wasmtime/runtime/vm/
traphandlers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
//! WebAssembly trap handling, which is built on top of the lower-level
//! signalhandling mechanisms.

mod backtrace;

#[cfg(feature = "coredump")]
#[path = "traphandlers/coredump_enabled.rs"]
mod coredump;
#[cfg(not(feature = "coredump"))]
#[path = "traphandlers/coredump_disabled.rs"]
mod coredump;

#[cfg(all(has_native_signals))]
mod signals;
#[cfg(all(has_native_signals))]
pub use self::signals::*;

use crate::prelude::*;
use crate::runtime::module::lookup_code;
use crate::runtime::store::{ExecutorRef, StoreOpaque};
use crate::runtime::vm::sys::traphandlers;
use crate::runtime::vm::{Instance, InterpreterRef, VMContext, VMStoreContext};
use crate::{StoreContextMut, WasmBacktrace};
use core::cell::Cell;
use core::ops::Range;
use core::ptr::{self, NonNull};

pub use self::backtrace::Backtrace;
pub use self::coredump::CoreDumpStack;
pub use self::tls::tls_eager_initialize;
#[cfg(feature = "async")]
pub use self::tls::{AsyncWasmCallState, PreviousAsyncWasmCallState};

pub use traphandlers::SignalHandler;

pub(crate) struct TrapRegisters {
    pub pc: usize,
    pub fp: usize,
}

/// Return value from `test_if_trap`.
pub(crate) enum TrapTest {
    /// Not a wasm trap, need to delegate to whatever process handler is next.
    NotWasm,
    /// This trap was handled by the embedder via custom embedding APIs.
    #[cfg(has_host_compiler_backend)]
    #[cfg_attr(miri, expect(dead_code, reason = "using #[cfg] too unergonomic"))]
    HandledByEmbedder,
    /// This is a wasm trap, it needs to be handled.
    #[cfg_attr(miri, expect(dead_code, reason = "using #[cfg] too unergonomic"))]
    Trap {
        /// How to longjmp back to the original wasm frame.
        #[cfg(has_host_compiler_backend)]
        jmp_buf: *const u8,
    },
}

fn lazy_per_thread_init() {
    traphandlers::lazy_per_thread_init();
}

/// Raises a preexisting trap and unwinds.
///
/// This function will execute the `longjmp` to make its way back to the
/// original `setjmp` performed when wasm was entered. This is currently
/// only called from the `raise` builtin of Wasmtime. This builtin is only used
/// when the host returns back to wasm and indicates that a trap should be
/// raised. In this situation the host has already stored trap information
/// within the `CallThreadState` and this is the low-level operation to actually
/// perform an unwind.
///
/// This function won't be use with Pulley, for example, as the interpreter
/// halts differently than native code. Additionally one day this will ideally
/// be implemented by Cranelift itself without need of a libcall when Cranelift
/// implements the exception handling proposal for example.
///
/// # Safety
///
/// Only safe to call when wasm code is on the stack, aka `catch_traps` must
/// have been previously called. Additionally no Rust destructors can be on the
/// stack. They will be skipped and not executed.
#[cfg(has_host_compiler_backend)]
pub(super) unsafe fn raise_preexisting_trap() -> ! {
    tls::with(|info| info.unwrap().unwind())
}

/// Invokes the closure `f` and returns a `bool` if it succeeded.
///
/// This will invoke the closure `f` which returns a value that implements
/// `HostResult`. This trait abstracts over how host values are translated to
/// ABI values when going back into wasm. Some examples are:
///
/// * `T` - bare return types (not results) are simply returned as-is. No
///   `catch_unwind` happens as if a trap can't happen then the host shouldn't
///   be panicking or invoking user code.
///
/// * `Result<(), E>` - this represents an ABI return value of `bool` which
///   indicates whether the call succeeded. This return value will catch panics
///   and record trap information as `E`.
///
/// * `Result<u32, E>` - the ABI return value here is `u64` where on success
///   the 32-bit result is zero-extended and `u64::MAX` as a return value
///   indicates that a trap or panic happened.
///
/// This is primarily used in conjunction with the Cranelift-and-host boundary.
/// This function acts as a bridge between the two to appropriately handle
/// encoding host values to Cranelift-understood ABIs via the `HostResult`
/// trait.
pub fn catch_unwind_and_record_trap<R>(f: impl FnOnce() -> R) -> R::Abi
where
    R: HostResult,
{
    // Invoke the closure `f`, optionally catching unwinds depending on `R`. The
    // return value is always provided and if unwind information is provided
    // (e.g. `ret` is a "false"-y value) then it's recorded in TLS for the
    // unwind operation that's about to happen from Cranelift-generated code.
    let (ret, unwind) = R::maybe_catch_unwind(f);
    if let Some(unwind) = unwind {
        tls::with(|info| info.unwrap().record_unwind(unwind));
    }
    ret
}

