wasmtime/runtime/
type_registry.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
//! Implement a registry of types: function, struct, and array definitions.
//!
//! Helps implement fast indirect call signature checking, reference type
//! downcasting, and etc...

use crate::hash_set::HashSet;
use crate::prelude::*;
use crate::sync::RwLock;
use crate::vm::GcRuntime;
use crate::Engine;
use alloc::borrow::Cow;
use alloc::sync::Arc;
use core::iter;
use core::{
    borrow::Borrow,
    fmt::{self, Debug},
    hash::{Hash, Hasher},
    ops::Range,
    sync::atomic::{
        AtomicBool, AtomicUsize,
        Ordering::{AcqRel, Acquire, Release},
    },
};
use wasmtime_environ::{
    iter_entity_range,
    packed_option::{PackedOption, ReservedValue},
    EngineOrModuleTypeIndex, GcLayout, ModuleInternedTypeIndex, ModuleTypes, PrimaryMap,
    SecondaryMap, TypeTrace, VMSharedTypeIndex, WasmRecGroup, WasmSubType,
};
use wasmtime_slab::{Id as SlabId, Slab};

// ### Notes on the Lifetime Management of Types
//
// All defined types from all Wasm modules loaded into Wasmtime are interned
// into their engine's `TypeRegistry`.
//
// With Wasm MVP, managing type lifetimes within the registry was easy: we only
// cared about canonicalizing types so that `call_indirect` was fast and we
// didn't waste memory on many copies of the same function type definition.
// Function types could only take and return simple scalars (i32/f64/etc...) and
// there were no type-to-type references. We could simply deduplicate function
// types and reference count their entries in the registry.
//
// The typed function references and GC proposals change everything. The former
// introduced function types that take a reference to a function of another
// specific type. This is a type-to-type reference. The latter introduces struct
// and array types that can have references to other struct, array, and function
// types, as well as recursion groups that allow cyclic references between
// types. Now type canonicalization additionally enables fast type checks and
// downcasts *across* modules: so that two modules which define the same struct
// type, for example, can pass instances of that struct type to each other, and
// we can quickly check that those instances are in fact of the expected types.
//
// But how do we manage the lifetimes of types that can reference other types as
// Wasm modules are dynamically loaded and unloaded from the engine? These
// modules can define subsets of the same types and there can be cyclic type
// references. Dynamic lifetimes, sharing, and cycles is a classic combination
// of constraints that push a design towards a tracing garbage collector (or,
// equivalently, a reference-counting collector with a cycle collector).
//
// However, we can rely on the following properties:
//
// 1. The unit of type canonicalization is a whole recursion group.
//
// 2. Type-to-type reference cycles may only happen within a recursion group and
//    therefore type-to-type references across recursion groups are acyclic.
//
// Therefore, our type registry makes the following design decisions:
//
// * We manage the lifetime of whole recursion groups, not individual
//   types. That is, every type in the recursion group stays alive as long as
//   any type in the recursion group is kept alive. This is effectively mandated
//   by property (1) and the hash consing it implies.
//
// * We still use naive reference counting to manage the lifetimes of recursion
//   groups. A type-to-type reference that crosses the boundary from recursion
//   group A to recursion group B will increment B's reference count when A is
//   first registered and decrement B's reference count when A is removed from
//   the registry. Because of property (2) we don't need to worry about cycles,
//   which are the classic weakness of reference counting.

/// Represents a collection of shared types.
///
/// This is used to register shared types with a shared type registry.
///
/// The collection will unregister any contained types with the registry
/// when dropped.
pub struct TypeCollection {
    engine: Engine,
    rec_groups: Vec<RecGroupEntry>,
    types: PrimaryMap<ModuleInternedTypeIndex, VMSharedTypeIndex>,
    trampolines: SecondaryMap<VMSharedTypeIndex, PackedOption<ModuleInternedTypeIndex>>,
}

impl Debug for TypeCollection {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let TypeCollection {
            engine: _,
            rec_groups,
            types,
            trampolines,
        } = self;
        f.debug_struct("TypeCollection")
            .field("rec_groups", rec_groups)
            .field("types", types)
            .field("trampolines", trampolines)
            .finish_non_exhaustive()
    }
}

impl Engine {
    /// Registers the given types in this engine, re-canonicalizing them for
    /// runtime usage.
    pub(crate) fn register_and_canonicalize_types<'a, I>(
        &self,
        module_types: &mut ModuleTypes,
        env_modules: I,
    ) -> TypeCollection
    where
        I: IntoIterator<Item = &'a mut wasmtime_environ::Module>,
        I::IntoIter: ExactSizeIterator,
    {
        let engine = self.clone();
        let registry = engine.signatures();
        let gc_runtime = engine.gc_runtime().ok().map(|rt| &**rt);
        let (rec_groups, types) = registry
            .0
            .write()
            .register_module_types(gc_runtime, module_types);

        // First, register the types in this engine's registry.
        log::trace!("Begin building module's shared-to-module-trampoline-types map");
        let mut trampolines = SecondaryMap::with_capacity(types.len());
        for (module_ty, module_trampoline_ty) in module_types.trampoline_types() {
            let shared_ty = types[module_ty];
            let trampoline_shared_ty = registry.trampoline_type(shared_ty);
            trampolines[trampoline_shared_ty] = Some(module_trampoline_ty).into();
            log::trace!("--> shared_to_module_trampolines[{trampoline_shared_ty:?}] = {module_trampoline_ty:?}");
        }
        log::trace!("Done building module's shared-to-module-trampoline-types map");

        // Second, re-canonicalize those types for runtime usage in this engine,
        // replacing `ModuleInternedTypeIndex`es with the `VMSharedTypeIndex`es
        // we just registered.
        module_types.canonicalize_for_runtime_usage(&mut |idx| types[idx]);

