cranelift_codegen/egraph/elaborate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
//! Elaboration phase: lowers EGraph back to sequences of operations
//! in CFG nodes.
use super::cost::Cost;
use super::Stats;
use crate::dominator_tree::DominatorTreePreorder;
use crate::hash_map::Entry as HashEntry;
use crate::inst_predicates::is_pure_for_egraph;
use crate::ir::{Block, Function, Inst, Value, ValueDef};
use crate::loop_analysis::{Loop, LoopAnalysis};
use crate::scoped_hash_map::ScopedHashMap;
use crate::trace;
use alloc::vec::Vec;
use cranelift_control::ControlPlane;
use cranelift_entity::{packed_option::ReservedValue, SecondaryMap};
use rustc_hash::{FxHashMap, FxHashSet};
use smallvec::{smallvec, SmallVec};
pub(crate) struct Elaborator<'a> {
func: &'a mut Function,
domtree: &'a DominatorTreePreorder,
loop_analysis: &'a LoopAnalysis,
/// Map from Value that is produced by a pure Inst (and was thus
/// not in the side-effecting skeleton) to the value produced by
/// an elaborated inst (placed in the layout) to whose results we
/// refer in the final code.
///
/// The first time we use some result of an instruction during
/// elaboration, we can place it and insert an identity map (inst
/// results to that same inst's results) in this scoped
/// map. Within that block and its dom-tree children, that mapping
/// is visible and we can continue to use it. This allows us to
/// avoid cloning the instruction. However, if we pop that scope
/// and use it somewhere else as well, we will need to
/// duplicate. We detect this case by checking, when a value that
/// we want is not present in this map, whether the producing inst
/// is already placed in the Layout. If so, we duplicate, and
/// insert non-identity mappings from the original inst's results
/// to the cloned inst's results.
///
/// Note that as values may refer to unions that represent a subset
/// of a larger eclass, it's not valid to walk towards the root of a
/// union tree: doing so would potentially equate values that fall
/// on different branches of the dominator tree.
value_to_elaborated_value: ScopedHashMap<Value, ElaboratedValue>,
/// Map from Value to the best (lowest-cost) Value in its eclass
/// (tree of union value-nodes).
value_to_best_value: SecondaryMap<Value, BestEntry>,
/// Stack of blocks and loops in current elaboration path.
loop_stack: SmallVec<[LoopStackEntry; 8]>,
/// The current block into which we are elaborating.
cur_block: Block,
/// Values that opt rules have indicated should be rematerialized
/// in every block they are used (e.g., immediates or other
/// "cheap-to-compute" ops).
remat_values: &'a FxHashSet<Value>,
/// Explicitly-unrolled value elaboration stack.
elab_stack: Vec<ElabStackEntry>,
/// Results from the elab stack.
elab_result_stack: Vec<ElaboratedValue>,
/// Explicitly-unrolled block elaboration stack.
block_stack: Vec<BlockStackEntry>,
/// Copies of values that have been rematerialized.
remat_copies: FxHashMap<(Block, Value), Value>,
/// Stats for various events during egraph processing, to help
/// with optimization of this infrastructure.
stats: &'a mut Stats,
/// Chaos-mode control-plane so we can test that we still get
/// correct results when our heuristics make bad decisions.
ctrl_plane: &'a mut ControlPlane,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
struct BestEntry(Cost, Value);
impl PartialOrd for BestEntry {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for BestEntry {
#[inline]
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.cmp(&other.0).then_with(|| {
// Note that this comparison is reversed. When costs are equal,
// prefer the value with the bigger index. This is a heuristic that
// prefers results of rewrites to the original value, since we
// expect that our rewrites are generally improvements.
self.1.cmp(&other.1).reverse()
})
}
}
#[derive(Clone, Copy, Debug)]
struct ElaboratedValue {
in_block: Block,
value: Value,
}
#[derive(Clone, Debug)]
struct LoopStackEntry {
/// The loop identifier.
lp: Loop,
/// The hoist point: a block that immediately dominates this
/// loop. May not be an immediate predecessor, but will be a valid
/// point to place all loop-invariant ops: they must depend only
/// on inputs that dominate the loop, so are available at (the end
/// of) this block.
hoist_block: Block,
/// The depth in the scope map.
scope_depth: u32,
}
#[derive(Clone, Debug)]
enum ElabStackEntry {
/// Next action is to resolve this value into an elaborated inst
/// (placed into the layout) that produces the value, and
/// recursively elaborate the insts that produce its args.