/// A trait used in conjunction with `catch_unwind_and_record_trap` to convert a
/// Rust-based type to a specific ABI while handling traps/unwinds.
///
/// This type is implemented for return values from host function calls and
/// libcalls. The `Abi` value of this trait represents either a successful
/// execution with some payload state or that a failed execution happened. In
/// the event of a failed execution the state of the failure itself is stored
/// within `CallThreadState::unwind`. Cranelift-compiled code is expected to
/// test for this failure sentinel and process it accordingly.
///
/// See `catch_unwind_and_record_trap` for some more information as well.
pub trait HostResult {
    /// The type of the value that's returned to Cranelift-compiled code. Needs
    /// to be ABI-safe to pass through an `extern "C"` return value.
    type Abi: Copy;

    /// Executes `f` and returns the ABI/unwind information as a result.
    ///
    /// This may optionally catch unwinds during execution depending on this
    /// implementation. The ABI return value is unconditionally provided. If an
    /// unwind was detected (e.g. a host panic or a wasm trap) then that's
    /// additionally returned as well.
    ///
    /// If an unwind is returned then it's expected that when the host returns
    /// back to wasm (which should be soon after calling this through
    /// `catch_unwind_and_record_trap`) then wasm will very quickly turn around
    /// and initiate an unwind (currently through `raise_preexisting_trap`).
    fn maybe_catch_unwind(f: impl FnOnce() -> Self) -> (Self::Abi, Option<UnwindReason>);
}

// Base case implementations that do not catch unwinds. These are for libcalls
// that neither trap nor execute user code. The raw value is the ABI itself.
//
// Panics in these libcalls will result in a process abort as unwinding is not
// allowed via Rust through `extern "C"` function boundaries.
macro_rules! host_result_no_catch {
    ($($t:ty,)*) => {
        $(
            impl HostResult for $t {
                type Abi = $t;
                fn maybe_catch_unwind(f: impl FnOnce() -> $t) -> ($t, Option<UnwindReason>) {
                    (f(), None)
                }
            }
        )*
    }
}

host_result_no_catch! {
    (),
    bool,
    u32,
    *mut u8,
    u64,
}

impl HostResult for NonNull<u8> {
    type Abi = *mut u8;
    fn maybe_catch_unwind(f: impl FnOnce() -> Self) -> (*mut u8, Option<UnwindReason>) {
        (f().as_ptr(), None)
    }
}

/// Implementation of `HostResult` for `Result<T, E>`.
///
/// This is where things get interesting for `HostResult`. This is generically
/// defined to allow many shapes of the `Result` type to be returned from host
/// calls or libcalls. To do this an extra trait requirement is placed on the
/// successful result `T`: `HostResultHasUnwindSentinel`.
///
/// The general requirement is that `T` says what ABI it has, and the ABI must
/// have a sentinel value which indicates that an unwind in wasm should happen.
/// For example if `T = ()` then `true` means that the call succeeded and
/// `false` means that an unwind happened. Here the sentinel is `false` and the
/// ABI is `bool`.
///
/// This is the only implementation of `HostResult` which actually catches
/// unwinds as there's a sentinel to encode.
impl<T, E> HostResult for Result<T, E>
where
    T: HostResultHasUnwindSentinel,
    E: Into<TrapReason>,
{
    type Abi = T::Abi;

    fn maybe_catch_unwind(f: impl FnOnce() -> Result<T, E>) -> (T::Abi, Option<UnwindReason>) {
        // First prepare the closure `f` as something that'll be invoked to
        // generate the return value of this function. This is the
        // conditionally, below, passed to `catch_unwind`.
        let f = move || match f() {
            Ok(ret) => (ret.into_abi(), None),
            Err(reason) => (T::SENTINEL, Some(UnwindReason::Trap(reason.into()))),
        };

        // With `panic=unwind` use `std::panic::catch_unwind` to catch possible
        // panics to rethrow.
        #[cfg(all(feature = "std", panic = "unwind"))]
        {
            match std::panic::catch_unwind(std::panic::AssertUnwindSafe(f)) {
                Ok(result) => result,
                Err(err) => (T::SENTINEL, Some(UnwindReason::Panic(err))),
            }
        }

