cranelift_codegen/egraph/
elaborate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
//! Elaboration phase: lowers EGraph back to sequences of operations
//! in CFG nodes.

use super::cost::Cost;
use super::Stats;
use crate::dominator_tree::DominatorTreePreorder;
use crate::hash_map::Entry as HashEntry;
use crate::inst_predicates::is_pure_for_egraph;
use crate::ir::{Block, Function, Inst, Value, ValueDef};
use crate::loop_analysis::{Loop, LoopAnalysis};
use crate::scoped_hash_map::ScopedHashMap;
use crate::trace;
use alloc::vec::Vec;
use cranelift_control::ControlPlane;
use cranelift_entity::{packed_option::ReservedValue, SecondaryMap};
use rustc_hash::{FxHashMap, FxHashSet};
use smallvec::{smallvec, SmallVec};

pub(crate) struct Elaborator<'a> {
    func: &'a mut Function,
    domtree: &'a DominatorTreePreorder,
    loop_analysis: &'a LoopAnalysis,
    /// Map from Value that is produced by a pure Inst (and was thus
    /// not in the side-effecting skeleton) to the value produced by
    /// an elaborated inst (placed in the layout) to whose results we
    /// refer in the final code.
    ///
    /// The first time we use some result of an instruction during
    /// elaboration, we can place it and insert an identity map (inst
    /// results to that same inst's results) in this scoped
    /// map. Within that block and its dom-tree children, that mapping
    /// is visible and we can continue to use it. This allows us to
    /// avoid cloning the instruction. However, if we pop that scope
    /// and use it somewhere else as well, we will need to
    /// duplicate. We detect this case by checking, when a value that
    /// we want is not present in this map, whether the producing inst
    /// is already placed in the Layout. If so, we duplicate, and
    /// insert non-identity mappings from the original inst's results
    /// to the cloned inst's results.
    ///
    /// Note that as values may refer to unions that represent a subset
    /// of a larger eclass, it's not valid to walk towards the root of a
    /// union tree: doing so would potentially equate values that fall
    /// on different branches of the dominator tree.
    value_to_elaborated_value: ScopedHashMap<Value, ElaboratedValue>,
    /// Map from Value to the best (lowest-cost) Value in its eclass
    /// (tree of union value-nodes).
    value_to_best_value: SecondaryMap<Value, BestEntry>,
    /// Stack of blocks and loops in current elaboration path.
    loop_stack: SmallVec<[LoopStackEntry; 8]>,
    /// The current block into which we are elaborating.
    cur_block: Block,
    /// Values that opt rules have indicated should be rematerialized
    /// in every block they are used (e.g., immediates or other
    /// "cheap-to-compute" ops).
    remat_values: &'a FxHashSet<Value>,
    /// Explicitly-unrolled value elaboration stack.
    elab_stack: Vec<ElabStackEntry>,
    /// Results from the elab stack.
    elab_result_stack: Vec<ElaboratedValue>,
    /// Explicitly-unrolled block elaboration stack.
    block_stack: Vec<BlockStackEntry>,
    /// Copies of values that have been rematerialized.
    remat_copies: FxHashMap<(Block, Value), Value>,
    /// Stats for various events during egraph processing, to help
    /// with optimization of this infrastructure.
    stats: &'a mut Stats,
    /// Chaos-mode control-plane so we can test that we still get
    /// correct results when our heuristics make bad decisions.
    ctrl_plane: &'a mut ControlPlane,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct BestEntry(Cost, Value);

impl PartialOrd for BestEntry {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for BestEntry {
    #[inline]
    fn cmp(&self, other: &Self) -> std::cmp::Ordering {
        self.0.cmp(&other.0).then_with(|| {
            // Note that this comparison is reversed. When costs are equal,
            // prefer the value with the bigger index. This is a heuristic that
            // prefers results of rewrites to the original value, since we
            // expect that our rewrites are generally improvements.
            self.1.cmp(&other.1).reverse()
        })
    }
}

#[derive(Clone, Copy, Debug)]
struct ElaboratedValue {
    in_block: Block,
    value: Value,
}

