crypto_box/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
#![no_std]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![doc = include_str!("../README.md")]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
)]
#![warn(missing_docs, rust_2018_idioms)]
//! ## Usage
//!
#![cfg_attr(all(feature = "getrandom", feature = "std"), doc = "```")]
#![cfg_attr(not(all(feature = "getrandom", feature = "std")), doc = "```ignore")]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use crypto_box::{
//! aead::{Aead, AeadCore, OsRng},
//! SalsaBox, PublicKey, SecretKey
//! };
//!
//! //
//! // Encryption
//! //
//!
//! // Generate a random secret key.
//! // NOTE: The secret key bytes can be accessed by calling `secret_key.as_bytes()`
//! let alice_secret_key = SecretKey::generate(&mut OsRng);
//!
//! // Get the public key for the secret key we just generated
//! let alice_public_key_bytes = alice_secret_key.public_key().as_bytes().clone();
//!
//! // Obtain your recipient's public key.
//! let bob_public_key = PublicKey::from([
//! 0xe8, 0x98, 0xc, 0x86, 0xe0, 0x32, 0xf1, 0xeb,
//! 0x29, 0x75, 0x5, 0x2e, 0x8d, 0x65, 0xbd, 0xdd,
//! 0x15, 0xc3, 0xb5, 0x96, 0x41, 0x17, 0x4e, 0xc9,
//! 0x67, 0x8a, 0x53, 0x78, 0x9d, 0x92, 0xc7, 0x54,
//! ]);
//!
//! // Create a `SalsaBox` by performing Diffie-Hellman key agreement between
//! // the two keys.
//! let alice_box = SalsaBox::new(&bob_public_key, &alice_secret_key);
//!
//! // Get a random nonce to encrypt the message under
//! let nonce = SalsaBox::generate_nonce(&mut OsRng);
//!
//! // Message to encrypt
//! let plaintext = b"Top secret message we're encrypting";
//!
//! // Encrypt the message using the box
//! let ciphertext = alice_box.encrypt(&nonce, &plaintext[..])?;
//!
//! //
//! // Decryption
//! //
//!
//! // Either side can encrypt or decrypt messages under the Diffie-Hellman key
//! // they agree upon. The example below shows Bob's side.
//! let bob_secret_key = SecretKey::from([
//! 0xb5, 0x81, 0xfb, 0x5a, 0xe1, 0x82, 0xa1, 0x6f,
//! 0x60, 0x3f, 0x39, 0x27, 0xd, 0x4e, 0x3b, 0x95,
//! 0xbc, 0x0, 0x83, 0x10, 0xb7, 0x27, 0xa1, 0x1d,
//! 0xd4, 0xe7, 0x84, 0xa0, 0x4, 0x4d, 0x46, 0x1b
//! ]);
//!
//! // Deserialize Alice's public key from bytes
//! let alice_public_key = PublicKey::from(alice_public_key_bytes);
//!
//! // Bob can compute the same `SalsaBox` as Alice by performing the
//! // key agreement operation.
//! let bob_box = SalsaBox::new(&alice_public_key, &bob_secret_key);
//!
//! // Decrypt the message, using the same randomly generated nonce
//! let decrypted_plaintext = bob_box.decrypt(&nonce, &ciphertext[..])?;
//!
//! assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
//! # Ok(())
//! # }
//! ```
//!
//! ## Choosing [`ChaChaBox`] vs [`SalsaBox`]
//!
//! The `crypto_box` construction was originally specified using [`SalsaBox`].
//!
//! However, the newer [`ChaChaBox`] construction is also available, which
//! provides better security and performance.
//!
//! To use it, enable the `chacha20` feature.
//!
#![cfg_attr(
all(feature = "chacha20", feature = "getrandom", feature = "std"),
doc = "```"
)]
#![cfg_attr(
not(all(feature = "chacha20", feature = "getrandom", feature = "std")),
doc = "```ignore"
)]
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! use crypto_box::{
//! aead::{Aead, AeadCore, Payload, OsRng},
//! ChaChaBox, PublicKey, SecretKey
//! };
//!
//! let alice_secret_key = SecretKey::generate(&mut OsRng);
//! let alice_public_key_bytes = alice_secret_key.public_key().as_bytes().clone();
//! let bob_public_key = PublicKey::from([
//! 0xe8, 0x98, 0xc, 0x86, 0xe0, 0x32, 0xf1, 0xeb,
//! 0x29, 0x75, 0x5, 0x2e, 0x8d, 0x65, 0xbd, 0xdd,
//! 0x15, 0xc3, 0xb5, 0x96, 0x41, 0x17, 0x4e, 0xc9,
//! 0x67, 0x8a, 0x53, 0x78, 0x9d, 0x92, 0xc7, 0x54,
//! ]);
//! let alice_box = ChaChaBox::new(&bob_public_key, &alice_secret_key);
//! let nonce = ChaChaBox::generate_nonce(&mut OsRng);
//!
//! // Message to encrypt
//! let plaintext = b"Top secret message we're encrypting".as_ref();
//!