        // With `panic=abort` there's no use in using `std::panic::catch_unwind`
        // since it won't actually catch anything. Note that
        // `std::panic::catch_unwind` will technically optimize to this but having
        // this branch avoids using the `std::panic` module entirely.
        #[cfg(not(all(feature = "std", panic = "unwind")))]
        {
            f()
        }
    }
}

/// Trait used in conjunction with `HostResult for Result<T, E>` where this is
/// the trait bound on `T`.
///
/// This is for values in the "ok" position of a `Result` return value. Each
/// value can have a separate ABI from itself (e.g. `type Abi`) and must be
/// convertible to the ABI. Additionally all implementations of this trait have
/// a "sentinel value" which indicates that an unwind happened. This means that
/// no valid instance of `Self` should generate the `SENTINEL` via the
/// `into_abi` function.
pub unsafe trait HostResultHasUnwindSentinel {
    /// The Cranelift-understood ABI of this value (should not be `Self`).
    type Abi: Copy;

    /// A value that indicates that an unwind should happen and is tested for in
    /// Cranelift-generated code.
    const SENTINEL: Self::Abi;

    /// Converts this value into the ABI representation. Should never returned
    /// the `SENTINEL` value.
    fn into_abi(self) -> Self::Abi;
}

/// No return value from the host is represented as a `bool` in the ABI. Here
/// `true` means that execution succeeded while `false` is the sentinel used to
/// indicate an unwind.
unsafe impl HostResultHasUnwindSentinel for () {
    type Abi = bool;
    const SENTINEL: bool = false;
    fn into_abi(self) -> bool {
        true
    }
}

/// A 32-bit return value can be inflated to a 64-bit return value in the ABI.
/// In this manner a successful result is a zero-extended 32-bit value and the
/// failure sentinel is `u64::MAX` or -1 as a signed integer.
unsafe impl HostResultHasUnwindSentinel for u32 {
    type Abi = u64;
    const SENTINEL: u64 = u64::MAX;
    fn into_abi(self) -> u64 {
        self.into()
    }
}

/// If there is not actual successful result (e.g. an empty enum) then the ABI
/// can be `()`, or nothing, because there's no successful result and it's
/// always a failure.
unsafe impl HostResultHasUnwindSentinel for core::convert::Infallible {
    type Abi = ();
    const SENTINEL: () = ();
    fn into_abi(self) {
        match self {}
    }
}

/// Stores trace message with backtrace.
#[derive(Debug)]
pub struct Trap {
    /// Original reason from where this trap originated.
    pub reason: TrapReason,
    /// Wasm backtrace of the trap, if any.
    pub backtrace: Option<Backtrace>,
    /// The Wasm Coredump, if any.
    pub coredumpstack: Option<CoreDumpStack>,
}

/// Enumeration of different methods of raising a trap.
#[derive(Debug)]
pub enum TrapReason {
    /// A user-raised trap through `raise_user_trap`.
    User(Error),

    /// A trap raised from Cranelift-generated code.
    Jit {
        /// The program counter where this trap originated.
        ///
        /// This is later used with side tables from compilation to translate
        /// the trapping address to a trap code.
        pc: usize,

        /// If the trap was a memory-related trap such as SIGSEGV then this
        /// field will contain the address of the inaccessible data.
        ///
        /// Note that wasm loads/stores are not guaranteed to fill in this
        /// information. Dynamically-bounds-checked memories, for example, will
        /// not access an invalid address but may instead load from NULL or may
        /// explicitly jump to a `ud2` instruction. This is only available for
        /// fault-based traps which are one of the main ways, but not the only
        /// way, to run wasm.
        faulting_addr: Option<usize>,

        /// The trap code associated with this trap.
        trap: wasmtime_environ::Trap,
    },

    /// A trap raised from a wasm libcall
    Wasm(wasmtime_environ::Trap),
}

impl From<Error> for TrapReason {
    fn from(err: Error) -> Self {
        TrapReason::User(err)
    }
}

impl From<wasmtime_environ::Trap> for TrapReason {
    fn from(code: wasmtime_environ::Trap) -> Self {
        TrapReason::Wasm(code)
    }
}

