wasmtime_cranelift/translate/code_translator/bounds_checks.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
//! Implementation of Wasm to CLIF memory access translation.
//!
//! Given
//!
//! * a dynamic Wasm memory index operand,
//! * a static offset immediate, and
//! * a static access size,
//!
//! bounds check the memory access and translate it into a native memory access.
//!
//! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//! !!! !!!
//! !!! THIS CODE IS VERY SUBTLE, HAS MANY SPECIAL CASES, AND IS ALSO !!!
//! !!! ABSOLUTELY CRITICAL FOR MAINTAINING THE SAFETY OF THE WASM HEAP !!!
//! !!! SANDBOX. !!!
//! !!! !!!
//! !!! A good rule of thumb is to get two reviews on any substantive !!!
//! !!! changes in here. !!!
//! !!! !!!
//! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
use super::Reachability;
use crate::func_environ::FuncEnvironment;
use crate::translate::{HeapData, TargetEnvironment};
use cranelift_codegen::{
cursor::{Cursor, FuncCursor},
ir::{self, condcodes::IntCC, InstBuilder, RelSourceLoc},
ir::{Expr, Fact},
};
use cranelift_frontend::FunctionBuilder;
use wasmtime_environ::{Unsigned, WasmResult};
use Reachability::*;
/// Helper used to emit bounds checks (as necessary) and compute the native
/// address of a heap access.
///
/// Returns the `ir::Value` holding the native address of the heap access, or
/// `None` if the heap access will unconditionally trap.
pub fn bounds_check_and_compute_addr(
builder: &mut FunctionBuilder,
env: &mut FuncEnvironment<'_>,
heap: &HeapData,
// Dynamic operand indexing into the heap.
index: ir::Value,
// Static immediate added to the index.
offset: u32,
// Static size of the heap access.
access_size: u8,
) -> WasmResult<Reachability<ir::Value>> {
let pointer_bit_width = u16::try_from(env.pointer_type().bits()).unwrap();
let bound_gv = heap.bound;
let orig_index = index;
let offset_and_size = offset_plus_size(offset, access_size);
let clif_memory_traps_enabled = env.clif_memory_traps_enabled();
let spectre_mitigations_enabled =
env.heap_access_spectre_mitigation() && clif_memory_traps_enabled;
let pcc = env.proof_carrying_code();
let host_page_size_log2 = env.target_config().page_size_align_log2;
let can_use_virtual_memory = heap
.memory
.can_use_virtual_memory(env.tunables(), host_page_size_log2)
&& clif_memory_traps_enabled;
let can_elide_bounds_check = heap
.memory
.can_elide_bounds_check(env.tunables(), host_page_size_log2)
&& clif_memory_traps_enabled;
let memory_guard_size = env.tunables().memory_guard_size;
let memory_reservation = env.tunables().memory_reservation;
let statically_in_bounds = statically_in_bounds(&builder.func, heap, index, offset_and_size);
let index = cast_index_to_pointer_ty(
index,
heap.index_type(),
env.pointer_type(),
heap.pcc_memory_type.is_some(),
&mut builder.cursor(),
);
let oob_behavior = if spectre_mitigations_enabled {
OobBehavior::ConditionallyLoadFromZero {
select_spectre_guard: true,
}
} else if env.load_from_zero_allowed() {
OobBehavior::ConditionallyLoadFromZero {
select_spectre_guard: false,
}
} else {
OobBehavior::ExplicitTrap
};
let make_compare = |builder: &mut FunctionBuilder,
compare_kind: IntCC,
lhs: ir::Value,
lhs_off: Option<i64>,
rhs: ir::Value,
rhs_off: Option<i64>| {
let result = builder.ins().icmp(compare_kind, lhs, rhs);
if pcc {
// Name the original value as a def of the SSA value;
// if the value was extended, name that as well with a
// dynamic range, overwriting the basic full-range
// fact that we previously put on the uextend.