        // Third, re-canonicalize the types in our `wasmtime_environ::Module`s
        // to point to the just-registered engine type indices.
        for module in env_modules {
            module.canonicalize_for_runtime_usage(&mut |idx| types[idx]);
        }

        TypeCollection {
            engine,
            rec_groups,
            types,
            trampolines,
        }
    }
}

impl TypeCollection {
    /// Treats the type collection as a map from a module type index to
    /// registered shared type indexes.
    ///
    /// This is used for looking up module shared type indexes during module
    /// instantiation.
    pub fn as_module_map(&self) -> &PrimaryMap<ModuleInternedTypeIndex, VMSharedTypeIndex> {
        &self.types
    }

    /// Gets the shared type index given a module type index.
    #[inline]
    pub fn shared_type(&self, index: ModuleInternedTypeIndex) -> Option<VMSharedTypeIndex> {
        let shared_ty = self.types.get(index).copied();
        log::trace!("TypeCollection::shared_type({index:?}) -> {shared_ty:?}");
        shared_ty
    }

    /// Get the module-level type index of the trampoline type for the given
    /// engine-level function type, if any.
    ///
    /// This allows callers to look up the pre-compiled wasm-to-native
    /// trampoline in this type collection's associated module.
    ///
    /// See the docs for `WasmFuncType::trampoline_type` for details on
    /// trampoline types.
    #[inline]
    pub fn trampoline_type(&self, ty: VMSharedTypeIndex) -> Option<ModuleInternedTypeIndex> {
        let trampoline_ty = self.trampolines[ty].expand();
        log::trace!("TypeCollection::trampoline_type({ty:?}) -> {trampoline_ty:?}");
        trampoline_ty
    }
}

impl Drop for TypeCollection {
    fn drop(&mut self) {
        if !self.rec_groups.is_empty() {
            self.engine
                .signatures()
                .0
                .write()
                .unregister_type_collection(self);
        }
    }
}

#[inline]
fn shared_type_index_to_slab_id(index: VMSharedTypeIndex) -> SlabId {
    assert!(!index.is_reserved_value());
    SlabId::from_raw(index.bits())
}

#[inline]
fn slab_id_to_shared_type_index(id: SlabId) -> VMSharedTypeIndex {
    let index = VMSharedTypeIndex::new(id.into_raw());
    assert!(!index.is_reserved_value());
    index
}

/// A Wasm type that has been registered in the engine's `TypeRegistry`.
///
/// Prevents its associated type from being unregistered while it is alive.
///
/// Automatically unregisters the type on drop. (Unless other `RegisteredTypes`
/// are keeping the type registered).
///
/// Dereferences to its underlying `WasmSubType`.
pub struct RegisteredType {
    engine: Engine,
    entry: RecGroupEntry,
    ty: Arc<WasmSubType>,
    index: VMSharedTypeIndex,
    layout: Option<GcLayout>,
}

impl Debug for RegisteredType {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let RegisteredType {
            engine: _,
            entry: _,
            ty,
            index,
            layout,
        } = self;
        f.debug_struct("RegisteredType")
            .field("index", index)
            .field("ty", ty)
            .field("layout", layout)
            .finish_non_exhaustive()
    }
}

impl Clone for RegisteredType {
    fn clone(&self) -> Self {
        self.entry.incref("cloning RegisteredType");
        RegisteredType {
            engine: self.engine.clone(),
            entry: self.entry.clone(),
            ty: self.ty.clone(),
            index: self.index,
            layout: self.layout.clone(),
        }
    }
}

impl Drop for RegisteredType {
    fn drop(&mut self) {
        if self.entry.decref("dropping RegisteredType") {
            self.engine
                .signatures()
                .0
                .write()
                .unregister_entry(self.entry.clone());
        }
    }
}

impl core::ops::Deref for RegisteredType {
    type Target = WasmSubType;

    fn deref(&self) -> &Self::Target {
        &self.ty
    }
}

impl PartialEq for RegisteredType {
    fn eq(&self, other: &Self) -> bool {
        let eq = self.index == other.index && Engine::same(&self.engine, &other.engine);

        if cfg!(debug_assertions) && eq {
            // If they are the same, then their rec group entries and
            // `WasmSubType`s had better also be the same.
            assert!(Arc::ptr_eq(&self.entry.0, &other.entry.0));
            assert_eq!(self.ty, other.ty);
        }

        eq
    }
}

impl Eq for RegisteredType {}

impl Hash for RegisteredType {
    fn hash<H: Hasher>(&self, state: &mut H) {
        let ptr = Arc::as_ptr(&self.entry.0);
        ptr.hash(state);
    }
}

impl RegisteredType {
    /// Constructs a new `RegisteredType`, registering the given type with the
    /// engine's `TypeRegistry`.
    pub fn new(engine: &Engine, ty: WasmSubType) -> RegisteredType {
        let (entry, index, ty, layout) = {
            log::trace!("RegisteredType::new({ty:?})");

            let gc_runtime = engine.gc_runtime().ok().map(|rt| &**rt);
            let mut inner = engine.signatures().0.write();

            // It shouldn't be possible for users to construct non-canonical
            // types via the embedding API, and the only other types they can
            // get are already-canonicalized types from modules, so we shouldn't
            // ever get non-canonical types here. Furthermore, this is only
            // called internally to Wasmtime, so we shouldn't ever have an
            // engine mismatch; those should be caught earlier.
            inner.assert_canonicalized_for_runtime_usage_in_this_registry(&ty);

            let entry = inner.register_singleton_rec_group(gc_runtime, ty);

            let index = entry.0.shared_type_indices[0];
            let id = shared_type_index_to_slab_id(index);
            let ty = inner.types[id].clone();
            let layout = inner.type_to_gc_layout.get(index).and_then(|l| l.clone());

            (entry, index, ty, layout)
        };