/// Catches any wasm traps that happen within the execution of `closure`,
/// returning them as a `Result`.
///
/// # Unsafety
///
/// This function is unsafe because during the execution of `closure` it may be
/// longjmp'd over and none of its destructors on the stack may be run.
pub unsafe fn catch_traps<T, F>(
    store: &mut StoreContextMut<'_, T>,
    mut closure: F,
) -> Result<(), Box<Trap>>
where
    F: FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
{
    let caller = store.0.default_caller();
    let result = CallThreadState::new(store.0, caller).with(|cx| match store.0.executor() {
        // In interpreted mode directly invoke the host closure since we won't
        // be using host-based `setjmp`/`longjmp` as that's not going to save
        // the context we want.
        ExecutorRef::Interpreter(r) => {
            cx.jmp_buf
                .set(CallThreadState::JMP_BUF_INTERPRETER_SENTINEL);
            closure(caller, Some(r))
        }

        // In native mode, however, defer to C to do the `setjmp` since Rust
        // doesn't understand `setjmp`.
        //
        // Note that here we pass a function pointer to C to catch longjmp
        // within, here it's `call_closure`, and that passes `None` for the
        // interpreter since this branch is only ever taken if the interpreter
        // isn't present.
        #[cfg(has_host_compiler_backend)]
        ExecutorRef::Native => traphandlers::wasmtime_setjmp(
            cx.jmp_buf.as_ptr(),
            {
                extern "C" fn call_closure<F>(payload: *mut u8, caller: NonNull<VMContext>) -> bool
                where
                    F: FnMut(NonNull<VMContext>, Option<InterpreterRef<'_>>) -> bool,
                {
                    unsafe { (*(payload as *mut F))(caller, None) }
                }

                call_closure::<F>
            },
            &mut closure as *mut F as *mut u8,
            caller,
        ),
    });

    return match result {
        Ok(x) => Ok(x),
        Err((UnwindReason::Trap(reason), backtrace, coredumpstack)) => Err(Box::new(Trap {
            reason,
            backtrace,
            coredumpstack,
        })),
        #[cfg(all(feature = "std", panic = "unwind"))]
        Err((UnwindReason::Panic(panic), _, _)) => std::panic::resume_unwind(panic),
    };
}

// Module to hide visibility of the `CallThreadState::prev` field and force
// usage of its accessor methods.
mod call_thread_state {
    use super::*;
    use crate::runtime::vm::Unwind;

    /// Temporary state stored on the stack which is registered in the `tls` module
    /// below for calls into wasm.
    pub struct CallThreadState {
        pub(super) unwind: Cell<Option<(UnwindReason, Option<Backtrace>, Option<CoreDumpStack>)>>,
        pub(super) jmp_buf: Cell<*const u8>,
        #[cfg(all(has_native_signals))]
        pub(super) signal_handler: Option<*const SignalHandler>,
        pub(super) capture_backtrace: bool,
        #[cfg(feature = "coredump")]
        pub(super) capture_coredump: bool,

        pub(crate) vm_store_context: NonNull<VMStoreContext>,
        pub(crate) unwinder: &'static dyn Unwind,

        pub(super) prev: Cell<tls::Ptr>,
        #[cfg(all(has_native_signals, unix))]
        pub(crate) async_guard_range: Range<*mut u8>,

        // The values of `VMStoreContext::last_wasm_{exit_{pc,fp},entry_sp}` for
        // the *previous* `CallThreadState` for this same store/limits. Our
        // *current* last wasm PC/FP/SP are saved in `self.vm_store_context`. We
        // save a copy of the old registers here because the `VMStoreContext`
        // typically doesn't change across nested calls into Wasm (i.e. they are
        // typically calls back into the same store and `self.vm_store_context
        // == self.prev.vm_store_context`) and we must to maintain the list of
        // contiguous-Wasm-frames stack regions for backtracing purposes.
        old_last_wasm_exit_fp: Cell<usize>,
        old_last_wasm_exit_pc: Cell<usize>,
        old_last_wasm_entry_fp: Cell<usize>,
    }

    impl Drop for CallThreadState {
        fn drop(&mut self) {
            // Unwind information should not be present as it should have
            // already been processed.
            debug_assert!(self.unwind.replace(None).is_none());

            unsafe {
                let cx = self.vm_store_context.as_ref();
                *cx.last_wasm_exit_fp.get() = self.old_last_wasm_exit_fp.get();
                *cx.last_wasm_exit_pc.get() = self.old_last_wasm_exit_pc.get();
                *cx.last_wasm_entry_fp.get() = self.old_last_wasm_entry_fp.get();
            }
        }
    }

    impl CallThreadState {
        pub const JMP_BUF_INTERPRETER_SENTINEL: *mut u8 = 1 as *mut u8;