builder.func.dfg.facts[orig_index] = Some(Fact::Def { value: orig_index });
if index != orig_index {
builder.func.dfg.facts[index] = Some(Fact::value(pointer_bit_width, orig_index));
}
// Create a fact on the LHS that is a "trivial symbolic
// fact": v1 has range v1+LHS_off..=v1+LHS_off
builder.func.dfg.facts[lhs] = Some(Fact::value_offset(
pointer_bit_width,
orig_index,
lhs_off.unwrap(),
));
// If the RHS is a symbolic value (v1 or gv1), we can
// emit a Compare fact.
if let Some(rhs) = builder.func.dfg.facts[rhs]
.as_ref()
.and_then(|f| f.as_symbol())
{
builder.func.dfg.facts[result] = Some(Fact::Compare {
kind: compare_kind,
lhs: Expr::offset(&Expr::value(orig_index), lhs_off.unwrap()).unwrap(),
rhs: Expr::offset(rhs, rhs_off.unwrap()).unwrap(),
});
}
// Likewise, if the RHS is a constant, we can emit a
// Compare fact.
if let Some(k) = builder.func.dfg.facts[rhs]
.as_ref()
.and_then(|f| f.as_const(pointer_bit_width))
{
builder.func.dfg.facts[result] = Some(Fact::Compare {
kind: compare_kind,
lhs: Expr::offset(&Expr::value(orig_index), lhs_off.unwrap()).unwrap(),
rhs: Expr::constant((k as i64).checked_add(rhs_off.unwrap()).unwrap()),
});
}
}
result
};
// We need to emit code that will trap (or compute an address that will trap
// when accessed) if
//
// index + offset + access_size > bound
//
// or if the `index + offset + access_size` addition overflows.
//
// Note that we ultimately want a 64-bit integer (we only target 64-bit
// architectures at the moment) and that `offset` is a `u32` and
// `access_size` is a `u8`. This means that we can add the latter together
// as `u64`s without fear of overflow, and we only have to be concerned with
// whether adding in `index` will overflow.
//
// Finally, the following if/else chains do have a little
// bit of duplicated code across them, but I think writing it this way is
// worth it for readability and seeing very clearly each of our cases for
// different bounds checks and optimizations of those bounds checks. It is
// intentionally written in a straightforward case-matching style that will
// hopefully make it easy to port to ISLE one day.
if offset_and_size > heap.memory.maximum_byte_size().unwrap_or(u64::MAX) {
// Special case: trap immediately if `offset + access_size >
// max_memory_size`, since we will end up being out-of-bounds regardless
// of the given `index`.
env.before_unconditionally_trapping_memory_access(builder)?;
env.trap(builder, ir::TrapCode::HEAP_OUT_OF_BOUNDS);
return Ok(Unreachable);
}
// Special case: if this is a 32-bit platform and the `offset_and_size`
// overflows the 32-bit address space then there's no hope of this ever
// being in-bounds. We can't represent `offset_and_size` in CLIF as the
// native pointer type anyway, so this is an unconditional trap.
if pointer_bit_width < 64 && offset_and_size >= (1 << pointer_bit_width) {
env.before_unconditionally_trapping_memory_access(builder)?;
env.trap(builder, ir::TrapCode::HEAP_OUT_OF_BOUNDS);
return Ok(Unreachable);
}
// Special case for when we can completely omit explicit
// bounds checks for 32-bit memories.
//
// First, let's rewrite our comparison to move all of the constants
// to one side:
//
// index + offset + access_size > bound
// ==> index > bound - (offset + access_size)
//
// We know the subtraction on the right-hand side won't wrap because
// we didn't hit the unconditional trap case above.
//
// Additionally, we add our guard pages (if any) to the right-hand
// side, since we can rely on the virtual memory subsystem at runtime
// to catch out-of-bound accesses within the range `bound .. bound +
// guard_size`. So now we are dealing with
//
// index > bound + guard_size - (offset + access_size)
//
// Note that `bound + guard_size` cannot overflow for
// correctly-configured heaps, as otherwise the heap wouldn't fit in
// a 64-bit memory space.