#[derive(Clone, Debug)]
struct LoopStackEntry {
    /// The loop identifier.
    lp: Loop,
    /// The hoist point: a block that immediately dominates this
    /// loop. May not be an immediate predecessor, but will be a valid
    /// point to place all loop-invariant ops: they must depend only
    /// on inputs that dominate the loop, so are available at (the end
    /// of) this block.
    hoist_block: Block,
    /// The depth in the scope map.
    scope_depth: u32,
}

#[derive(Clone, Debug)]
enum ElabStackEntry {
    /// Next action is to resolve this value into an elaborated inst
    /// (placed into the layout) that produces the value, and
    /// recursively elaborate the insts that produce its args.
    ///
    /// Any inserted ops should be inserted before `before`, which is
    /// the instruction demanding this value.
    Start { value: Value, before: Inst },
    /// Args have been pushed; waiting for results.
    PendingInst {
        inst: Inst,
        result_idx: usize,
        num_args: usize,
        before: Inst,
    },
}

#[derive(Clone, Debug)]
enum BlockStackEntry {
    Elaborate { block: Block, idom: Option<Block> },
    Pop,
}

impl<'a> Elaborator<'a> {
    pub(crate) fn new(
        func: &'a mut Function,
        domtree: &'a DominatorTreePreorder,
        loop_analysis: &'a LoopAnalysis,
        remat_values: &'a FxHashSet<Value>,
        stats: &'a mut Stats,
        ctrl_plane: &'a mut ControlPlane,
    ) -> Self {
        let num_values = func.dfg.num_values();
        let mut value_to_best_value =
            SecondaryMap::with_default(BestEntry(Cost::infinity(), Value::reserved_value()));
        value_to_best_value.resize(num_values);
        Self {
            func,
            domtree,
            loop_analysis,
            value_to_elaborated_value: ScopedHashMap::with_capacity(num_values),
            value_to_best_value,
            loop_stack: smallvec![],
            cur_block: Block::reserved_value(),
            remat_values,
            elab_stack: vec![],
            elab_result_stack: vec![],
            block_stack: vec![],
            remat_copies: FxHashMap::default(),
            stats,
            ctrl_plane,
        }
    }

    fn start_block(&mut self, idom: Option<Block>, block: Block) {
        trace!(
            "start_block: block {:?} with idom {:?} at loop depth {:?} scope depth {}",
            block,
            idom,
            self.loop_stack.len(),
            self.value_to_elaborated_value.depth()
        );

        // Pop any loop levels we're no longer in.
        while let Some(inner_loop) = self.loop_stack.last() {
            if self.loop_analysis.is_in_loop(block, inner_loop.lp) {
                break;
            }
            self.loop_stack.pop();
        }

        // Note that if the *entry* block is a loop header, we will
        // not make note of the loop here because it will not have an
        // immediate dominator. We must disallow this case because we
        // will skip adding the `LoopStackEntry` here but our
        // `LoopAnalysis` will otherwise still make note of this loop
        // and loop depths will not match.
        if let Some(idom) = idom {
            if let Some(lp) = self.loop_analysis.is_loop_header(block) {
                self.loop_stack.push(LoopStackEntry {
                    lp,
                    // Any code hoisted out of this loop will have code
                    // placed in `idom`, and will have def mappings
                    // inserted in to the scoped hashmap at that block's
                    // level.
                    hoist_block: idom,
                    scope_depth: (self.value_to_elaborated_value.depth() - 1) as u32,
                });
                trace!(
                    " -> loop header, pushing; depth now {}",
                    self.loop_stack.len()
                );
            }
        } else {
            debug_assert!(
                self.loop_analysis.is_loop_header(block).is_none(),
                "Entry block (domtree root) cannot be a loop header!"
            );
        }

        trace!("block {}: loop stack is {:?}", block, self.loop_stack);

        self.cur_block = block;
    }

    fn compute_best_values(&mut self) {
        let best = &mut self.value_to_best_value;

        // We can't make random decisions inside the fixpoint loop below because
        // that could cause values to change on every iteration of the loop,
        // which would make the loop never terminate. So in chaos testing
        // mode we need a form of making suboptimal decisions that is fully
        // deterministic. We choose to simply make the worst decision we know
        // how to do instead of the best.
        let use_worst = self.ctrl_plane.get_decision();