        #[inline]
        pub(super) fn new(store: &mut StoreOpaque, caller: NonNull<VMContext>) -> CallThreadState {
            let vm_store_context = unsafe {
                Instance::from_vmctx(caller, |i| i.vm_store_context())
                    .read()
                    .unwrap()
                    .as_non_null()
            };

            // Don't try to plumb #[cfg] everywhere for this field, just pretend
            // we're using it on miri/windows to silence compiler warnings.
            let _: Range<_> = store.async_guard_range();

            CallThreadState {
                unwind: Cell::new(None),
                unwinder: store.unwinder(),
                jmp_buf: Cell::new(ptr::null()),
                #[cfg(all(has_native_signals))]
                signal_handler: store.signal_handler(),
                capture_backtrace: store.engine().config().wasm_backtrace,
                #[cfg(feature = "coredump")]
                capture_coredump: store.engine().config().coredump_on_trap,
                vm_store_context,
                #[cfg(all(has_native_signals, unix))]
                async_guard_range: store.async_guard_range(),
                prev: Cell::new(ptr::null()),
                old_last_wasm_exit_fp: Cell::new(unsafe {
                    *vm_store_context.as_ref().last_wasm_exit_fp.get()
                }),
                old_last_wasm_exit_pc: Cell::new(unsafe {
                    *vm_store_context.as_ref().last_wasm_exit_pc.get()
                }),
                old_last_wasm_entry_fp: Cell::new(unsafe {
                    *vm_store_context.as_ref().last_wasm_entry_fp.get()
                }),
            }
        }

        /// Get the saved FP upon exit from Wasm for the previous `CallThreadState`.
        pub fn old_last_wasm_exit_fp(&self) -> usize {
            self.old_last_wasm_exit_fp.get()
        }

        /// Get the saved PC upon exit from Wasm for the previous `CallThreadState`.
        pub fn old_last_wasm_exit_pc(&self) -> usize {
            self.old_last_wasm_exit_pc.get()
        }

        /// Get the saved FP upon entry into Wasm for the previous `CallThreadState`.
        pub fn old_last_wasm_entry_fp(&self) -> usize {
            self.old_last_wasm_entry_fp.get()
        }

        /// Get the previous `CallThreadState`.
        pub fn prev(&self) -> tls::Ptr {
            self.prev.get()
        }

        #[inline]
        pub(crate) unsafe fn push(&self) {
            assert!(self.prev.get().is_null());
            self.prev.set(tls::raw::replace(self));
        }

        #[inline]
        pub(crate) unsafe fn pop(&self) {
            let prev = self.prev.replace(ptr::null());
            let head = tls::raw::replace(prev);
            assert!(core::ptr::eq(head, self));
        }
    }
}
pub use call_thread_state::*;

pub enum UnwindReason {
    #[cfg(all(feature = "std", panic = "unwind"))]
    Panic(Box<dyn std::any::Any + Send>),
    Trap(TrapReason),
}

impl CallThreadState {
    #[inline]
    fn with(
        mut self,
        closure: impl FnOnce(&CallThreadState) -> bool,
    ) -> Result<(), (UnwindReason, Option<Backtrace>, Option<CoreDumpStack>)> {
        let succeeded = tls::set(&mut self, |me| closure(me));
        if succeeded {
            Ok(())
        } else {
            Err(self.read_unwind())
        }
    }

    #[cold]
    fn read_unwind(&self) -> (UnwindReason, Option<Backtrace>, Option<CoreDumpStack>) {
        self.unwind.replace(None).unwrap()
    }

    /// Records the unwind information provided within this `CallThreadState`,
    /// optionally capturing a backtrace at this time.
    ///
    /// This function is used to stash metadata for why an unwind is about to
    /// happen. The actual unwind is expected to happen after this function is
    /// called using, for example, the `unwind` function below.
    ///
    /// Note that this is a relatively low-level function and will panic if
    /// mis-used.
    ///
    /// # Panics
    ///
    /// Panics if unwind information has already been recorded as that should
    /// have been processed first.
    fn record_unwind(&self, reason: UnwindReason) {
        if cfg!(debug_assertions) {
            let prev = self.unwind.replace(None);
            assert!(prev.is_none());
        }
        let (backtrace, coredump) = match &reason {
            // Panics don't need backtraces. There is nowhere to attach the
            // hypothetical backtrace to and it doesn't really make sense to try
            // in the first place since this is a Rust problem rather than a
            // Wasm problem.
            #[cfg(all(feature = "std", panic = "unwind"))]
            UnwindReason::Panic(_) => (None, None),
            // And if we are just propagating an existing trap that already has
            // a backtrace attached to it, then there is no need to capture a
            // new backtrace either.
            UnwindReason::Trap(TrapReason::User(err))
                if err.downcast_ref::<WasmBacktrace>().is_some() =>
            {
                (None, None)
            }
            UnwindReason::Trap(_) => (
                self.capture_backtrace(self.vm_store_context.as_ptr(), None),
                self.capture_coredump(self.vm_store_context.as_ptr(), None),
            ),
        };
        self.unwind.set(Some((reason, backtrace, coredump)));
    }