///
/// Any inserted ops should be inserted before `before`, which is
/// the instruction demanding this value.
Start { value: Value, before: Inst },
/// Args have been pushed; waiting for results.
PendingInst {
inst: Inst,
result_idx: usize,
num_args: usize,
before: Inst,
},
}
#[derive(Clone, Debug)]
enum BlockStackEntry {
Elaborate { block: Block, idom: Option<Block> },
Pop,
}
impl<'a> Elaborator<'a> {
pub(crate) fn new(
func: &'a mut Function,
domtree: &'a DominatorTreePreorder,
loop_analysis: &'a LoopAnalysis,
remat_values: &'a FxHashSet<Value>,
stats: &'a mut Stats,
ctrl_plane: &'a mut ControlPlane,
) -> Self {
let num_values = func.dfg.num_values();
let mut value_to_best_value =
SecondaryMap::with_default(BestEntry(Cost::infinity(), Value::reserved_value()));
value_to_best_value.resize(num_values);
Self {
func,
domtree,
loop_analysis,
value_to_elaborated_value: ScopedHashMap::with_capacity(num_values),
value_to_best_value,
loop_stack: smallvec![],
cur_block: Block::reserved_value(),
remat_values,
elab_stack: vec![],
elab_result_stack: vec![],
block_stack: vec![],
remat_copies: FxHashMap::default(),
stats,
ctrl_plane,
}
}
fn start_block(&mut self, idom: Option<Block>, block: Block) {
trace!(
"start_block: block {:?} with idom {:?} at loop depth {:?} scope depth {}",
block,
idom,
self.loop_stack.len(),
self.value_to_elaborated_value.depth()
);
// Pop any loop levels we're no longer in.
while let Some(inner_loop) = self.loop_stack.last() {
if self.loop_analysis.is_in_loop(block, inner_loop.lp) {
break;
}
self.loop_stack.pop();
}
// Note that if the *entry* block is a loop header, we will
// not make note of the loop here because it will not have an
// immediate dominator. We must disallow this case because we
// will skip adding the `LoopStackEntry` here but our
// `LoopAnalysis` will otherwise still make note of this loop
// and loop depths will not match.
if let Some(idom) = idom {
if let Some(lp) = self.loop_analysis.is_loop_header(block) {
self.loop_stack.push(LoopStackEntry {
lp,
// Any code hoisted out of this loop will have code
// placed in `idom`, and will have def mappings
// inserted in to the scoped hashmap at that block's
// level.
hoist_block: idom,
scope_depth: (self.value_to_elaborated_value.depth() - 1) as u32,
});
trace!(
" -> loop header, pushing; depth now {}",
self.loop_stack.len()
);
}
} else {
debug_assert!(
self.loop_analysis.is_loop_header(block).is_none(),
"Entry block (domtree root) cannot be a loop header!"
);
}
trace!("block {}: loop stack is {:?}", block, self.loop_stack);
self.cur_block = block;
}
fn compute_best_values(&mut self) {
let best = &mut self.value_to_best_value;
// We can't make random decisions inside the fixpoint loop below because
// that could cause values to change on every iteration of the loop,
// which would make the loop never terminate. So in chaos testing
// mode we need a form of making suboptimal decisions that is fully
// deterministic. We choose to simply make the worst decision we know
// how to do instead of the best.
let use_worst = self.ctrl_plane.get_decision();
// Do a fixpoint loop to compute the best value for each eclass.
//
// The maximum number of iterations is the length of the longest chain
// of `vNN -> vMM` edges in the dataflow graph where `NN < MM`, so this
// is *technically* quadratic, but `cranelift-frontend` won't construct
// any such edges. NaN canonicalization will introduce some of these
// edges, but they are chains of only two or three edges. So in
// practice, we *never* do more than a handful of iterations here unless
// (a) we parsed the CLIF from text and the text was funkily numbered,
// which we don't really care about, or (b) the CLIF producer did
// something weird, in which case it is their responsibility to stop
// doing that.
trace!(
"Entering fixpoint loop to compute the {} values for each eclass",
if use_worst {
"worst (chaos mode)"
} else {
"best"
}
);
let mut keep_going = true;
while keep_going {
keep_going = false;
trace!(
"fixpoint iteration {}",
self.stats.elaborate_best_cost_fixpoint_iters
);
self.stats.elaborate_best_cost_fixpoint_iters += 1;
for (value, def) in self.func.dfg.values_and_defs() {
trace!("computing best for value {:?} def {:?}", value, def);
let orig_best_value = best[value];
match def {
ValueDef::Union(x, y) => {
// Pick the best of the two options based on
// min-cost. This works because each element of `best`
// is a `(cost, value)` tuple; `cost` comes first so
// the natural comparison works based on cost, and
// breaks ties based on value number.