        // Do a fixpoint loop to compute the best value for each eclass.
        //
        // The maximum number of iterations is the length of the longest chain
        // of `vNN -> vMM` edges in the dataflow graph where `NN < MM`, so this
        // is *technically* quadratic, but `cranelift-frontend` won't construct
        // any such edges. NaN canonicalization will introduce some of these
        // edges, but they are chains of only two or three edges. So in
        // practice, we *never* do more than a handful of iterations here unless
        // (a) we parsed the CLIF from text and the text was funkily numbered,
        // which we don't really care about, or (b) the CLIF producer did
        // something weird, in which case it is their responsibility to stop
        // doing that.
        trace!(
            "Entering fixpoint loop to compute the {} values for each eclass",
            if use_worst {
                "worst (chaos mode)"
            } else {
                "best"
            }
        );
        let mut keep_going = true;
        while keep_going {
            keep_going = false;
            trace!(
                "fixpoint iteration {}",
                self.stats.elaborate_best_cost_fixpoint_iters
            );
            self.stats.elaborate_best_cost_fixpoint_iters += 1;

            for (value, def) in self.func.dfg.values_and_defs() {
                trace!("computing best for value {:?} def {:?}", value, def);
                let orig_best_value = best[value];

                match def {
                    ValueDef::Union(x, y) => {
                        // Pick the best of the two options based on
                        // min-cost. This works because each element of `best`
                        // is a `(cost, value)` tuple; `cost` comes first so
                        // the natural comparison works based on cost, and
                        // breaks ties based on value number.
                        best[value] = if use_worst {
                            if best[x].1.is_reserved_value() {
                                best[y]
                            } else if best[y].1.is_reserved_value() {
                                best[x]
                            } else {
                                std::cmp::max(best[x], best[y])
                            }
                        } else {
                            std::cmp::min(best[x], best[y])
                        };
                        trace!(
                            " -> best of union({:?}, {:?}) = {:?}",
                            best[x],
                            best[y],
                            best[value]
                        );
                    }
                    ValueDef::Param(_, _) => {
                        best[value] = BestEntry(Cost::zero(), value);
                    }
                    // If the Inst is inserted into the layout (which is,
                    // at this point, only the side-effecting skeleton),
                    // then it must be computed and thus we give it zero
                    // cost.
                    ValueDef::Result(inst, _) => {
                        if let Some(_) = self.func.layout.inst_block(inst) {
                            best[value] = BestEntry(Cost::zero(), value);
                        } else {
                            let inst_data = &self.func.dfg.insts[inst];
                            // N.B.: at this point we know that the opcode is
                            // pure, so `pure_op_cost`'s precondition is
                            // satisfied.
                            let cost = Cost::of_pure_op(
                                inst_data.opcode(),
                                self.func.dfg.inst_values(inst).map(|value| best[value].0),
                            );
                            best[value] = BestEntry(cost, value);
                            trace!(" -> cost of value {} = {:?}", value, cost);
                        }
                    }
                };

                // Keep on iterating the fixpoint loop while we are finding new
                // best values.
                keep_going |= orig_best_value != best[value];
            }
        }

        if cfg!(any(feature = "trace-log", debug_assertions)) {
            trace!("finished fixpoint loop to compute best value for each eclass");
            for value in self.func.dfg.values() {
                trace!("-> best for eclass {:?}: {:?}", value, best[value]);
                debug_assert_ne!(best[value].1, Value::reserved_value());
                // You might additionally be expecting an assert that the best
                // cost is not infinity, however infinite cost *can* happen in
                // practice. First, note that our cost function doesn't know
                // about any shared structure in the dataflow graph, it only
                // sums operand costs. (And trying to avoid that by deduping a
                // single operation's operands is a losing game because you can
                // always just add one indirection and go from `add(x, x)` to
                // `add(foo(x), bar(x))` to hide the shared structure.) Given
                // that blindness to sharing, we can make cost grow
                // exponentially with a linear sequence of operations:
                //
                //     v0 = iconst.i32 1    ;; cost = 1
                //     v1 = iadd v0, v0     ;; cost = 3 + 1 + 1
                //     v2 = iadd v1, v1     ;; cost = 3 + 5 + 5
                //     v3 = iadd v2, v2     ;; cost = 3 + 13 + 13
                //     v4 = iadd v3, v3     ;; cost = 3 + 29 + 29
                //     v5 = iadd v4, v4     ;; cost = 3 + 61 + 61
                //     v6 = iadd v5, v5     ;; cost = 3 + 125 + 125
                //     ;; etc...
                //
                // Such a chain can cause cost to saturate to infinity. How do
                // we choose which e-node is best when there are multiple that
                // have saturated to infinity? It doesn't matter. As long as
                // invariant (2) for optimization rules is upheld by our rule
                // set (see `cranelift/codegen/src/opts/README.md`) it is safe
                // to choose *any* e-node in the e-class. At worst we will
                // produce suboptimal code, but never an incorrectness.
            }
        }
    }