//
// The complement of our should-this-trap comparison expression is
// the should-this-not-trap comparison expression:
//
// index <= bound + guard_size - (offset + access_size)
//
// If we know the right-hand side is greater than or equal to
// `u32::MAX`, then
//
// index <= u32::MAX <= bound + guard_size - (offset + access_size)
//
// This expression is always true when the heap is indexed with
// 32-bit integers because `index` cannot be larger than
// `u32::MAX`. This means that `index` is always either in bounds or
// within the guard page region, neither of which require emitting an
// explicit bounds check.
if can_elide_bounds_check
&& u64::from(u32::MAX) <= memory_reservation + memory_guard_size - offset_and_size
{
assert!(heap.index_type() == ir::types::I32);
assert!(
can_use_virtual_memory,
"static memories require the ability to use virtual memory"
);
return Ok(Reachable(compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
AddrPcc::static32(heap.pcc_memory_type, memory_reservation + memory_guard_size),
)));
}
// Special case when the `index` is a constant and statically known to be
// in-bounds on this memory, no bounds checks necessary.
if statically_in_bounds {
return Ok(Reachable(compute_addr(
&mut builder.cursor(),
heap,
env.pointer_type(),
index,
offset,
AddrPcc::static32(heap.pcc_memory_type, memory_reservation + memory_guard_size),
)));
}
// Special case for when we can rely on virtual memory, the minimum
// byte size of this memory fits within the memory reservation, and
// memory isn't allowed to move. In this situation we know that
// memory will statically not grow beyond `memory_reservation` so we
// and we know that memory from 0 to that limit is guaranteed to be
// valid or trap. Here we effectively assume that the dynamic size
// of linear memory is its maximal value, `memory_reservation`, and
// we can avoid loading the actual length of memory.
//
// We have to explicitly test whether
//
// index > bound - (offset + access_size)
//
// and trap if so.
//
// Since we have to emit explicit bounds checks, we might as well be
// precise, not rely on the virtual memory subsystem at all, and not
// factor in the guard pages here.
if can_use_virtual_memory
&& heap.memory.minimum_byte_size().unwrap_or(u64::MAX) <= memory_reservation
&& !heap.memory.memory_may_move(env.tunables())
{
let adjusted_bound = memory_reservation.checked_sub(offset_and_size).unwrap();
let adjusted_bound_value = builder
.ins()
.iconst(env.pointer_type(), adjusted_bound as i64);
if pcc {
builder.func.dfg.facts[adjusted_bound_value] =
Some(Fact::constant(pointer_bit_width, adjusted_bound));
}
let oob = make_compare(
builder,
IntCC::UnsignedGreaterThan,
index,
Some(0),
adjusted_bound_value,
Some(0),
);
return Ok(Reachable(explicit_check_oob_condition_and_compute_addr(
env,
builder,
heap,
index,
offset,
access_size,
oob_behavior,
AddrPcc::static32(heap.pcc_memory_type, memory_reservation),
oob,
)));
}
// Special case for when `offset + access_size == 1`:
//
// index + 1 > bound
// ==> index >= bound
//
// Note that this special case is skipped for Pulley targets to assist with
// pattern-matching bounds checks into single instructions. Otherwise more
// patterns/instructions would have to be added to match this. In the end
// the goal is to emit one instruction anyway, so this optimization is
// largely only applicable for native platforms.
if offset_and_size == 1 && !env.is_pulley() {
let bound = get_dynamic_heap_bound(builder, env, heap);
let oob = make_compare(
builder,
IntCC::UnsignedGreaterThanOrEqual,
index,
Some(0),
bound,
Some(0),
);
return Ok(Reachable(explicit_check_oob_condition_and_compute_addr(
env,
builder,
heap,
index,
offset,
access_size,
oob_behavior,
AddrPcc::dynamic(heap.pcc_memory_type, bound_gv),
oob,
)));
}
// Special case for when we know that there are enough guard
// pages to cover the offset and access size.