        RegisteredType::from_parts(engine.clone(), entry, index, ty, layout)
    }

    /// Create an owning handle to the given index's associated type.
    ///
    /// This will prevent the associated type from being unregistered as long as
    /// the returned `RegisteredType` is kept alive.
    ///
    /// Returns `None` if `index` is not registered in the given engine's
    /// registry.
    pub fn root(engine: &Engine, index: VMSharedTypeIndex) -> Option<RegisteredType> {
        let (entry, ty, layout) = {
            let id = shared_type_index_to_slab_id(index);
            let inner = engine.signatures().0.read();

            let ty = inner.types.get(id)?.clone();
            let entry = inner.type_to_rec_group[index].clone().unwrap();
            let layout = inner.type_to_gc_layout.get(index).and_then(|l| l.clone());

            // NB: make sure to incref while the lock is held to prevent:
            //
            // * This thread: read locks registry, gets entry E, unlocks registry
            // * Other thread: drops `RegisteredType` for entry E, decref
            //   reaches zero, write locks registry, unregisters entry
            // * This thread: increfs entry, but it isn't in the registry anymore
            entry.incref("RegisteredType::root");

            (entry, ty, layout)
        };

        Some(RegisteredType::from_parts(
            engine.clone(),
            entry,
            index,
            ty,
            layout,
        ))
    }

    /// Construct a new `RegisteredType`.
    ///
    /// It is the caller's responsibility to ensure that the entry's reference
    /// count has already been incremented.
    fn from_parts(
        engine: Engine,
        entry: RecGroupEntry,
        index: VMSharedTypeIndex,
        ty: Arc<WasmSubType>,
        layout: Option<GcLayout>,
    ) -> Self {
        log::trace!(
            "RegisteredType::from_parts({engine:?}, {entry:?}, {index:?}, {ty:?}, {layout:?})"
        );
        debug_assert!(entry.0.registrations.load(Acquire) != 0);
        RegisteredType {
            engine,
            entry,
            ty,
            index,
            layout,
        }
    }

    /// Get the engine whose registry this type is registered within.
    pub fn engine(&self) -> &Engine {
        &self.engine
    }

    /// Get this registered type's index.
    pub fn index(&self) -> VMSharedTypeIndex {
        self.index
    }

    /// Get this registered type's GC layout, if any.
    ///
    /// Only struct and array types have GC layouts; function types do not have
    /// layouts.
    #[cfg(feature = "gc")]
    pub fn layout(&self) -> Option<&GcLayout> {
        self.layout.as_ref()
    }
}

/// An entry in the type registry.
///
/// Implements `Borrow`, `Eq`, and `Hash` by forwarding to the underlying Wasm
/// rec group, so that this can be a hash consing key. (We can't use
/// `Arc<RecGroupEntryInner>` directly for this purpose because `Arc<T>` doesn't
/// implement `Borrow<U>` when `T: Borrow<U>`).
#[derive(Clone)]
struct RecGroupEntry(Arc<RecGroupEntryInner>);

impl Debug for RecGroupEntry {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        struct Ptr<'a, P>(&'a P);
        impl<P: fmt::Pointer> Debug for Ptr<'_, P> {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                write!(f, "{:#p}", *self.0)
            }
        }

        f.debug_struct("RecGroupEntry")
            .field("ptr", &Ptr(&self.0))
            .field("shared_type_indices", &self.0.shared_type_indices)
            .field("hash_consing_key", &self.0.hash_consing_key)
            .field("registrations", &self.0.registrations.load(Acquire))
            .finish()
    }
}

struct RecGroupEntryInner {
    /// The Wasm rec group, canonicalized for hash consing.
    hash_consing_key: WasmRecGroup,

    /// The shared type indices for each type in this rec group.
    shared_type_indices: Box<[VMSharedTypeIndex]>,

    /// The number of times that this entry has been registered in the
    /// `TypeRegistryInner`.
    ///
    /// This is an atomic counter so that cloning a `RegisteredType`, and
    /// temporarily keeping a type registered, doesn't require locking the full
    /// registry.
    registrations: AtomicUsize,

    /// Whether this entry has already been unregistered from the
    /// `TypeRegistryInner`.
    ///
    /// This flag exists to detect and avoid double-unregistration bugs that
    /// could otherwise occur in rare cases. See the comments in
    /// `TypeRegistryInner::unregister_type` for details.
    unregistered: AtomicBool,
}

impl PartialEq for RecGroupEntry {
    fn eq(&self, other: &Self) -> bool {
        self.0.hash_consing_key == other.0.hash_consing_key
    }
}

impl Eq for RecGroupEntry {}

impl Hash for RecGroupEntry {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.0.hash_consing_key.hash(state);
    }
}

impl Borrow<WasmRecGroup> for RecGroupEntry {
    fn borrow(&self) -> &WasmRecGroup {
        &self.0.hash_consing_key
    }
}

impl RecGroupEntry {
    /// Increment the registration count.
    fn incref(&self, why: &str) {
        let old_count = self.0.registrations.fetch_add(1, AcqRel);
        log::trace!(
            "increment registration count for {self:?} (registrations -> {}): {why}",
            old_count + 1
        );
    }

    /// Decrement the registration count and return `true` if the registration
    /// count reached zero and this entry should be removed from the registry.
    #[must_use = "caller must remove entry from registry if `decref` returns `true`"]
    fn decref(&self, why: &str) -> bool {
        let old_count = self.0.registrations.fetch_sub(1, AcqRel);
        debug_assert_ne!(old_count, 0);
        log::trace!(
            "decrement registration count for {self:?} (registrations -> {}): {why}",
            old_count - 1
        );
        old_count == 1
    }
}

#[derive(Debug, Default)]
struct TypeRegistryInner {
    // A hash map from a canonicalized-for-hash-consing rec group to its
    // `VMSharedTypeIndex`es.
    //
    // There is an entry in this map for every rec group we have already
    // registered. Before registering new rec groups, we first check this map to
    // see if we've already registered an identical rec group that we should
    // reuse instead.
    hash_consing_map: HashSet<RecGroupEntry>,