    /// Elaborate use of an eclass, inserting any needed new
    /// instructions before the given inst `before`. Should only be
    /// given values corresponding to results of instructions or
    /// blockparams.
    fn elaborate_eclass_use(&mut self, value: Value, before: Inst) -> ElaboratedValue {
        debug_assert_ne!(value, Value::reserved_value());

        // Kick off the process by requesting this result
        // value.
        self.elab_stack
            .push(ElabStackEntry::Start { value, before });

        // Now run the explicit-stack recursion until we reach
        // the root.
        self.process_elab_stack();
        debug_assert_eq!(self.elab_result_stack.len(), 1);
        self.elab_result_stack.pop().unwrap()
    }

    /// Possibly rematerialize the instruction producing the value in
    /// `arg` and rewrite `arg` to refer to it, if needed. Returns
    /// `true` if a rewrite occurred.
    fn maybe_remat_arg(
        remat_values: &FxHashSet<Value>,
        func: &mut Function,
        remat_copies: &mut FxHashMap<(Block, Value), Value>,
        insert_block: Block,
        before: Inst,
        arg: &mut ElaboratedValue,
        stats: &mut Stats,
    ) -> bool {
        // TODO (#7313): we may want to consider recursive
        // rematerialization as well. We could process the arguments of
        // the rematerialized instruction up to a certain depth. This
        // would affect, e.g., adds-with-one-constant-arg, which are
        // currently rematerialized. Right now we don't do this, to
        // avoid the need for another fixpoint loop here.
        if arg.in_block != insert_block && remat_values.contains(&arg.value) {
            let new_value = match remat_copies.entry((insert_block, arg.value)) {
                HashEntry::Occupied(o) => *o.get(),
                HashEntry::Vacant(v) => {
                    let inst = func.dfg.value_def(arg.value).inst().unwrap();
                    debug_assert_eq!(func.dfg.inst_results(inst).len(), 1);
                    let new_inst = func.dfg.clone_inst(inst);
                    func.layout.insert_inst(new_inst, before);
                    let new_result = func.dfg.inst_results(new_inst)[0];
                    *v.insert(new_result)
                }
            };
            trace!("rematerialized {} as {}", arg.value, new_value);
            arg.value = new_value;
            stats.elaborate_remat += 1;
            true
        } else {
            false
        }
    }

    fn process_elab_stack(&mut self) {
        while let Some(entry) = self.elab_stack.pop() {
            match entry {
                ElabStackEntry::Start { value, before } => {
                    debug_assert!(self.func.dfg.value_is_real(value));

                    self.stats.elaborate_visit_node += 1;

                    // Get the best option; we use `value` (latest
                    // value) here so we have a full view of the
                    // eclass.
                    trace!("looking up best value for {}", value);
                    let BestEntry(_, best_value) = self.value_to_best_value[value];
                    trace!("elaborate: value {} -> best {}", value, best_value);
                    debug_assert_ne!(best_value, Value::reserved_value());

                    if let Some(elab_val) = self.value_to_elaborated_value.get(&best_value) {
                        // Value is available; use it.
                        trace!("elaborate: value {} -> {:?}", value, elab_val);
                        self.stats.elaborate_memoize_hit += 1;
                        self.elab_result_stack.push(*elab_val);
                        continue;
                    }

                    self.stats.elaborate_memoize_miss += 1;