//
// The precise should-we-trap condition is
//
// index + offset + access_size > bound
//
// However, if we instead check only the partial condition
//
// index > bound
//
// then the most out of bounds that the access can be, while that
// partial check still succeeds, is `offset + access_size`.
//
// However, when we have a guard region that is at least as large as
// `offset + access_size`, we can rely on the virtual memory
// subsystem handling these out-of-bounds errors at
// runtime. Therefore, the partial `index > bound` check is
// sufficient for this heap configuration.
//
// Additionally, this has the advantage that a series of Wasm loads
// that use the same dynamic index operand but different static
// offset immediates -- which is a common code pattern when accessing
// multiple fields in the same struct that is in linear memory --
// will all emit the same `index > bound` check, which we can GVN.
if can_use_virtual_memory && offset_and_size <= memory_guard_size {
let bound = get_dynamic_heap_bound(builder, env, heap);
let oob = make_compare(
builder,
IntCC::UnsignedGreaterThan,
index,
Some(0),
bound,
Some(0),
);
return Ok(Reachable(explicit_check_oob_condition_and_compute_addr(
env,
builder,
heap,
index,
offset,
access_size,
oob_behavior,
AddrPcc::dynamic(heap.pcc_memory_type, bound_gv),
oob,
)));
}
// Special case for when `offset + access_size <= min_size`.
//
// We know that `bound >= min_size`, so we can do the following
// comparison, without fear of the right-hand side wrapping around:
//
// index + offset + access_size > bound
// ==> index > bound - (offset + access_size)
if offset_and_size <= heap.memory.minimum_byte_size().unwrap_or(u64::MAX) {
let bound = get_dynamic_heap_bound(builder, env, heap);
let adjustment = offset_and_size as i64;
let adjustment_value = builder.ins().iconst(env.pointer_type(), adjustment);
if pcc {
builder.func.dfg.facts[adjustment_value] =
Some(Fact::constant(pointer_bit_width, offset_and_size));
}
let adjusted_bound = builder.ins().isub(bound, adjustment_value);
if pcc {
builder.func.dfg.facts[adjusted_bound] = Some(Fact::global_value_offset(
pointer_bit_width,
bound_gv,
-adjustment,
));
}
let oob = make_compare(
builder,
IntCC::UnsignedGreaterThan,
index,
Some(0),
adjusted_bound,
Some(adjustment),
);
return Ok(Reachable(explicit_check_oob_condition_and_compute_addr(
env,
builder,
heap,
index,
offset,
access_size,
oob_behavior,
AddrPcc::dynamic(heap.pcc_memory_type, bound_gv),
oob,
)));
}
// General case for dynamic bounds checks:
//
// index + offset + access_size > bound
//
// And we have to handle the overflow case in the left-hand side.
let access_size_val = builder
.ins()
// Explicit cast from u64 to i64: we just want the raw
// bits, and iconst takes an `Imm64`.
.iconst(env.pointer_type(), offset_and_size as i64);
if pcc {
builder.func.dfg.facts[access_size_val] =
Some(Fact::constant(pointer_bit_width, offset_and_size));
}
let adjusted_index = env.uadd_overflow_trap(
builder,
index,
access_size_val,
ir::TrapCode::HEAP_OUT_OF_BOUNDS,
);
if pcc {
builder.func.dfg.facts[adjusted_index] = Some(Fact::value_offset(
pointer_bit_width,
index,
i64::try_from(offset_and_size).unwrap(),
));
}
let bound = get_dynamic_heap_bound(builder, env, heap);
let oob = make_compare(
builder,
IntCC::UnsignedGreaterThan,
adjusted_index,
i64::try_from(offset_and_size).ok(),
bound,
Some(0),
);
Ok(Reachable(explicit_check_oob_condition_and_compute_addr(
env,
builder,
heap,
index,
offset,
access_size,
oob_behavior,
AddrPcc::dynamic(heap.pcc_memory_type, bound_gv),
oob,
)))
}
/// Get the bound of a dynamic heap as an `ir::Value`.