    // A map from `VMSharedTypeIndex::bits()` to the type index's associated
    // Wasm type.
    //
    // These types are always canonicalized for runtime usage.
    types: Slab<Arc<WasmSubType>>,

    // A map that lets you walk backwards from a `VMSharedTypeIndex` to its
    // `RecGroupEntry`.
    type_to_rec_group: SecondaryMap<VMSharedTypeIndex, Option<RecGroupEntry>>,

    // A map from a registered type to its complete list of supertypes.
    //
    // The supertypes are ordered from super- to subtype, i.e. the immediate
    // parent supertype is the last element and the least-upper-bound of all
    // supertypes is the first element.
    //
    // Types without any supertypes are omitted from this map. This means that
    // we never allocate any backing storage for this map when Wasm GC is not in
    // use.
    type_to_supertypes: SecondaryMap<VMSharedTypeIndex, Option<Box<[VMSharedTypeIndex]>>>,

    // A map from each registered function type to its trampoline type.
    //
    // Note that when a function type is its own trampoline type, then we omit
    // the entry in this map as a memory optimization. This means that if only
    // core Wasm function types are ever used, then we will never allocate any
    // backing storage for this map. As a nice bonus, this also avoids cycles (a
    // function type referencing itself) that our naive reference counting
    // doesn't play well with.
    type_to_trampoline: SecondaryMap<VMSharedTypeIndex, PackedOption<VMSharedTypeIndex>>,

    // A map from each registered GC type to its layout.
    //
    // Function types do not have an entry in this map. Similar to the
    // `type_to_{supertypes,trampoline}` maps, we completely omit the `None`
    // entries for these types as a memory optimization.
    type_to_gc_layout: SecondaryMap<VMSharedTypeIndex, Option<GcLayout>>,

    // An explicit stack of entries that we are in the middle of dropping. Used
    // to avoid recursion when dropping a type that is holding the last
    // reference to another type, etc...
    drop_stack: Vec<RecGroupEntry>,
}

impl TypeRegistryInner {
    fn register_module_types(
        &mut self,
        gc_runtime: Option<&dyn GcRuntime>,
        types: &ModuleTypes,
    ) -> (
        Vec<RecGroupEntry>,
        PrimaryMap<ModuleInternedTypeIndex, VMSharedTypeIndex>,
    ) {
        log::trace!("Start registering module types");

        let mut entries = Vec::with_capacity(types.rec_groups().len());
        let mut map = PrimaryMap::<ModuleInternedTypeIndex, VMSharedTypeIndex>::with_capacity(
            types.wasm_types().len(),
        );

        for (_rec_group_index, module_group) in types.rec_groups() {
            let entry = self.register_rec_group(
                gc_runtime,
                &map,
                module_group.clone(),
                iter_entity_range(module_group.clone()).map(|ty| types[ty].clone()),
            );

            for (module_ty, engine_ty) in
                iter_entity_range(module_group).zip(entry.0.shared_type_indices.iter())
            {
                let module_ty2 = map.push(*engine_ty);
                assert_eq!(module_ty, module_ty2);
            }

            entries.push(entry);
        }

        log::trace!("End registering module types");

        (entries, map)
    }

    /// Register a rec group in this registry.
    ///
    /// The rec group may be either module-level canonical (i.e. straight from
    /// `wasmparser`) or engine-level canonicalized for runtime usage in this
    /// registry. It may *not* be engine-level canonicalized for hash consing or
    /// engine-level canonicalized for a different type registry instance.
    ///
    /// If this rec group is determined to be a duplicate of an
    /// already-registered rec group, the existing rec group is reused.
    ///
    /// Parameters:
    ///
    /// * `map`: A map that we use to canonicalize inter-group type references
    ///   from module-canonical to engine-canonical indices. This must contain
    ///   entries for each inter-group type reference that this rec group
    ///   contains.
    ///
    /// * `range`: The range of (module-level) types defined by this rec
    ///   group. This is used to determine which type references inside this rec
    ///   group are inter- vs intra-group.
    ///
    /// * `types`: The types defined within this rec group. Must have the same
    ///   length as `range`.
    ///
    /// The returned entry will have already had its reference count incremented
    /// on behalf of callers.
    fn register_rec_group(
        &mut self,
        gc_runtime: Option<&dyn GcRuntime>,
        map: &PrimaryMap<ModuleInternedTypeIndex, VMSharedTypeIndex>,
        range: Range<ModuleInternedTypeIndex>,
        types: impl ExactSizeIterator<Item = WasmSubType>,
    ) -> RecGroupEntry {
        debug_assert_eq!(iter_entity_range(range.clone()).len(), types.len());

        let mut non_canon_types = Vec::with_capacity(types.len());
        let hash_consing_key = WasmRecGroup {
            types: types
                .zip(iter_entity_range(range.clone()))
                .map(|(mut ty, module_index)| {
                    non_canon_types.push((module_index, ty.clone()));
                    ty.canonicalize_for_hash_consing(range.clone(), &mut |idx| {
                        debug_assert!(idx < range.clone().start);
                        map[idx]
                    });
                    ty
                })
                .collect::<Box<[_]>>(),
        };

        // If we've already registered this rec group before, reuse it.
        if let Some(entry) = self.hash_consing_map.get(&hash_consing_key) {
            assert_eq!(entry.0.unregistered.load(Acquire), false);
            entry.incref(
                "hash consed to already-registered type in `TypeRegistryInner::register_rec_group`",
            );
            return entry.clone();
        }