                    // Now resolve the value to its definition to see
                    // how we can compute it.
                    let (inst, result_idx) = match self.func.dfg.value_def(best_value) {
                        ValueDef::Result(inst, result_idx) => {
                            trace!(
                                " -> value {} is result {} of {}",
                                best_value,
                                result_idx,
                                inst
                            );
                            (inst, result_idx)
                        }
                        ValueDef::Param(in_block, _) => {
                            // We don't need to do anything to compute
                            // this value; just push its result on the
                            // result stack (blockparams are already
                            // available).
                            trace!(" -> value {} is a blockparam", best_value);
                            self.elab_result_stack.push(ElaboratedValue {
                                in_block,
                                value: best_value,
                            });
                            continue;
                        }
                        ValueDef::Union(_, _) => {
                            panic!("Should never have a Union value as the best value");
                        }
                    };

                    trace!(
                        " -> result {} of inst {:?}",
                        result_idx,
                        self.func.dfg.insts[inst]
                    );

                    // We're going to need to use this instruction
                    // result, placing the instruction into the
                    // layout. First, enqueue all args to be
                    // elaborated. Push state to receive the results
                    // and later elab this inst.
                    let num_args = self.func.dfg.inst_values(inst).count();
                    self.elab_stack.push(ElabStackEntry::PendingInst {
                        inst,
                        result_idx,
                        num_args,
                        before,
                    });

                    // Push args in reverse order so we process the
                    // first arg first.
                    for arg in self.func.dfg.inst_values(inst).rev() {
                        debug_assert_ne!(arg, Value::reserved_value());
                        self.elab_stack
                            .push(ElabStackEntry::Start { value: arg, before });
                    }
                }

                ElabStackEntry::PendingInst {
                    inst,
                    result_idx,
                    num_args,
                    before,
                } => {
                    trace!(
                        "PendingInst: {} result {} args {} before {}",
                        inst,
                        result_idx,
                        num_args,
                        before
                    );

                    // We should have all args resolved at this
                    // point. Grab them and drain them out, removing
                    // them.
                    let arg_idx = self.elab_result_stack.len() - num_args;
                    let arg_values = &mut self.elab_result_stack[arg_idx..];

                    // Compute max loop depth.
                    //
                    // Note that if there are no arguments then this instruction
                    // is allowed to get hoisted up one loop. This is not
                    // usually used since no-argument values are things like
                    // constants which are typically rematerialized, but for the
                    // `vconst` instruction 128-bit constants aren't as easily
                    // rematerialized. They're hoisted out of inner loops but
                    // not to the function entry which may run the risk of
                    // placing too much register pressure on the entire
                    // function. This is modeled with the `.saturating_sub(1)`
                    // as the default if there's otherwise no maximum.
                    let loop_hoist_level = arg_values
                        .iter()
                        .map(|&value| {
                            // Find the outermost loop level at which
                            // the value's defining block *is not* a
                            // member. This is the loop-nest level
                            // whose hoist-block we hoist to.
                            let hoist_level = self
                                .loop_stack
                                .iter()
                                .position(|loop_entry| {
                                    !self.loop_analysis.is_in_loop(value.in_block, loop_entry.lp)
                                })
                                .unwrap_or(self.loop_stack.len());
                            trace!(
                                " -> arg: elab_value {:?} hoist level {:?}",
                                value,
                                hoist_level
                            );
                            hoist_level
                        })
                        .max()
                        .unwrap_or(self.loop_stack.len().saturating_sub(1));
                    trace!(
                        " -> loop hoist level: {:?}; cur loop depth: {:?}, loop_stack: {:?}",
                        loop_hoist_level,
                        self.loop_stack.len(),
                        self.loop_stack,
                    );