    /// Helper function to perform an actual unwinding operation.
    ///
    /// This must be preceded by a `record_unwind` operation above to be
    /// processed correctly on the other side.
    ///
    /// # Unsafety
    ///
    /// This function is not safe if the corresponding setjmp wasn't already
    /// called. Additionally this isn't safe as it will skip all Rust
    /// destructors on the stack, if there are any.
    #[cfg(has_host_compiler_backend)]
    unsafe fn unwind(&self) -> ! {
        debug_assert!(!self.jmp_buf.get().is_null());
        debug_assert!(self.jmp_buf.get() != CallThreadState::JMP_BUF_INTERPRETER_SENTINEL);
        traphandlers::wasmtime_longjmp(self.jmp_buf.get());
    }

    fn capture_backtrace(
        &self,
        limits: *const VMStoreContext,
        trap_pc_and_fp: Option<(usize, usize)>,
    ) -> Option<Backtrace> {
        if !self.capture_backtrace {
            return None;
        }

        Some(unsafe { Backtrace::new_with_trap_state(limits, self.unwinder, self, trap_pc_and_fp) })
    }

    pub(crate) fn iter<'a>(&'a self) -> impl Iterator<Item = &'a Self> + 'a {
        let mut state = Some(self);
        core::iter::from_fn(move || {
            let this = state?;
            state = unsafe { this.prev().as_ref() };
            Some(this)
        })
    }

    /// Trap handler using our thread-local state.
    ///
    /// * `regs` - some special program registers at the time that the trap
    ///   happened, for example `pc`.
    /// * `faulting_addr` - the system-provided address that the a fault, if
    ///   any, happened at. This is used when debug-asserting that all segfaults
    ///   are known to live within a `Store<T>` in a valid range.
    /// * `call_handler` - a closure used to invoke the platform-specific
    ///   signal handler for each instance, if available.
    ///
    /// Attempts to handle the trap if it's a wasm trap. Returns a `TrapTest`
    /// which indicates what this could be, such as:
    ///
    /// * `TrapTest::NotWasm` - not a wasm fault, this should get forwarded to
    ///   the next platform-specific fault handler.
    /// * `TrapTest::HandledByEmbedder` - the embedder `call_handler` handled
    ///   this signal, nothing else to do.
    /// * `TrapTest::Trap` - this is a wasm trap an the stack needs to be
    ///   unwound now.
    pub(crate) fn test_if_trap(
        &self,
        regs: TrapRegisters,
        faulting_addr: Option<usize>,
        call_handler: impl Fn(&SignalHandler) -> bool,
    ) -> TrapTest {
        // If we haven't even started to handle traps yet, bail out.
        if self.jmp_buf.get().is_null() {
            return TrapTest::NotWasm;
        }

        // First up see if any instance registered has a custom trap handler,
        // in which case run them all. If anything handles the trap then we
        // return that the trap was handled.
        let _ = &call_handler;
        #[cfg(all(has_native_signals, not(miri)))]
        if let Some(handler) = self.signal_handler {
            if unsafe { call_handler(&*handler) } {
                return TrapTest::HandledByEmbedder;
            }
        }

        // If this fault wasn't in wasm code, then it's not our problem
        let Some((code, text_offset)) = lookup_code(regs.pc) else {
            return TrapTest::NotWasm;
        };

        // If the fault was at a location that was not marked as potentially
        // trapping, then that's a bug in Cranelift/Winch/etc. Don't try to
        // catch the trap and pretend this isn't wasm so the program likely
        // aborts.
        let Some(trap) = code.lookup_trap_code(text_offset) else {
            return TrapTest::NotWasm;
        };

        // If all that passed then this is indeed a wasm trap, so return the
        // `jmp_buf` passed to `wasmtime_longjmp` to resume.
        self.set_jit_trap(regs, faulting_addr, trap);
        TrapTest::Trap {
            #[cfg(has_host_compiler_backend)]
            jmp_buf: self.take_jmp_buf(),
        }
    }