        // Inter-group edges: increment the referenced group's ref
        // count, because these other rec groups shouldn't be dropped
        // while this rec group is still alive.
        hash_consing_key
            .trace_engine_indices::<_, ()>(&mut |index| {
                let other_entry = &self.type_to_rec_group[index].as_ref().unwrap();
                assert_eq!(other_entry.0.unregistered.load(Acquire), false);
                other_entry.incref(
                    "new cross-group type reference to existing type in `register_rec_group`",
                );
                Ok(())
            })
            .unwrap();

        // Register the individual types.
        //
        // Note that we can't update the reverse type-to-rec-group map until
        // after we've constructed the `RecGroupEntry`, since that map needs to
        // the fully-constructed entry for its values.
        let module_rec_group_start = range.start;
        let engine_rec_group_start = u32::try_from(self.types.len()).unwrap();
        let shared_type_indices: Box<[_]> = non_canon_types
            .into_iter()
            .map(|(module_index, mut ty)| {
                ty.canonicalize_for_runtime_usage(&mut |idx| {
                    if idx < module_rec_group_start {
                        map[idx]
                    } else {
                        let rec_group_offset = idx.as_u32() - module_rec_group_start.as_u32();
                        let index =
                            VMSharedTypeIndex::from_u32(engine_rec_group_start + rec_group_offset);
                        assert!(!index.is_reserved_value());
                        index
                    }
                });
                self.insert_one_type_from_rec_group(gc_runtime, module_index, ty)
            })
            .collect();

        debug_assert_eq!(
            shared_type_indices.len(),
            shared_type_indices
                .iter()
                .copied()
                .inspect(|ty| assert!(!ty.is_reserved_value()))
                .collect::<crate::hash_set::HashSet<_>>()
                .len(),
            "should not have any duplicate type indices",
        );

        let entry = RecGroupEntry(Arc::new(RecGroupEntryInner {
            hash_consing_key,
            shared_type_indices,
            registrations: AtomicUsize::new(1),
            unregistered: AtomicBool::new(false),
        }));
        log::trace!("create new entry {entry:?} (registrations -> 1)");

        let is_new_entry = self.hash_consing_map.insert(entry.clone());
        debug_assert!(is_new_entry);

        // Now that we've constructed the entry, we can update the reverse
        // type-to-rec-group map.
        for ty in entry.0.shared_type_indices.iter().copied() {
            debug_assert!(self.type_to_rec_group[ty].is_none());
            self.type_to_rec_group[ty] = Some(entry.clone());
        }

        // Finally, make sure to register the trampoline type for each function
        // type in the rec group.
        for shared_type_index in entry.0.shared_type_indices.iter().copied() {
            let slab_id = shared_type_index_to_slab_id(shared_type_index);
            let sub_ty = &self.types[slab_id];
            if let Some(f) = sub_ty.as_func() {
                let trampoline = f.trampoline_type();
                match &trampoline {
                    Cow::Borrowed(_) if sub_ty.is_final && sub_ty.supertype.is_none() => {
                        // The function type is its own trampoline type. Leave
                        // its entry in `type_to_trampoline` empty to signal
                        // this.
                        log::trace!(
                            "function type is its own trampoline type: \n\
                             --> trampoline_type[{shared_type_index:?}] = {shared_type_index:?}\n\
                             --> trampoline_type[{f}] = {f}"
                        );
                    }
                    Cow::Borrowed(_) | Cow::Owned(_) => {
                        // This will recursively call into rec group
                        // registration, but at most once since trampoline
                        // function types are their own trampoline type.
                        let trampoline_entry = self.register_singleton_rec_group(
                            gc_runtime,
                            WasmSubType {
                                is_final: true,
                                supertype: None,
                                composite_type: wasmtime_environ::WasmCompositeType {
                                    shared: sub_ty.composite_type.shared,
                                    inner: wasmtime_environ::WasmCompositeInnerType::Func(
                                        trampoline.into_owned(),
                                    ),
                                },
                            },
                        );
                        let trampoline_index = trampoline_entry.0.shared_type_indices[0];
                        log::trace!(
                            "Registering trampoline type:\n\
                             --> trampoline_type[{shared_type_index:?}] = {trampoline_index:?}\n\
                             --> trampoline_type[{f}] = {g}",
                            f = {
                                let slab_id = shared_type_index_to_slab_id(shared_type_index);
                                self.types[slab_id].unwrap_func()
                            },
                            g = {
                                let slab_id = shared_type_index_to_slab_id(trampoline_index);
                                self.types[slab_id].unwrap_func()
                            }
                        );
                        debug_assert_ne!(shared_type_index, trampoline_index);
                        self.type_to_trampoline[shared_type_index] = Some(trampoline_index).into();
                    }
                }
            }
        }

        entry
    }

    /// Is the given type canonicalized for runtime usage this registry?
    fn assert_canonicalized_for_runtime_usage_in_this_registry(&self, ty: &WasmSubType) {
        ty.trace::<_, ()>(&mut |index| match index {
            EngineOrModuleTypeIndex::RecGroup(_) | EngineOrModuleTypeIndex::Module(_) => {
                panic!("not canonicalized for runtime usage: {ty:?}")
            }
            EngineOrModuleTypeIndex::Engine(idx) => {
                let id = shared_type_index_to_slab_id(idx);
                assert!(
                    self.types.contains(id),
                    "canonicalized in a different engine? {ty:?}"
                );
                Ok(())
            }
        })
        .unwrap();
    }