best[value] = if use_worst {
if best[x].1.is_reserved_value() {
best[y]
} else if best[y].1.is_reserved_value() {
best[x]
} else {
std::cmp::max(best[x], best[y])
}
} else {
std::cmp::min(best[x], best[y])
};
trace!(
" -> best of union({:?}, {:?}) = {:?}",
best[x],
best[y],
best[value]
);
}
ValueDef::Param(_, _) => {
best[value] = BestEntry(Cost::zero(), value);
}
// If the Inst is inserted into the layout (which is,
// at this point, only the side-effecting skeleton),
// then it must be computed and thus we give it zero
// cost.
ValueDef::Result(inst, _) => {
if let Some(_) = self.func.layout.inst_block(inst) {
best[value] = BestEntry(Cost::zero(), value);
} else {
let inst_data = &self.func.dfg.insts[inst];
// N.B.: at this point we know that the opcode is
// pure, so `pure_op_cost`'s precondition is
// satisfied.
let cost = Cost::of_pure_op(
inst_data.opcode(),
self.func.dfg.inst_values(inst).map(|value| best[value].0),
);
best[value] = BestEntry(cost, value);
trace!(" -> cost of value {} = {:?}", value, cost);
}
}
};
// Keep on iterating the fixpoint loop while we are finding new
// best values.
keep_going |= orig_best_value != best[value];
}
}
if cfg!(any(feature = "trace-log", debug_assertions)) {
trace!("finished fixpoint loop to compute best value for each eclass");
for value in self.func.dfg.values() {
trace!("-> best for eclass {:?}: {:?}", value, best[value]);
debug_assert_ne!(best[value].1, Value::reserved_value());
// You might additionally be expecting an assert that the best
// cost is not infinity, however infinite cost *can* happen in
// practice. First, note that our cost function doesn't know
// about any shared structure in the dataflow graph, it only
// sums operand costs. (And trying to avoid that by deduping a
// single operation's operands is a losing game because you can
// always just add one indirection and go from `add(x, x)` to
// `add(foo(x), bar(x))` to hide the shared structure.) Given
// that blindness to sharing, we can make cost grow
// exponentially with a linear sequence of operations:
//
// v0 = iconst.i32 1 ;; cost = 1
// v1 = iadd v0, v0 ;; cost = 3 + 1 + 1
// v2 = iadd v1, v1 ;; cost = 3 + 5 + 5
// v3 = iadd v2, v2 ;; cost = 3 + 13 + 13
// v4 = iadd v3, v3 ;; cost = 3 + 29 + 29
// v5 = iadd v4, v4 ;; cost = 3 + 61 + 61
// v6 = iadd v5, v5 ;; cost = 3 + 125 + 125
// ;; etc...
//
// Such a chain can cause cost to saturate to infinity. How do
// we choose which e-node is best when there are multiple that
// have saturated to infinity? It doesn't matter. As long as
// invariant (2) for optimization rules is upheld by our rule
// set (see `cranelift/codegen/src/opts/README.md`) it is safe
// to choose *any* e-node in the e-class. At worst we will
// produce suboptimal code, but never an incorrectness.
}
}
}
/// Elaborate use of an eclass, inserting any needed new
/// instructions before the given inst `before`. Should only be
/// given values corresponding to results of instructions or
/// blockparams.
fn elaborate_eclass_use(&mut self, value: Value, before: Inst) -> ElaboratedValue {
debug_assert_ne!(value, Value::reserved_value());
// Kick off the process by requesting this result
// value.
self.elab_stack
.push(ElabStackEntry::Start { value, before });
// Now run the explicit-stack recursion until we reach
// the root.
self.process_elab_stack();
debug_assert_eq!(self.elab_result_stack.len(), 1);
self.elab_result_stack.pop().unwrap()
}
/// Possibly rematerialize the instruction producing the value in
/// `arg` and rewrite `arg` to refer to it, if needed. Returns
/// `true` if a rewrite occurred.