//! // Encrypt the message using the box
//! let ciphertext = alice_box.encrypt(&nonce, plaintext).unwrap();
//!
//! //
//! // Decryption
//! //
//!
//! let bob_secret_key = SecretKey::from([
//! 0xb5, 0x81, 0xfb, 0x5a, 0xe1, 0x82, 0xa1, 0x6f,
//! 0x60, 0x3f, 0x39, 0x27, 0xd, 0x4e, 0x3b, 0x95,
//! 0xbc, 0x0, 0x83, 0x10, 0xb7, 0x27, 0xa1, 0x1d,
//! 0xd4, 0xe7, 0x84, 0xa0, 0x4, 0x4d, 0x46, 0x1b
//! ]);
//! let alice_public_key = PublicKey::from(alice_public_key_bytes);
//! let bob_box = ChaChaBox::new(&alice_public_key, &bob_secret_key);
//!
//! // Decrypt the message, using the same randomly generated nonce
//! let decrypted_plaintext = bob_box.decrypt(&nonce, ciphertext.as_slice()).unwrap();
//!
//! assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
//! # Ok(())
//! # }
//! ```
//!
//! ## In-place Usage (eliminates `alloc` requirement)
//!
//! This crate has an optional `alloc` feature which can be disabled in e.g.
//! microcontroller environments that don't have a heap.
//!
//! The [`AeadInPlace::encrypt_in_place`] and [`AeadInPlace::decrypt_in_place`]
//! methods accept any type that impls the [`aead::Buffer`] trait which
//! contains the plaintext for encryption or ciphertext for decryption.
//!
//! Note that if you enable the `heapless` feature of this crate,
//! you will receive an impl of `aead::Buffer` for [`heapless::Vec`]
//! (re-exported from the `aead` crate as `aead::heapless::Vec`),
//! which can then be passed as the `buffer` parameter to the in-place encrypt
//! and decrypt methods.
//!
//! A `heapless` usage example can be found in the documentation for the
//! `xsalsa20poly1305` crate:
//!
//! <https://docs.rs/xsalsa20poly1305/latest/xsalsa20poly1305/#in-place-usage-eliminates-alloc-requirement>
//!
//! [NaCl]: https://nacl.cr.yp.to/
//! [`crypto_box`]: https://nacl.cr.yp.to/box.html
//! [X25519]: https://cr.yp.to/ecdh.html
//! [XSalsa20Poly1305]: https://nacl.cr.yp.to/secretbox.html
//! [ECIES]: https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme
//! [`heapless::Vec`]: https://docs.rs/heapless/latest/heapless/struct.Vec.html
#[cfg(feature = "seal")]
extern crate alloc;
mod public_key;
mod secret_key;
pub use crate::{public_key::PublicKey, secret_key::SecretKey};
pub use aead;
pub use crypto_secretbox::Nonce;
use aead::{
consts::{U0, U16, U24, U32, U8},
generic_array::GenericArray,
AeadCore, AeadInPlace, Buffer, Error, KeyInit,
};
use crypto_secretbox::{
cipher::{IvSizeUser, KeyIvInit, KeySizeUser, StreamCipher},
Kdf, SecretBox,
};
use zeroize::Zeroizing;
#[cfg(feature = "chacha20")]
use chacha20::ChaCha20Legacy as ChaCha20;
#[cfg(feature = "salsa20")]
use salsa20::Salsa20;
/// Size of a `crypto_box` public or secret key in bytes.
pub const KEY_SIZE: usize = 32;
/// Poly1305 tag.
///
/// Implemented as an alias for [`GenericArray`].
pub type Tag = GenericArray<u8, U16>;
/// Size of a Poly1305 tag in bytes.
#[cfg(feature = "seal")]
const TAG_SIZE: usize = 16;
#[cfg(feature = "seal")]
/// Extra bytes for the ciphertext of a `crypto_box_seal` compared to the plaintext
pub const SEALBYTES: usize = KEY_SIZE + TAG_SIZE;
/// [`CryptoBox`] instantiated with the ChaCha20 stream cipher.
#[cfg(feature = "chacha20")]
pub type ChaChaBox = CryptoBox<ChaCha20>;
/// [`CryptoBox`] instantiated with with the Salsa20 stream cipher.
#[cfg(feature = "salsa20")]
pub type SalsaBox = CryptoBox<Salsa20>;
/// Public-key encryption scheme based on the [X25519] Elliptic Curve
/// Diffie-Hellman function and the [crypto_secretbox] authenticated encryption
/// cipher.
///
/// This type impls the [`aead::Aead`] trait, and otherwise functions as a
/// symmetric Authenticated Encryption with Associated Data (AEAD) cipher
/// once instantiated.
///
/// Note that additional associated data (AAD) is not supported and encryption
/// operations will return [`aead::Error`] if it is provided as an argument.