    /// Insert a new type as part of registering a new rec group.
    ///
    /// The type must be canonicalized for runtime usage in this registry and
    /// its rec group must be a new one that we are currently registering, not
    /// an already-registered rec group.
    fn insert_one_type_from_rec_group(
        &mut self,
        gc_runtime: Option<&dyn GcRuntime>,
        module_index: ModuleInternedTypeIndex,
        ty: WasmSubType,
    ) -> VMSharedTypeIndex {
        // Despite being canonicalized for runtime usage, this type may still
        // have forward references to other types in the rec group we haven't
        // yet registered. Therefore, we can't use our usual
        // `assert_canonicalized_for_runtime_usage_in_this_registry` helper here
        // as that will see the forward references and think they must be
        // references to types in other registries.
        assert!(
            ty.is_canonicalized_for_runtime_usage(),
            "type is not canonicalized for runtime usage: {ty:?}"
        );

        assert!(!ty.composite_type.shared);
        let gc_layout = match &ty.composite_type.inner {
            wasmtime_environ::WasmCompositeInnerType::Func(_) => None,
            wasmtime_environ::WasmCompositeInnerType::Array(a) => Some(
                gc_runtime
                    .expect("must have a GC runtime to register array types")
                    .layouts()
                    .array_layout(a)
                    .into(),
            ),
            wasmtime_environ::WasmCompositeInnerType::Struct(s) => Some(
                gc_runtime
                    .expect("must have a GC runtime to register array types")
                    .layouts()
                    .struct_layout(s)
                    .into(),
            ),
            wasmtime_environ::WasmCompositeInnerType::Cont(_) => todo!(), // FIXME: #10248 stack switching support.
        };

        // Add the type to our slab.
        let id = self.types.alloc(Arc::new(ty));
        let engine_index = slab_id_to_shared_type_index(id);
        log::trace!(
            "registered type {module_index:?} as {engine_index:?} = {:?}",
            &self.types[id]
        );

        // Create the supertypes list for this type.
        if let Some(supertype) = self.types[id].supertype {
            let supertype = supertype.unwrap_engine_type_index();
            let supers_supertypes = self.supertypes(supertype);
            let mut supertypes = Vec::with_capacity(supers_supertypes.len() + 1);
            supertypes.extend(
                supers_supertypes
                    .iter()
                    .copied()
                    .chain(iter::once(supertype)),
            );
            self.type_to_supertypes[engine_index] = Some(supertypes.into_boxed_slice());
        }

        // Only write the type-to-gc-layout entry if we have a GC layout, so
        // that the map can avoid any heap allocation for backing storage in the
        // case where Wasm GC is disabled.
        if let Some(layout) = gc_layout {
            self.type_to_gc_layout[engine_index] = Some(layout);
        }

        engine_index
    }

    /// Get the supertypes list for the given type.
    ///
    /// The supertypes are listed in super-to-sub order. `ty` itself is not
    /// included in the list.
    fn supertypes(&self, ty: VMSharedTypeIndex) -> &[VMSharedTypeIndex] {
        self.type_to_supertypes
            .get(ty)
            .and_then(|s| s.as_deref())
            .unwrap_or(&[])
    }

    /// Register a rec group consisting of a single type.
    ///
    /// The type must already be canonicalized for runtime usage in this
    /// registry.
    ///
    /// The returned entry will have already had its reference count incremented
    /// on behalf of callers.
    fn register_singleton_rec_group(
        &mut self,
        gc_runtime: Option<&dyn GcRuntime>,
        ty: WasmSubType,
    ) -> RecGroupEntry {
        self.assert_canonicalized_for_runtime_usage_in_this_registry(&ty);

        // This type doesn't have any module-level type references, since it is
        // already canonicalized for runtime usage in this registry, so an empty
        // map suffices.
        let map = PrimaryMap::default();

        // This must have `range.len() == 1`, even though we know this type
        // doesn't have any intra-group type references, to satisfy
        // `register_rec_group`'s preconditions.
        let range = ModuleInternedTypeIndex::from_bits(u32::MAX - 1)
            ..ModuleInternedTypeIndex::from_bits(u32::MAX);

        self.register_rec_group(gc_runtime, &map, range, iter::once(ty))
    }

    /// Unregister all of a type collection's rec groups.
    fn unregister_type_collection(&mut self, collection: &TypeCollection) {
        for entry in &collection.rec_groups {
            if entry.decref("TypeRegistryInner::unregister_type_collection") {
                self.unregister_entry(entry.clone());
            }
        }
    }

    /// Remove a zero-refcount entry from the registry.
    ///
    /// This does *not* decrement the entry's registration count, it should
    /// instead be invoked only after a previous decrement operation observed
    /// zero remaining registrations.
    fn unregister_entry(&mut self, entry: RecGroupEntry) {
        debug_assert!(self.drop_stack.is_empty());

        // There are two races to guard against before we can unregister the
        // entry, even though it was on the drop stack:
        //
        // 1. Although an entry has to reach zero registrations before it is
        //    enqueued in the drop stack, we need to double check whether the
        //    entry is *still* at zero registrations. This is because someone
        //    else can resurrect the entry in between when the
        //    zero-registrations count was first observed and when we actually
        //    acquire the lock to unregister it. In this example, we have
        //    threads A and B, an existing rec group entry E, and a rec group
        //    entry E' that is a duplicate of E:
        //
        //    Thread A                        | Thread B
        //    --------------------------------+-----------------------------
        //    acquire(type registry lock)     |
        //                                    |
        //                                    | decref(E) --> 0
        //                                    |
        //                                    | block_on(type registry lock)
        //                                    |
        //    register(E') == incref(E) --> 1 |
        //                                    |
        //    release(type registry lock)     |
        //                                    |
        //                                    | acquire(type registry lock)
        //                                    |
        //                                    | unregister(E)         !!!!!!
        //
        //    If we aren't careful, we can unregister a type while it is still
        //    in use!
        //
        //    The fix in this case is that we skip unregistering the entry if
        //    its reference count is non-zero, since that means it was
        //    concurrently resurrected and is now in use again.
        //
        // 2. In a slightly more convoluted version of (1), where an entry is
        //    resurrected but then dropped *again*, someone might attempt to
        //    unregister an entry a second time:
        //
        //    Thread A                        | Thread B
        //    --------------------------------|-----------------------------
        //    acquire(type registry lock)     |
        //                                    |
        //                                    | decref(E) --> 0
        //                                    |
        //                                    | block_on(type registry lock)
        //                                    |
        //    register(E') == incref(E) --> 1 |
        //                                    |
        //    release(type registry lock)     |
        //                                    |
        //    decref(E) --> 0                 |
        //                                    |
        //    acquire(type registry lock)     |
        //                                    |
        //    unregister(E)                   |
        //                                    |
        //    release(type registry lock)     |
        //                                    |
        //                                    | acquire(type registry lock)
        //                                    |
        //                                    | unregister(E)         !!!!!!
        //
        //    If we aren't careful, we can unregister a type twice, which leads
        //    to panics and registry corruption!
        //
        //    To detect this scenario and avoid the double-unregistration bug,
        //    we maintain an `unregistered` flag on entries. We set this flag
        //    once an entry is unregistered and therefore, even if it is
        //    enqueued in the drop stack multiple times, we only actually
        //    unregister the entry the first time.
        //
        // A final note: we don't need to worry about any concurrent
        // modifications during the middle of this function's execution, only
        // between (a) when we first observed a zero-registrations count and
        // decided to unregister the type, and (b) when we acquired the type
        // registry's lock so that we could perform that unregistration. This is
        // because this method has exclusive access to `&mut self` -- that is,
        // we have a write lock on the whole type registry -- and therefore no
        // one else can create new references to this zero-registration entry
        // and bring it back to life (which would require finding it in
        // `self.hash_consing_map`, which no one else has access to, because we
        // now have an exclusive lock on `self`).

