If there is no data on the channel, but we are reading, then give a permit so we can load data
if self.needs_permit && matches!(resp, Poll::Pending) {
self.needs_permit = false;
self.semaphore.add_permits(1);
}
if matches!(resp, Poll::Ready(_)) {
// we returned an item, no need to provide another permit until we fail to read from the channel again
self.needs_permit = true;
}
resp
}
}
#[cfg(test)]
mod test {
use crate::future::rendezvous::channel;
use std::sync::{Arc, Mutex};
#[tokio::test]
async fn send_blocks_caller() {
let (tx, mut rx) = channel::<u8>();
let done = Arc::new(Mutex::new(0));
let idone = done.clone();
let send = tokio::spawn(async move {
*idone.lock().unwrap() = 1;
tx.send(0).await.unwrap();
*idone.lock().unwrap() = 2;
tx.send(1).await.unwrap();
*idone.lock().unwrap() = 3;
});
assert_eq!(*done.lock().unwrap(), 0);
assert_eq!(rx.recv().await, Some(0));
assert_eq!(*done.lock().unwrap(), 1);
assert_eq!(rx.recv().await, Some(1));
assert_eq!(*done.lock().unwrap(), 2);
assert_eq!(rx.recv().await, None);
assert_eq!(*done.lock().unwrap(), 3);
let _ = send.await;
}
#[tokio::test]
async fn send_errors_when_rx_dropped() {
let (tx, rx) = channel::<u8>();
drop(rx);
tx.send(0).await.expect_err("rx half dropped");
}
}