fn get_dynamic_heap_bound(
builder: &mut FunctionBuilder,
env: &mut FuncEnvironment<'_>,
heap: &HeapData,
) -> ir::Value {
let enable_pcc = heap.pcc_memory_type.is_some();
let (value, gv) = match heap.memory.static_heap_size() {
// The heap has a constant size, no need to actually load the
// bound. TODO: this is currently disabled for PCC because we
// can't easily prove that the GV load indeed results in a
// constant (that information is lost in the CLIF). We'll want
// to create an `iconst` GV expression kind to reify this fact
// in the GV, then re-enable this opt. (Or, alternately,
// compile such memories with a static-bound memtype and
// facts.)
Some(max_size) if !enable_pcc => (
builder.ins().iconst(env.pointer_type(), max_size as i64),
heap.bound,
),
// Load the heap bound from its global variable.
_ => (
builder.ins().global_value(env.pointer_type(), heap.bound),
heap.bound,
),
};
// If proof-carrying code is enabled, apply a fact to the range to
// tie it to the GV.
if enable_pcc {
builder.func.dfg.facts[value] = Some(Fact::global_value(
u16::try_from(env.pointer_type().bits()).unwrap(),
gv,
));
}
value
}
fn cast_index_to_pointer_ty(
index: ir::Value,
index_ty: ir::Type,
pointer_ty: ir::Type,
pcc: bool,
pos: &mut FuncCursor,
) -> ir::Value {
if index_ty == pointer_ty {
return index;
}
// If the index size is larger than the pointer, that means that this is a
// 32-bit host platform with a 64-bit wasm linear memory. If the index is
// larger than 2**32 then that's guaranteed to be out-of-bounds, otherwise we
// `ireduce` the index.
//
// Also note that at this time this branch doesn't support pcc nor the
// value-label-ranges of the below path.
//
// Finally, note that the returned `low_bits` here are still subject to an
// explicit bounds check in wasm so in terms of Spectre speculation on
// either side of the `trapnz` should be ok.
if index_ty.bits() > pointer_ty.bits() {
assert_eq!(index_ty, ir::types::I64);
assert_eq!(pointer_ty, ir::types::I32);
let low_bits = pos.ins().ireduce(pointer_ty, index);
let c32 = pos.ins().iconst(pointer_ty, 32);
let high_bits = pos.ins().ushr(index, c32);
let high_bits = pos.ins().ireduce(pointer_ty, high_bits);
pos.ins()
.trapnz(high_bits, ir::TrapCode::HEAP_OUT_OF_BOUNDS);
return low_bits;
}
// Convert `index` to `addr_ty`.
let extended_index = pos.ins().uextend(pointer_ty, index);
// Add a range fact on the extended value.
if pcc {
pos.func.dfg.facts[extended_index] = Some(Fact::max_range_for_width_extended(
u16::try_from(index_ty.bits()).unwrap(),
u16::try_from(pointer_ty.bits()).unwrap(),
));
}
// Add debug value-label alias so that debuginfo can name the extended
// value as the address
let loc = pos.srcloc();
let loc = RelSourceLoc::from_base_offset(pos.func.params.base_srcloc(), loc);
pos.func
.stencil
.dfg
.add_value_label_alias(extended_index, loc, index);
extended_index
}
/// Which facts do we want to emit for proof-carrying code, if any, on
/// address computations?
#[derive(Clone, Copy, Debug)]
enum AddrPcc {
/// A 32-bit static memory with the given size.
Static32(ir::MemoryType, u64),
/// Dynamic bounds-check, with actual memory size (the `GlobalValue`)
/// expressed symbolically.