        // Handle scenario (1) from above.
        let registrations = entry.0.registrations.load(Acquire);
        if registrations != 0 {
            log::trace!(
                "{entry:?} was concurrently resurrected and no longer has \
                 zero registrations (registrations -> {registrations})",
            );
            assert_eq!(entry.0.unregistered.load(Acquire), false);
            return;
        }

        // Handle scenario (2) from above.
        if entry.0.unregistered.load(Acquire) {
            log::trace!(
                "{entry:?} was concurrently resurrected, dropped again, \
                 and already unregistered"
            );
            return;
        }

        // Okay, we are really going to unregister this entry. Enqueue it on the
        // drop stack.
        self.drop_stack.push(entry);

        // Keep unregistering entries until the drop stack is empty. This is
        // logically a recursive process where if we unregister a type that was
        // the only thing keeping another type alive, we then recursively
        // unregister that other type as well. However, we use this explicit
        // drop stack to avoid recursion and the potential stack overflows that
        // recursion implies.
        while let Some(entry) = self.drop_stack.pop() {
            log::trace!("Start unregistering {entry:?}");

            // All entries on the drop stack should *really* be ready for
            // unregistration, since no one can resurrect entries once we've
            // locked the registry.
            assert_eq!(entry.0.registrations.load(Acquire), 0);
            assert_eq!(entry.0.unregistered.load(Acquire), false);

            // We are taking responsibility for unregistering this entry, so
            // prevent anyone else from attempting to do it again.
            entry.0.unregistered.store(true, Release);

            // Decrement any other types that this type was shallowly
            // (i.e. non-transitively) referencing and keeping alive. If this
            // was the last thing keeping them registered, its okay to
            // unregister them as well now.
            debug_assert!(entry.0.hash_consing_key.is_canonicalized_for_hash_consing());
            entry
                .0
                .hash_consing_key
                .trace_engine_indices::<_, ()>(&mut |other_index| {
                    let other_entry = self.type_to_rec_group[other_index].as_ref().unwrap();
                    if other_entry.decref(
                        "referenced by dropped entry in \
                         `TypeCollection::unregister_entry`",
                    ) {
                        self.drop_stack.push(other_entry.clone());
                    }
                    Ok(())
                })
                .unwrap();

            // Remove the entry from the hash-consing map. If we register a
            // duplicate definition of this rec group again in the future, it
            // will be as if it is the first time it has ever been registered,
            // and it will be inserted into the hash-consing map again at that
            // time.
            self.hash_consing_map.remove(&entry);

            // Similarly, remove the rec group's types from the registry, as
            // well as their entries from the reverse type-to-rec-group
            // map. Additionally, stop holding a strong reference from each
            // function type in the rec group to that function type's trampoline
            // type.
            debug_assert_eq!(
                entry.0.shared_type_indices.len(),
                entry
                    .0
                    .shared_type_indices
                    .iter()
                    .copied()
                    .inspect(|ty| assert!(!ty.is_reserved_value()))
                    .collect::<crate::hash_set::HashSet<_>>()
                    .len(),
                "should not have any duplicate type indices",
            );
            for ty in entry.0.shared_type_indices.iter().copied() {
                log::trace!("removing {ty:?} from registry");

                let removed_entry = self.type_to_rec_group[ty].take();
                debug_assert_eq!(removed_entry.unwrap(), entry);

                // Remove the associated trampoline type, if any.
                if let Some(trampoline_ty) =
                    self.type_to_trampoline.get(ty).and_then(|x| x.expand())
                {
                    self.type_to_trampoline[ty] = None.into();
                    let trampoline_entry = self.type_to_rec_group[trampoline_ty].as_ref().unwrap();
                    if trampoline_entry
                        .decref("removing reference from a function type to its trampoline type")
                    {
                        self.drop_stack.push(trampoline_entry.clone());
                    }
                }

                // Remove the type's supertypes list, if any. Take care to guard
                // this assignment so that we don't accidentally force the
                // secondary map to allocate even when we never actually use
                // Wasm GC.
                if self.type_to_supertypes.get(ty).is_some() {
                    self.type_to_supertypes[ty] = None;
                }