fn maybe_remat_arg(
remat_values: &FxHashSet<Value>,
func: &mut Function,
remat_copies: &mut FxHashMap<(Block, Value), Value>,
insert_block: Block,
before: Inst,
arg: &mut ElaboratedValue,
stats: &mut Stats,
) -> bool {
// TODO (#7313): we may want to consider recursive
// rematerialization as well. We could process the arguments of
// the rematerialized instruction up to a certain depth. This
// would affect, e.g., adds-with-one-constant-arg, which are
// currently rematerialized. Right now we don't do this, to
// avoid the need for another fixpoint loop here.
if arg.in_block != insert_block && remat_values.contains(&arg.value) {
let new_value = match remat_copies.entry((insert_block, arg.value)) {
HashEntry::Occupied(o) => *o.get(),
HashEntry::Vacant(v) => {
let inst = func.dfg.value_def(arg.value).inst().unwrap();
debug_assert_eq!(func.dfg.inst_results(inst).len(), 1);
let new_inst = func.dfg.clone_inst(inst);
func.layout.insert_inst(new_inst, before);
let new_result = func.dfg.inst_results(new_inst)[0];
*v.insert(new_result)
}
};
trace!("rematerialized {} as {}", arg.value, new_value);
arg.value = new_value;
stats.elaborate_remat += 1;
true
} else {
false
}
}
fn process_elab_stack(&mut self) {
while let Some(entry) = self.elab_stack.pop() {
match entry {
ElabStackEntry::Start { value, before } => {
debug_assert!(self.func.dfg.value_is_real(value));
self.stats.elaborate_visit_node += 1;
// Get the best option; we use `value` (latest
// value) here so we have a full view of the
// eclass.
trace!("looking up best value for {}", value);
let BestEntry(_, best_value) = self.value_to_best_value[value];
trace!("elaborate: value {} -> best {}", value, best_value);
debug_assert_ne!(best_value, Value::reserved_value());
if let Some(elab_val) = self.value_to_elaborated_value.get(&best_value) {
// Value is available; use it.
trace!("elaborate: value {} -> {:?}", value, elab_val);
self.stats.elaborate_memoize_hit += 1;
self.elab_result_stack.push(*elab_val);
continue;
}
self.stats.elaborate_memoize_miss += 1;
// Now resolve the value to its definition to see
// how we can compute it.
let (inst, result_idx) = match self.func.dfg.value_def(best_value) {
ValueDef::Result(inst, result_idx) => {
trace!(
" -> value {} is result {} of {}",
best_value,
result_idx,
inst
);
(inst, result_idx)
}
ValueDef::Param(in_block, _) => {
// We don't need to do anything to compute
// this value; just push its result on the
// result stack (blockparams are already
// available).
trace!(" -> value {} is a blockparam", best_value);
self.elab_result_stack.push(ElaboratedValue {
in_block,
value: best_value,
});
continue;
}
ValueDef::Union(_, _) => {
panic!("Should never have a Union value as the best value");
}
};
trace!(
" -> result {} of inst {:?}",
result_idx,
self.func.dfg.insts[inst]
);
// We're going to need to use this instruction
// result, placing the instruction into the
// layout. First, enqueue all args to be
// elaborated. Push state to receive the results
// and later elab this inst.
let num_args = self.func.dfg.inst_values(inst).count();
self.elab_stack.push(ElabStackEntry::PendingInst {
inst,
result_idx,
num_args,
before,
});
// Push args in reverse order so we process the
// first arg first.
for arg in self.func.dfg.inst_values(inst).rev() {
debug_assert_ne!(arg, Value::reserved_value());
self.elab_stack
.push(ElabStackEntry::Start { value: arg, before });
}
}
ElabStackEntry::PendingInst {
inst,
result_idx,
num_args,
before,
} => {
trace!(
"PendingInst: {} result {} args {} before {}",
inst,
result_idx,
num_args,
before
);
// We should have all args resolved at this
// point. Grab them and drain them out, removing
// them.
let arg_idx = self.elab_result_stack.len() - num_args;
let arg_values = &mut self.elab_result_stack[arg_idx..];
// Compute max loop depth.