Dynamic(ir::MemoryType, ir::GlobalValue),
}
impl AddrPcc {
fn static32(memory_type: Option<ir::MemoryType>, size: u64) -> Option<Self> {
memory_type.map(|ty| AddrPcc::Static32(ty, size))
}
fn dynamic(memory_type: Option<ir::MemoryType>, bound: ir::GlobalValue) -> Option<Self> {
memory_type.map(|ty| AddrPcc::Dynamic(ty, bound))
}
}
/// What to do on out-of-bounds for the
/// `explicit_check_oob_condition_and_compute_addr` function below.
enum OobBehavior {
/// An explicit `trapnz` instruction should be used.
ExplicitTrap,
/// A load from NULL should be issued if the address is out-of-bounds.
ConditionallyLoadFromZero {
/// Whether or not to use `select_spectre_guard` to choose the address
/// to load from. If `false` then a normal `select` is used.
select_spectre_guard: bool,
},
}
/// Emit explicit checks on the given out-of-bounds condition for the Wasm
/// address and return the native address.
///
/// This function deduplicates explicit bounds checks and Spectre mitigations
/// that inherently also implement bounds checking.
fn explicit_check_oob_condition_and_compute_addr(
env: &mut FuncEnvironment<'_>,
builder: &mut FunctionBuilder,
heap: &HeapData,
index: ir::Value,
offset: u32,
access_size: u8,
oob_behavior: OobBehavior,
// Whether we're emitting PCC facts.
pcc: Option<AddrPcc>,
// The `i8` boolean value that is non-zero when the heap access is out of
// bounds (and therefore we should trap) and is zero when the heap access is
// in bounds (and therefore we can proceed).
oob_condition: ir::Value,
) -> ir::Value {
if let OobBehavior::ExplicitTrap = oob_behavior {
env.trapnz(builder, oob_condition, ir::TrapCode::HEAP_OUT_OF_BOUNDS);
}
let addr_ty = env.pointer_type();
let mut addr = compute_addr(&mut builder.cursor(), heap, addr_ty, index, offset, pcc);
if let OobBehavior::ConditionallyLoadFromZero {
select_spectre_guard,
} = oob_behavior
{
// These mitigations rely on trapping when loading from NULL so
// CLIF memory instruction traps must be allowed for this to be
// generated.
assert!(env.load_from_zero_allowed());
let null = builder.ins().iconst(addr_ty, 0);
addr = if select_spectre_guard {
builder
.ins()
.select_spectre_guard(oob_condition, null, addr)
} else {
builder.ins().select(oob_condition, null, addr)
};
match pcc {
None => {}
Some(AddrPcc::Static32(ty, size)) => {
builder.func.dfg.facts[null] =
Some(Fact::constant(u16::try_from(addr_ty.bits()).unwrap(), 0));
builder.func.dfg.facts[addr] = Some(Fact::Mem {
ty,
min_offset: 0,
max_offset: size.checked_sub(u64::from(access_size)).unwrap(),
nullable: true,
});
}
Some(AddrPcc::Dynamic(ty, gv)) => {
builder.func.dfg.facts[null] =
Some(Fact::constant(u16::try_from(addr_ty.bits()).unwrap(), 0));
builder.func.dfg.facts[addr] = Some(Fact::DynamicMem {
ty,
min: Expr::constant(0),
max: Expr::offset(
&Expr::global_value(gv),
i64::try_from(env.tunables().memory_guard_size)
.unwrap()
.checked_sub(i64::from(access_size))
.unwrap(),
)
.unwrap(),
nullable: true,
});
}
}
}
addr
}
/// Emit code for the native address computation of a Wasm address,
/// without any bounds checks or overflow checks.