                // Same as above, but for the type's GC layout.
                if self.type_to_gc_layout.get(ty).is_some() {
                    self.type_to_gc_layout[ty] = None;
                }

                let id = shared_type_index_to_slab_id(ty);
                self.types.dealloc(id);
            }

            log::trace!("End unregistering {entry:?}");
        }
    }
}

// `TypeRegistryInner` implements `Drop` in debug builds to assert that
// all types have been unregistered for the registry.
#[cfg(debug_assertions)]
impl Drop for TypeRegistryInner {
    fn drop(&mut self) {
        log::trace!("Dropping type registry: {self:#?}");
        let TypeRegistryInner {
            hash_consing_map,
            types,
            type_to_rec_group,
            type_to_supertypes,
            type_to_trampoline,
            type_to_gc_layout,
            drop_stack,
        } = self;
        assert!(
            hash_consing_map.is_empty(),
            "type registry not empty: hash consing map is not empty: {hash_consing_map:#?}"
        );
        assert!(
            types.is_empty(),
            "type registry not empty: types slab is not empty: {types:#?}"
        );
        assert!(
            type_to_rec_group.is_empty() || type_to_rec_group.values().all(|x| x.is_none()),
            "type registry not empty: type-to-rec-group map is not empty: {type_to_rec_group:#?}"
        );
        assert!(
            type_to_supertypes.is_empty() || type_to_supertypes.values().all(|x| x.is_none()),
            "type registry not empty: type-to-supertypes map is not empty: {type_to_supertypes:#?}"
        );
        assert!(
            type_to_trampoline.is_empty() || type_to_trampoline.values().all(|x| x.is_none()),
            "type registry not empty: type-to-trampoline map is not empty: {type_to_trampoline:#?}"
        );
        assert!(
            type_to_gc_layout.is_empty() || type_to_gc_layout.values().all(|x| x.is_none()),
            "type registry not empty: type-to-gc-layout map is not empty: {type_to_gc_layout:#?}"
        );
        assert!(
            drop_stack.is_empty(),
            "type registry not empty: drop stack is not empty: {drop_stack:#?}"
        );
    }
}

/// Implements a shared type registry.
///
/// WebAssembly requires that the caller and callee types in an indirect
/// call must match. To implement this efficiently, keep a registry of all
/// types, shared by all instances, so that call sites can just do an
/// index comparison.
#[derive(Debug)]
pub struct TypeRegistry(RwLock<TypeRegistryInner>);

impl TypeRegistry {
    /// Creates a new shared type registry.
    pub fn new() -> Self {
        Self(RwLock::new(TypeRegistryInner::default()))
    }

    /// Looks up a function type from a shared type index.
    ///
    /// This does *NOT* prevent the type from being unregistered while you are
    /// still using the resulting value! Use the `RegisteredType::root`
    /// constructor if you need to ensure that property and you don't have some
    /// other mechanism already keeping the type registered.
    pub fn borrow(&self, index: VMSharedTypeIndex) -> Option<Arc<WasmSubType>> {
        let id = shared_type_index_to_slab_id(index);
        let inner = self.0.read();
        inner.types.get(id).cloned()
    }

    /// Get the GC layout for the given index's type.
    ///
    /// Returns `None` for types that do not have GC layouts (i.e. function
    /// types).
    pub fn layout(&self, index: VMSharedTypeIndex) -> Option<GcLayout> {
        let inner = self.0.read();
        inner.type_to_gc_layout.get(index).and_then(|l| l.clone())
    }

    /// Get the trampoline type for the given function type index.
    ///
    /// Panics for non-function type indices.
    pub fn trampoline_type(&self, index: VMSharedTypeIndex) -> VMSharedTypeIndex {
        let slab_id = shared_type_index_to_slab_id(index);
        let inner = self.0.read();

        let ty = &inner.types[slab_id];
        debug_assert!(
            ty.is_func(),
            "cannot get the trampoline type of a non-function type: {index:?} = {ty:?}"
        );

        let trampoline_ty = match inner.type_to_trampoline.get(index).and_then(|x| x.expand()) {
            Some(ty) => ty,
            None => {
                // The function type is its own trampoline type.
                index
            }
        };
        log::trace!("TypeRegistry::trampoline_type({index:?}) -> {trampoline_ty:?}");
        trampoline_ty
    }

    /// Is type `sub` a subtype of `sup`?
    #[inline]
    pub fn is_subtype(&self, sub: VMSharedTypeIndex, sup: VMSharedTypeIndex) -> bool {
        if sub == sup {
            return true;
        }

        self.is_subtype_slow(sub, sup)
    }

    fn is_subtype_slow(&self, sub: VMSharedTypeIndex, sup: VMSharedTypeIndex) -> bool {
        // Do the O(1) subtype checking trick:
        //
        // In a type system with single inheritance, the subtyping relationships
        // between all types form a set of trees. The root of each tree is a
        // type that has no supertype; each node's immediate children are the
        // types that directly subtype that node.
        //
        // For example, consider these types:
        //
        //     class Base {}
        //     class A subtypes Base {}
        //     class B subtypes Base {}
        //     class C subtypes A {}
        //     class D subtypes A {}
        //     class E subtypes C {}
        //
        // These types produce the following tree:
        //
        //                Base
        //               /    \
        //              A      B
        //             / \
        //            C   D
        //           /
        //          E
        //
        // Note the following properties:
        //
        // 1. If `sub` is a subtype of `sup` (either directly or transitively)
        //    then `sup` *must* be on the path from `sub` up to the root of
        //    `sub`'s tree.
        //
        // 2. Additionally, `sup` *must* be the `i`th node down from the root in
        //    that path, where `i` is the length of the path from `sup` to its
        //    tree's root.
        //
        // Therefore, if we have the path to the root for each type (we do) then
        // we can simply check if `sup` is at index `supertypes(sup).len()`
        // within `supertypes(sub)`.
        let inner = self.0.read();
        let sub_supertypes = inner.supertypes(sub);
        let sup_supertypes = inner.supertypes(sup);
        sub_supertypes.get(sup_supertypes.len()) == Some(&sup)
    }
}