//
// Note that if there are no arguments then this instruction
// is allowed to get hoisted up one loop. This is not
// usually used since no-argument values are things like
// constants which are typically rematerialized, but for the
// `vconst` instruction 128-bit constants aren't as easily
// rematerialized. They're hoisted out of inner loops but
// not to the function entry which may run the risk of
// placing too much register pressure on the entire
// function. This is modeled with the `.saturating_sub(1)`
// as the default if there's otherwise no maximum.
let loop_hoist_level = arg_values
.iter()
.map(|&value| {
// Find the outermost loop level at which
// the value's defining block *is not* a
// member. This is the loop-nest level
// whose hoist-block we hoist to.
let hoist_level = self
.loop_stack
.iter()
.position(|loop_entry| {
!self.loop_analysis.is_in_loop(value.in_block, loop_entry.lp)
})
.unwrap_or(self.loop_stack.len());
trace!(
" -> arg: elab_value {:?} hoist level {:?}",
value,
hoist_level
);
hoist_level
})
.max()
.unwrap_or(self.loop_stack.len().saturating_sub(1));
trace!(
" -> loop hoist level: {:?}; cur loop depth: {:?}, loop_stack: {:?}",
loop_hoist_level,
self.loop_stack.len(),
self.loop_stack,
);
// We know that this is a pure inst, because
// non-pure roots have already been placed in the
// value-to-elab'd-value map, so they will not
// reach this stage of processing.
//
// We now must determine the location at which we
// place the instruction. This is the current
// block *unless* we hoist above a loop when all
// args are loop-invariant (and this op is pure).
let (scope_depth, before, insert_block) =
if loop_hoist_level == self.loop_stack.len() {
// Depends on some value at the current
// loop depth, or remat forces it here:
// place it at the current location.
(
self.value_to_elaborated_value.depth(),
before,
self.func.layout.inst_block(before).unwrap(),
)
} else {
// Does not depend on any args at current
// loop depth: hoist out of loop.
self.stats.elaborate_licm_hoist += 1;
let data = &self.loop_stack[loop_hoist_level];
// `data.hoist_block` should dominate `before`'s block.
let before_block = self.func.layout.inst_block(before).unwrap();
debug_assert!(self.domtree.dominates(data.hoist_block, before_block));
// Determine the instruction at which we
// insert in `data.hoist_block`.
let before = self.func.layout.last_inst(data.hoist_block).unwrap();
(data.scope_depth as usize, before, data.hoist_block)
};
trace!(
" -> decided to place: before {} insert_block {}",
before,
insert_block
);
// Now that we have the location for the
// instruction, check if any of its args are remat
// values. If so, and if we don't have a copy of
// the rematerializing instruction for this block
// yet, create one.
let mut remat_arg = false;
for arg_value in arg_values.iter_mut() {
if Self::maybe_remat_arg(
&self.remat_values,
&mut self.func,
&mut self.remat_copies,
insert_block,
before,
arg_value,
&mut self.stats,
) {
remat_arg = true;
}
}
// Now we need to place `inst` at the computed
// location (just before `before`). Note that
// `inst` may already have been placed somewhere
// else, because a pure node may be elaborated at
// more than one place. In this case, we need to
// duplicate the instruction (and return the
// `Value`s for that duplicated instance instead).
//
// Also clone if we rematerialized, because we
// don't want to rewrite the args in the original
// copy.
trace!("need inst {} before {}", inst, before);
let inst = if self.func.layout.inst_block(inst).is_some() || remat_arg {
// Clone the inst!
let new_inst = self.func.dfg.clone_inst(inst);
trace!(
" -> inst {} already has a location; cloned to {}",
inst,
new_inst
);
// Create mappings in the
// value-to-elab'd-value map from original
// results to cloned results.
for (&result, &new_result) in self
.func
.dfg
.inst_results(inst)
.iter()
.zip(self.func.dfg.inst_results(new_inst).iter())
{
let elab_value = ElaboratedValue {
value: new_result,
in_block: insert_block,
};
let best_result = self.value_to_best_value[result];
self.value_to_elaborated_value.insert_if_absent_with_depth(
best_result.1,
elab_value,
scope_depth,
);
self.value_to_best_value[new_result] = best_result;
trace!(
" -> cloned inst has new result {} for orig {}",
new_result,
result
);
}
new_inst
} else {
trace!(" -> no location; using original inst");
// Create identity mappings from result values
// to themselves in this scope, since we're
// using the original inst.
for &result in self.func.dfg.inst_results(inst) {
let elab_value = ElaboratedValue {
value: result,
in_block: insert_block,
};
let best_result = self.value_to_best_value[result];
self.value_to_elaborated_value.insert_if_absent_with_depth(
best_result.1,
elab_value,
scope_depth,
);
trace!(" -> inserting identity mapping for {}", result);
}
inst
};
// Place the inst just before `before`.