                    // We know that this is a pure inst, because
                    // non-pure roots have already been placed in the
                    // value-to-elab'd-value map, so they will not
                    // reach this stage of processing.
                    //
                    // We now must determine the location at which we
                    // place the instruction. This is the current
                    // block *unless* we hoist above a loop when all
                    // args are loop-invariant (and this op is pure).
                    let (scope_depth, before, insert_block) =
                        if loop_hoist_level == self.loop_stack.len() {
                            // Depends on some value at the current
                            // loop depth, or remat forces it here:
                            // place it at the current location.
                            (
                                self.value_to_elaborated_value.depth(),
                                before,
                                self.func.layout.inst_block(before).unwrap(),
                            )
                        } else {
                            // Does not depend on any args at current
                            // loop depth: hoist out of loop.
                            self.stats.elaborate_licm_hoist += 1;
                            let data = &self.loop_stack[loop_hoist_level];
                            // `data.hoist_block` should dominate `before`'s block.
                            let before_block = self.func.layout.inst_block(before).unwrap();
                            debug_assert!(self.domtree.dominates(data.hoist_block, before_block));
                            // Determine the instruction at which we
                            // insert in `data.hoist_block`.
                            let before = self.func.layout.last_inst(data.hoist_block).unwrap();
                            (data.scope_depth as usize, before, data.hoist_block)
                        };

                    trace!(
                        " -> decided to place: before {} insert_block {}",
                        before,
                        insert_block
                    );

                    // Now that we have the location for the
                    // instruction, check if any of its args are remat
                    // values. If so, and if we don't have a copy of
                    // the rematerializing instruction for this block
                    // yet, create one.
                    let mut remat_arg = false;
                    for arg_value in arg_values.iter_mut() {
                        if Self::maybe_remat_arg(
                            &self.remat_values,
                            &mut self.func,
                            &mut self.remat_copies,
                            insert_block,
                            before,
                            arg_value,
                            &mut self.stats,
                        ) {
                            remat_arg = true;
                        }
                    }

                    // Now we need to place `inst` at the computed
                    // location (just before `before`). Note that
                    // `inst` may already have been placed somewhere
                    // else, because a pure node may be elaborated at
                    // more than one place. In this case, we need to
                    // duplicate the instruction (and return the
                    // `Value`s for that duplicated instance instead).
                    //
                    // Also clone if we rematerialized, because we
                    // don't want to rewrite the args in the original
                    // copy.
                    trace!("need inst {} before {}", inst, before);
                    let inst = if self.func.layout.inst_block(inst).is_some() || remat_arg {
                        // Clone the inst!
                        let new_inst = self.func.dfg.clone_inst(inst);
                        trace!(
                            " -> inst {} already has a location; cloned to {}",
                            inst,
                            new_inst
                        );
                        // Create mappings in the
                        // value-to-elab'd-value map from original
                        // results to cloned results.
                        for (&result, &new_result) in self
                            .func
                            .dfg
                            .inst_results(inst)
                            .iter()
                            .zip(self.func.dfg.inst_results(new_inst).iter())
                        {
                            let elab_value = ElaboratedValue {
                                value: new_result,
                                in_block: insert_block,
                            };
                            let best_result = self.value_to_best_value[result];
                            self.value_to_elaborated_value.insert_if_absent_with_depth(
                                best_result.1,
                                elab_value,
                                scope_depth,
                            );

                            self.value_to_best_value[new_result] = best_result;

                            trace!(
                                " -> cloned inst has new result {} for orig {}",
                                new_result,
                                result
                            );
                        }
                        new_inst
                    } else {
                        trace!(" -> no location; using original inst");
                        // Create identity mappings from result values
                        // to themselves in this scope, since we're
                        // using the original inst.
                        for &result in self.func.dfg.inst_results(inst) {
                            let elab_value = ElaboratedValue {
                                value: result,
                                in_block: insert_block,
                            };
                            let best_result = self.value_to_best_value[result];
                            self.value_to_elaborated_value.insert_if_absent_with_depth(
                                best_result.1,
                                elab_value,
                                scope_depth,
                            );
                            trace!(" -> inserting identity mapping for {}", result);
                        }
                        inst
                    };

                    // Place the inst just before `before`.
                    assert!(
                        is_pure_for_egraph(self.func, inst),
                        "something has gone very wrong if we are elaborating effectful \
                         instructions, they should have remained in the skeleton"
                    );
                    self.func.layout.insert_inst(inst, before);

                    // Update the inst's arguments.
                    self.func
                        .dfg
                        .overwrite_inst_values(inst, arg_values.into_iter().map(|ev| ev.value));

                    // Now that we've consumed the arg values, pop
                    // them off the stack.
                    self.elab_result_stack.truncate(arg_idx);