///
/// [X25519]: https://cr.yp.to/ecdh.html
/// [crypto_secretbox]: https://github.com/RustCrypto/nacl-compat/tree/master/crypto_secretbox
#[derive(Clone)]
pub struct CryptoBox<C> {
secretbox: SecretBox<C>,
}
impl<C> CryptoBox<C> {
/// Create a new [`CryptoBox`], performing X25519 Diffie-Hellman to derive
/// a shared secret from the provided public and secret keys.
pub fn new(public_key: &PublicKey, secret_key: &SecretKey) -> Self
where
C: Kdf,
{
let shared_secret = Zeroizing::new(secret_key.scalar * public_key.0);
// Use HChaCha20 to create a uniformly random key from the shared secret
let key = Zeroizing::new(C::kdf(
GenericArray::from_slice(&shared_secret.0),
&GenericArray::default(),
));
Self {
secretbox: SecretBox::<C>::new(&*key),
}
}
}
impl<C> AeadCore for CryptoBox<C> {
type NonceSize = U24;
type TagSize = U16;
type CiphertextOverhead = U0;
}
impl<C> AeadInPlace for CryptoBox<C>
where
C: Kdf + KeyIvInit + KeySizeUser<KeySize = U32> + IvSizeUser<IvSize = U8> + StreamCipher,
{
fn encrypt_in_place(
&self,
nonce: &GenericArray<u8, Self::NonceSize>,
associated_data: &[u8],
buffer: &mut dyn Buffer,
) -> Result<(), Error> {
self.secretbox
.encrypt_in_place(nonce, associated_data, buffer)
}
fn encrypt_in_place_detached(
&self,
nonce: &GenericArray<u8, Self::NonceSize>,
associated_data: &[u8],
buffer: &mut [u8],
) -> Result<Tag, Error> {
self.secretbox
.encrypt_in_place_detached(nonce, associated_data, buffer)
}
fn decrypt_in_place(
&self,
nonce: &GenericArray<u8, Self::NonceSize>,
associated_data: &[u8],
buffer: &mut dyn Buffer,
) -> Result<(), Error> {
self.secretbox
.decrypt_in_place(nonce, associated_data, buffer)
}
fn decrypt_in_place_detached(
&self,
nonce: &GenericArray<u8, Self::NonceSize>,
associated_data: &[u8],
buffer: &mut [u8],
tag: &Tag,
) -> Result<(), Error> {
self.secretbox
.decrypt_in_place_detached(nonce, associated_data, buffer, tag)
}
}
#[cfg(feature = "seal")]
fn get_seal_nonce(ephemeral_pk: &PublicKey, recipient_pk: &PublicKey) -> Nonce {
use blake2::{Blake2b, Digest};
let mut hasher = Blake2b::<U24>::new();
hasher.update(ephemeral_pk.as_bytes());
hasher.update(recipient_pk.as_bytes());
hasher.finalize()
}
#[cfg(test)]
mod tests {
use super::*;
#[cfg(feature = "serde")]
#[test]
fn test_public_key_serialization() {
use aead::rand_core::RngCore;
// Random PK bytes
let mut public_key_bytes = [0; 32];
let mut rng = rand::thread_rng();
rng.fill_bytes(&mut public_key_bytes);
// Create public key
let public_key = PublicKey::from(public_key_bytes);
// Round-trip serialize with bincode
let serialized = bincode::serialize(&public_key).unwrap();
let deserialized: PublicKey = bincode::deserialize(&serialized).unwrap();
assert_eq!(deserialized, public_key,);
// Round-trip serialize with rmp (msgpack)
let serialized = rmp_serde::to_vec_named(&public_key).unwrap();
let deserialized: PublicKey = rmp_serde::from_slice(&serialized).unwrap();
assert_eq!(deserialized, public_key,);
}
#[cfg(feature = "serde")]
#[test]
fn test_secret_key_serialization() {
use aead::rand_core::RngCore;
// Random SK bytes
let mut secret_key_bytes = [0; 32];
let mut rng = rand::thread_rng();
rng.fill_bytes(&mut secret_key_bytes);
// Create secret key
let secret_key = SecretKey::from(secret_key_bytes);
// Round-trip serialize with bincode
let serialized = bincode::serialize(&secret_key).unwrap();
let deserialized: SecretKey = bincode::deserialize(&serialized).unwrap();
assert_eq!(deserialized.to_bytes(), secret_key.to_bytes());
// Round-trip serialize with rmp (msgpack)
let serialized = rmp_serde::to_vec_named(&secret_key).unwrap();
let deserialized: SecretKey = rmp_serde::from_slice(&serialized).unwrap();
assert_eq!(deserialized.to_bytes(), secret_key.to_bytes());
}
#[test]
fn test_public_key_from_slice() {
let array = [0; 40];
// Returns None for empty array
assert!(PublicKey::from_slice(&[]).is_err());
// Returns None for length <32
for i in 1..=31 {
assert!(PublicKey::from_slice(&array[..i]).is_err());
}
// Succeeds for length 32
assert!(PublicKey::from_slice(&array[..32]).is_ok());
// Returns None for length >32
for i in 33..=40 {
assert!(PublicKey::from_slice(&array[..i]).is_err());
}
}
}