assert!(
is_pure_for_egraph(self.func, inst),
"something has gone very wrong if we are elaborating effectful \
instructions, they should have remained in the skeleton"
);
self.func.layout.insert_inst(inst, before);
// Update the inst's arguments.
self.func
.dfg
.overwrite_inst_values(inst, arg_values.into_iter().map(|ev| ev.value));
// Now that we've consumed the arg values, pop
// them off the stack.
self.elab_result_stack.truncate(arg_idx);
// Push the requested result index of the
// instruction onto the elab-results stack.
self.elab_result_stack.push(ElaboratedValue {
in_block: insert_block,
value: self.func.dfg.inst_results(inst)[result_idx],
});
}
}
}
}
fn elaborate_block(&mut self, elab_values: &mut Vec<Value>, idom: Option<Block>, block: Block) {
trace!("elaborate_block: block {}", block);
self.start_block(idom, block);
// Iterate over the side-effecting skeleton using the linked
// list in Layout. We will insert instructions that are
// elaborated *before* `inst`, so we can always use its
// next-link to continue the iteration.
let mut next_inst = self.func.layout.first_inst(block);
let mut first_branch = None;
while let Some(inst) = next_inst {
trace!(
"elaborating inst {} with results {:?}",
inst,
self.func.dfg.inst_results(inst)
);
// Record the first branch we see in the block; all
// elaboration for args of *any* branch must be inserted
// before the *first* branch, because the branch group
// must remain contiguous at the end of the block.
if self.func.dfg.insts[inst].opcode().is_branch() && first_branch == None {
first_branch = Some(inst);
}
// Determine where elaboration inserts insts.
let before = first_branch.unwrap_or(inst);
trace!(" -> inserting before {}", before);
elab_values.extend(self.func.dfg.inst_values(inst));
for arg in elab_values.iter_mut() {
trace!(" -> arg {}", *arg);
// Elaborate the arg, placing any newly-inserted insts
// before `before`. Get the updated value, which may
// be different than the original.
let mut new_arg = self.elaborate_eclass_use(*arg, before);
Self::maybe_remat_arg(
&self.remat_values,
&mut self.func,
&mut self.remat_copies,
block,
inst,
&mut new_arg,
&mut self.stats,
);
trace!(" -> rewrote arg to {:?}", new_arg);
*arg = new_arg.value;
}
self.func
.dfg
.overwrite_inst_values(inst, elab_values.drain(..));
// We need to put the results of this instruction in the
// map now.
for &result in self.func.dfg.inst_results(inst) {
trace!(" -> result {}", result);
let best_result = self.value_to_best_value[result];
self.value_to_elaborated_value.insert_if_absent(
best_result.1,
ElaboratedValue {
in_block: block,
value: result,
},
);
}
next_inst = self.func.layout.next_inst(inst);
}
}
fn elaborate_domtree(&mut self, domtree: &DominatorTreePreorder) {
self.block_stack.push(BlockStackEntry::Elaborate {
block: self.func.layout.entry_block().unwrap(),
idom: None,
});
// A temporary workspace for elaborate_block, allocated here to maximize the use of the
// allocation.
let mut elab_values = Vec::new();
while let Some(top) = self.block_stack.pop() {
match top {
BlockStackEntry::Elaborate { block, idom } => {
self.block_stack.push(BlockStackEntry::Pop);
self.value_to_elaborated_value.increment_depth();
self.elaborate_block(&mut elab_values, idom, block);
// Push children. We are doing a preorder
// traversal so we do this after processing this
// block above.
let block_stack_end = self.block_stack.len();
for child in self.ctrl_plane.shuffled(domtree.children(block)) {
self.block_stack.push(BlockStackEntry::Elaborate {
block: child,
idom: Some(block),
});
}
// Reverse what we just pushed so we elaborate in
// original block order. (The domtree iter is a
// single-ended iter over a singly-linked list so
// we can't `.rev()` above.)
self.block_stack[block_stack_end..].reverse();
}
BlockStackEntry::Pop => {
self.value_to_elaborated_value.decrement_depth();
}
}
}
}
pub(crate) fn elaborate(&mut self) {
self.stats.elaborate_func += 1;
self.stats.elaborate_func_pre_insts += self.func.dfg.num_insts() as u64;
self.compute_best_values();
self.elaborate_domtree(&self.domtree);
self.stats.elaborate_func_post_insts += self.func.dfg.num_insts() as u64;
}
}