                    // Push the requested result index of the
                    // instruction onto the elab-results stack.
                    self.elab_result_stack.push(ElaboratedValue {
                        in_block: insert_block,
                        value: self.func.dfg.inst_results(inst)[result_idx],
                    });
                }
            }
        }
    }

    fn elaborate_block(&mut self, elab_values: &mut Vec<Value>, idom: Option<Block>, block: Block) {
        trace!("elaborate_block: block {}", block);
        self.start_block(idom, block);

        // Iterate over the side-effecting skeleton using the linked
        // list in Layout. We will insert instructions that are
        // elaborated *before* `inst`, so we can always use its
        // next-link to continue the iteration.
        let mut next_inst = self.func.layout.first_inst(block);
        let mut first_branch = None;
        while let Some(inst) = next_inst {
            trace!(
                "elaborating inst {} with results {:?}",
                inst,
                self.func.dfg.inst_results(inst)
            );
            // Record the first branch we see in the block; all
            // elaboration for args of *any* branch must be inserted
            // before the *first* branch, because the branch group
            // must remain contiguous at the end of the block.
            if self.func.dfg.insts[inst].opcode().is_branch() && first_branch == None {
                first_branch = Some(inst);
            }

            // Determine where elaboration inserts insts.
            let before = first_branch.unwrap_or(inst);
            trace!(" -> inserting before {}", before);

            elab_values.extend(self.func.dfg.inst_values(inst));
            for arg in elab_values.iter_mut() {
                trace!(" -> arg {}", *arg);
                // Elaborate the arg, placing any newly-inserted insts
                // before `before`. Get the updated value, which may
                // be different than the original.
                let mut new_arg = self.elaborate_eclass_use(*arg, before);
                Self::maybe_remat_arg(
                    &self.remat_values,
                    &mut self.func,
                    &mut self.remat_copies,
                    block,
                    inst,
                    &mut new_arg,
                    &mut self.stats,
                );
                trace!("   -> rewrote arg to {:?}", new_arg);
                *arg = new_arg.value;
            }
            self.func
                .dfg
                .overwrite_inst_values(inst, elab_values.drain(..));

            // We need to put the results of this instruction in the
            // map now.
            for &result in self.func.dfg.inst_results(inst) {
                trace!(" -> result {}", result);
                let best_result = self.value_to_best_value[result];
                self.value_to_elaborated_value.insert_if_absent(
                    best_result.1,
                    ElaboratedValue {
                        in_block: block,
                        value: result,
                    },
                );
            }

            next_inst = self.func.layout.next_inst(inst);
        }
    }

    fn elaborate_domtree(&mut self, domtree: &DominatorTreePreorder) {
        self.block_stack.push(BlockStackEntry::Elaborate {
            block: self.func.layout.entry_block().unwrap(),
            idom: None,
        });

        // A temporary workspace for elaborate_block, allocated here to maximize the use of the
        // allocation.
        let mut elab_values = Vec::new();

        while let Some(top) = self.block_stack.pop() {
            match top {
                BlockStackEntry::Elaborate { block, idom } => {
                    self.block_stack.push(BlockStackEntry::Pop);
                    self.value_to_elaborated_value.increment_depth();

                    self.elaborate_block(&mut elab_values, idom, block);

                    // Push children. We are doing a preorder
                    // traversal so we do this after processing this
                    // block above.
                    let block_stack_end = self.block_stack.len();
                    for child in self.ctrl_plane.shuffled(domtree.children(block)) {
                        self.block_stack.push(BlockStackEntry::Elaborate {
                            block: child,
                            idom: Some(block),
                        });
                    }
                    // Reverse what we just pushed so we elaborate in
                    // original block order. (The domtree iter is a
                    // single-ended iter over a singly-linked list so
                    // we can't `.rev()` above.)
                    self.block_stack[block_stack_end..].reverse();
                }
                BlockStackEntry::Pop => {
                    self.value_to_elaborated_value.decrement_depth();
                }
            }
        }
    }

    pub(crate) fn elaborate(&mut self) {
        self.stats.elaborate_func += 1;
        self.stats.elaborate_func_pre_insts += self.func.dfg.num_insts() as u64;
        self.compute_best_values();
        self.elaborate_domtree(&self.domtree);
        self.stats.elaborate_func_post_insts += self.func.dfg.num_insts() as u64;
    }
}