    #[cfg(has_host_compiler_backend)]
    pub(crate) fn take_jmp_buf(&self) -> *const u8 {
        self.jmp_buf.replace(ptr::null())
    }

    pub(crate) fn set_jit_trap(
        &self,
        TrapRegisters { pc, fp, .. }: TrapRegisters,
        faulting_addr: Option<usize>,
        trap: wasmtime_environ::Trap,
    ) {
        let backtrace = self.capture_backtrace(self.vm_store_context.as_ptr(), Some((pc, fp)));
        let coredump = self.capture_coredump(self.vm_store_context.as_ptr(), Some((pc, fp)));
        self.unwind.set(Some((
            UnwindReason::Trap(TrapReason::Jit {
                pc,
                faulting_addr,
                trap,
            }),
            backtrace,
            coredump,
        )))
    }
}

// A private inner module for managing the TLS state that we require across
// calls in wasm. The WebAssembly code is called from C++ and then a trap may
// happen which requires us to read some contextual state to figure out what to
// do with the trap. This `tls` module is used to persist that information from
// the caller to the trap site.
pub(crate) mod tls {
    use super::CallThreadState;

    pub use raw::Ptr;

    // An even *more* inner module for dealing with TLS. This actually has the
    // thread local variable and has functions to access the variable.
    //
    // Note that this is specially done to fully encapsulate that the accessors
    // for tls may or may not be inlined. Wasmtime's async support employs stack
    // switching which can resume execution on different OS threads. This means
    // that borrows of our TLS pointer must never live across accesses because
    // otherwise the access may be split across two threads and cause unsafety.
    //
    // This also means that extra care is taken by the runtime to save/restore
    // these TLS values when the runtime may have crossed threads.
    //
    // Note, though, that if async support is disabled at compile time then
    // these functions are free to be inlined.
    pub(super) mod raw {
        use super::CallThreadState;
        use sptr::Strict;

        pub type Ptr = *const CallThreadState;

        const _: () = {
            assert!(core::mem::align_of::<CallThreadState>() > 1);
        };

        fn tls_get() -> (Ptr, bool) {
            let mut initialized = false;
            let p = Strict::map_addr(crate::runtime::vm::sys::tls_get(), |a| {
                initialized = (a & 1) != 0;
                a & !1
            });
            (p.cast(), initialized)
        }

        fn tls_set(ptr: Ptr, initialized: bool) {
            let encoded = Strict::map_addr(ptr, |a| a | usize::from(initialized));
            crate::runtime::vm::sys::tls_set(encoded.cast_mut().cast::<u8>());
        }

        #[cfg_attr(feature = "async", inline(never))] // see module docs
        #[cfg_attr(not(feature = "async"), inline)]
        pub fn replace(val: Ptr) -> Ptr {
            // When a new value is configured that means that we may be
            // entering WebAssembly so check to see if this thread has
            // performed per-thread initialization for traps.
            let (prev, initialized) = tls_get();
            if !initialized {
                super::super::lazy_per_thread_init();
            }
            tls_set(val, true);
            prev
        }

        /// Eagerly initialize thread-local runtime functionality. This will be performed
        /// lazily by the runtime if users do not perform it eagerly.
        #[cfg_attr(feature = "async", inline(never))] // see module docs
        #[cfg_attr(not(feature = "async"), inline)]
        pub fn initialize() {
            let (state, initialized) = tls_get();
            if initialized {
                return;
            }
            super::super::lazy_per_thread_init();
            tls_set(state, true);
        }

        #[cfg_attr(feature = "async", inline(never))] // see module docs
        #[cfg_attr(not(feature = "async"), inline)]
        pub fn get() -> Ptr {
            tls_get().0
        }
    }

    pub use raw::initialize as tls_eager_initialize;

    /// Opaque state used to persist the state of the `CallThreadState`
    /// activations associated with a fiber stack that's used as part of an
    /// async wasm call.
    #[cfg(feature = "async")]
    pub struct AsyncWasmCallState {
        // The head of a linked list of activations that are currently present
        // on an async call's fiber stack. This pointer points to the oldest
        // activation frame where the `prev` links internally link to younger
        // activation frames.
        //
        // When pushed onto a thread this linked list is traversed to get pushed
        // onto the current thread at the time.
        state: raw::Ptr,
    }

    #[cfg(feature = "async")]
    impl AsyncWasmCallState {
        /// Creates new state that initially starts as null.
        pub fn new() -> AsyncWasmCallState {
            AsyncWasmCallState {
                state: core::ptr::null_mut(),
            }
        }