///
/// It is the caller's responsibility to ensure that any necessary bounds and
/// overflow checks are emitted, and that the resulting address is never used
/// unless they succeed.
fn compute_addr(
pos: &mut FuncCursor,
heap: &HeapData,
addr_ty: ir::Type,
index: ir::Value,
offset: u32,
pcc: Option<AddrPcc>,
) -> ir::Value {
debug_assert_eq!(pos.func.dfg.value_type(index), addr_ty);
let heap_base = pos.ins().global_value(addr_ty, heap.base);
match pcc {
None => {}
Some(AddrPcc::Static32(ty, _size)) => {
pos.func.dfg.facts[heap_base] = Some(Fact::Mem {
ty,
min_offset: 0,
max_offset: 0,
nullable: false,
});
}
Some(AddrPcc::Dynamic(ty, _limit)) => {
pos.func.dfg.facts[heap_base] = Some(Fact::dynamic_base_ptr(ty));
}
}
let base_and_index = pos.ins().iadd(heap_base, index);
match pcc {
None => {}
Some(AddrPcc::Static32(ty, _) | AddrPcc::Dynamic(ty, _)) => {
if let Some(idx) = pos.func.dfg.facts[index]
.as_ref()
.and_then(|f| f.as_symbol())
.cloned()
{
pos.func.dfg.facts[base_and_index] = Some(Fact::DynamicMem {
ty,
min: idx.clone(),
max: idx,
nullable: false,
});
} else {
pos.func.dfg.facts[base_and_index] = Some(Fact::Mem {
ty,
min_offset: 0,
max_offset: u64::from(u32::MAX),
nullable: false,
});
}
}
}
if offset == 0 {
base_and_index
} else {
// NB: The addition of the offset immediate must happen *before* the
// `select_spectre_guard`, if any. If it happens after, then we
// potentially are letting speculative execution read the whole first
// 4GiB of memory.
let offset_val = pos.ins().iconst(addr_ty, i64::from(offset));
if pcc.is_some() {
pos.func.dfg.facts[offset_val] = Some(Fact::constant(
u16::try_from(addr_ty.bits()).unwrap(),
u64::from(offset),
));
}
let result = pos.ins().iadd(base_and_index, offset_val);
match pcc {
None => {}
Some(AddrPcc::Static32(ty, _) | AddrPcc::Dynamic(ty, _)) => {
if let Some(idx) = pos.func.dfg.facts[index]
.as_ref()
.and_then(|f| f.as_symbol())
{
pos.func.dfg.facts[result] = Some(Fact::DynamicMem {
ty,
min: idx.clone(),
// Safety: adding an offset to an expression with
// zero offset -- add cannot wrap, so `unwrap()`
// cannot fail.
max: Expr::offset(idx, i64::from(offset)).unwrap(),
nullable: false,
});
} else {
pos.func.dfg.facts[result] = Some(Fact::Mem {
ty,
min_offset: u64::from(offset),
// Safety: can't overflow -- two u32s summed in a
// 64-bit add. TODO: when memory64 is supported here,
// `u32::MAX` is no longer true, and we'll need to
// handle overflow here.
max_offset: u64::from(u32::MAX) + u64::from(offset),
nullable: false,
});
}
}
}
result
}
}
#[inline]
fn offset_plus_size(offset: u32, size: u8) -> u64 {
// Cannot overflow because we are widening to `u64`.
offset as u64 + size as u64
}
/// Returns whether `index` is statically in-bounds with respect to this
/// `heap`'s configuration.
///
/// This is `true` when `index` is a constant and when the offset/size are added
/// in it's all still less than the minimum byte size of the heap.
///
/// The `offset_and_size` here are the static offset that was listed on the wasm
/// instruction plus the size of the access being made.
fn statically_in_bounds(
func: &ir::Function,
heap: &HeapData,
index: ir::Value,
offset_and_size: u64,
) -> bool {
func.dfg
.value_def(index)
.inst()
.and_then(|i| {
let imm = match func.dfg.insts[i] {
ir::InstructionData::UnaryImm {
opcode: ir::Opcode::Iconst,
imm,
} => imm,
_ => return None,
};
let ty = func.dfg.value_type(index);
let index = imm.zero_extend_from_width(ty.bits()).bits().unsigned();
let final_addr = index.checked_add(offset_and_size)?;
Some(final_addr <= heap.memory.minimum_byte_size().unwrap_or(u64::MAX))
})
.unwrap_or(false)
}