        /// Pushes the saved state of this wasm's call onto the current thread's
        /// state.
        ///
        /// This will iterate over the linked list of states stored within
        /// `self` and push them sequentially onto the current thread's
        /// activation list.
        ///
        /// The returned `PreviousAsyncWasmCallState` captures the state of this
        /// thread just before this operation, and it must have its `restore`
        /// method called to restore the state when the async wasm is suspended
        /// from.
        ///
        /// # Unsafety
        ///
        /// Must be carefully coordinated with
        /// `PreviousAsyncWasmCallState::restore` and fiber switches to ensure
        /// that this doesn't push stale data and the data is popped
        /// appropriately.
        pub unsafe fn push(self) -> PreviousAsyncWasmCallState {
            // Our `state` pointer is a linked list of oldest-to-youngest so by
            // pushing in order of the list we restore the youngest-to-oldest
            // list as stored in the state of this current thread.
            let ret = PreviousAsyncWasmCallState { state: raw::get() };
            let mut ptr = self.state;
            while let Some(state) = ptr.as_ref() {
                ptr = state.prev.replace(core::ptr::null_mut());
                state.push();
            }
            ret
        }

        /// Performs a runtime check that this state is indeed null.
        pub fn assert_null(&self) {
            assert!(self.state.is_null());
        }

        /// Asserts that the current CallThreadState pointer, if present, is not
        /// in the `range` specified.
        ///
        /// This is used when exiting a future in Wasmtime to assert that the
        /// current CallThreadState pointer does not point within the stack
        /// we're leaving (e.g.  allocated for a fiber).
        pub fn assert_current_state_not_in_range(range: core::ops::Range<usize>) {
            let p = raw::get() as usize;
            assert!(p < range.start || range.end < p);
        }
    }

    /// Opaque state used to help control TLS state across stack switches for
    /// async support.
    #[cfg(feature = "async")]
    pub struct PreviousAsyncWasmCallState {
        // The head of a linked list, similar to the TLS state. Note though that
        // this list is stored in reverse order to assist with `push` and `pop`
        // below.
        //
        // After a `push` call this stores the previous head for the current
        // thread so we know when to stop popping during a `pop`.
        state: raw::Ptr,
    }

    #[cfg(feature = "async")]
    impl PreviousAsyncWasmCallState {
        /// Pops a fiber's linked list of activations and stores them in
        /// `AsyncWasmCallState`.
        ///
        /// This will pop the top activation of this current thread continuously
        /// until it reaches whatever the current activation was when `push` was
        /// originally called.
        ///
        /// # Unsafety
        ///
        /// Must be paired with a `push` and only performed at a time when a
        /// fiber is being suspended.
        pub unsafe fn restore(self) -> AsyncWasmCallState {
            let thread_head = self.state;
            core::mem::forget(self);
            let mut ret = AsyncWasmCallState::new();
            loop {
                // If the current TLS state is as we originally found it, then
                // this loop is finished.
                let ptr = raw::get();
                if ptr == thread_head {
                    break ret;
                }

                // Pop this activation from the current thread's TLS state, and
                // then afterwards push it onto our own linked list within this
                // `AsyncWasmCallState`. Note that the linked list in `AsyncWasmCallState` is stored
                // in reverse order so a subsequent `push` later on pushes
                // everything in the right order.
                (*ptr).pop();
                if let Some(state) = ret.state.as_ref() {
                    (*ptr).prev.set(state);
                }
                ret.state = ptr;
            }
        }
    }

    #[cfg(feature = "async")]
    impl Drop for PreviousAsyncWasmCallState {
        fn drop(&mut self) {
            panic!("must be consumed with `restore`");
        }
    }

    /// Configures thread local state such that for the duration of the
    /// execution of `closure` any call to `with` will yield `state`, unless
    /// this is recursively called again.
    #[inline]
    pub fn set<R>(state: &mut CallThreadState, closure: impl FnOnce(&CallThreadState) -> R) -> R {
        struct Reset<'a> {
            state: &'a CallThreadState,
        }

        impl Drop for Reset<'_> {
            #[inline]
            fn drop(&mut self) {
                unsafe {
                    self.state.pop();
                }
            }
        }

        unsafe {
            state.push();
            let reset = Reset { state };
            closure(reset.state)
        }
    }

    /// Returns the last pointer configured with `set` above, if any.
    pub fn with<R>(closure: impl FnOnce(Option<&CallThreadState>) -> R) -> R {
        let p = raw::get();
        unsafe { closure(if p.is_null() { None } else { Some(&*p) }) }
    }
}