wasmtime/runtime/vm/
byte_count.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
use core::fmt;

use super::host_page_size;

/// A number of bytes that's guaranteed to be aligned to the host page size.
///
/// This is used to manage page-aligned memory allocations.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct HostAlignedByteCount(
    // Invariant: this is always a multiple of the host page size.
    usize,
);

impl HostAlignedByteCount {
    /// A zero byte count.
    pub const ZERO: Self = Self(0);

    /// Creates a new `HostAlignedByteCount` from an aligned byte count.
    ///
    /// Returns an error if `bytes` is not page-aligned.
    pub fn new(bytes: usize) -> Result<Self, ByteCountNotAligned> {
        let host_page_size = host_page_size();
        if bytes % host_page_size == 0 {
            Ok(Self(bytes))
        } else {
            Err(ByteCountNotAligned(bytes))
        }
    }

    /// Creates a new `HostAlignedByteCount` from an aligned byte count without
    /// checking validity.
    ///
    /// ## Safety
    ///
    /// The caller must ensure that `bytes` is page-aligned.
    pub unsafe fn new_unchecked(bytes: usize) -> Self {
        debug_assert!(
            bytes % host_page_size() == 0,
            "byte count {bytes} is not page-aligned (page size = {})",
            host_page_size(),
        );
        Self(bytes)
    }

    /// Creates a new `HostAlignedByteCount`, rounding up to the nearest page.
    ///
    /// Returns an error if `bytes + page_size - 1` overflows.
    pub fn new_rounded_up(bytes: usize) -> Result<Self, ByteCountOutOfBounds> {
        let page_size = host_page_size();
        debug_assert!(page_size.is_power_of_two());
        match bytes.checked_add(page_size - 1) {
            Some(v) => Ok(Self(v & !(page_size - 1))),
            None => Err(ByteCountOutOfBounds(ByteCountOutOfBoundsKind::RoundUp)),
        }
    }

    /// Creates a new `HostAlignedByteCount` from a `u64`, rounding up to the nearest page.
    ///
    /// Returns an error if the `u64` overflows `usize`, or if `bytes +
    /// page_size - 1` overflows.
    pub fn new_rounded_up_u64(bytes: u64) -> Result<Self, ByteCountOutOfBounds> {
        let bytes = bytes
            .try_into()
            .map_err(|_| ByteCountOutOfBounds(ByteCountOutOfBoundsKind::ConvertU64))?;
        Self::new_rounded_up(bytes)
    }

    /// Returns the host page size.
    pub fn host_page_size() -> HostAlignedByteCount {
        // The host page size is always a multiple of itself.
        HostAlignedByteCount(host_page_size())
    }

    /// Returns true if the page count is zero.
    #[inline]
    pub fn is_zero(self) -> bool {
        self == Self::ZERO
    }

    /// Returns the number of bytes as a `usize`.
    #[inline]
    pub fn byte_count(self) -> usize {
        self.0
    }

    /// Add two aligned byte counts together.
    ///
    /// Returns an error if the result overflows.
    pub fn checked_add(self, bytes: HostAlignedByteCount) -> Result<Self, ByteCountOutOfBounds> {
        // aligned + aligned = aligned
        self.0
            .checked_add(bytes.0)
            .map(Self)
            .ok_or(ByteCountOutOfBounds(ByteCountOutOfBoundsKind::Add))
    }

    // Note: saturating_add should not be naively added! usize::MAX is not a
    // power of 2 so is not aligned.

    /// Compute `self - bytes`.
    ///
    /// Returns an error if the result underflows.
    pub fn checked_sub(self, bytes: HostAlignedByteCount) -> Result<Self, ByteCountOutOfBounds> {
        // aligned - aligned = aligned
        self.0
            .checked_sub(bytes.0)
            .map(Self)
            .ok_or_else(|| ByteCountOutOfBounds(ByteCountOutOfBoundsKind::Sub))
    }

    /// Compute `self - bytes`, returning zero if the result underflows.
    #[inline]
    pub fn saturating_sub(self, bytes: HostAlignedByteCount) -> Self {
        // aligned - aligned = aligned, and 0 is always aligned.
        Self(self.0.saturating_sub(bytes.0))
    }

    /// Multiply an aligned byte count by a scalar value.
    ///
    /// Returns an error if the result overflows.
    pub fn checked_mul(self, scalar: usize) -> Result<Self, ByteCountOutOfBounds> {
        // aligned * scalar = aligned
        self.0
            .checked_mul(scalar)
            .map(Self)
            .ok_or_else(|| ByteCountOutOfBounds(ByteCountOutOfBoundsKind::Mul))
    }

    /// Divide an aligned byte count by another aligned byte count, producing a
    /// scalar value.
    ///
    /// Returns an error in case the divisor is zero.
    pub fn checked_div(self, divisor: HostAlignedByteCount) -> Result<usize, ByteCountOutOfBounds> {
        self.0
            .checked_div(divisor.0)
            .ok_or_else(|| ByteCountOutOfBounds(ByteCountOutOfBoundsKind::Div))
    }

    /// Compute the remainder of an aligned byte count divided by another
    /// aligned byte count.
    ///
    /// The remainder is always an aligned byte count itself.
    ///
    /// Returns an error in case the divisor is zero.
    pub fn checked_rem(self, divisor: HostAlignedByteCount) -> Result<Self, ByteCountOutOfBounds> {
        // Why is the remainder an aligned byte count? For example, if the page
        // size is 4KiB, then the remainder of dividing (say) 40KiB by 16KiB is
        // 8KiB, which is a multiple of 4KiB.
        //
        // More generally, for integers n >= 0, m > 0, k > 0:
        //
        //     (n * k) % (m * k) = (n % m) * k
        //
        // which is a multiple of k. Here, k is the host page size, so the
        // remainder is a multiple of the host page size.
        self.0
            .checked_rem(divisor.0)
            .map(Self)
            .ok_or_else(|| ByteCountOutOfBounds(ByteCountOutOfBoundsKind::Rem))
    }

    /// Unchecked multiplication by a scalar value.
    ///
    /// ## Safety
    ///
    /// The result must not overflow.
    #[inline]
    pub unsafe fn unchecked_mul(self, n: usize) -> Self {
        Self(self.0 * n)
    }
}

impl PartialEq<usize> for HostAlignedByteCount {
    #[inline]
    fn eq(&self, other: &usize) -> bool {
        self.0 == *other
    }
}

impl PartialEq<HostAlignedByteCount> for usize {
    #[inline]
    fn eq(&self, other: &HostAlignedByteCount) -> bool {
        *self == other.0
    }
}

struct LowerHexDisplay<T>(T);

impl<T: fmt::LowerHex> fmt::Display for LowerHexDisplay<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Use the LowerHex impl as the Display impl, ensuring that there's
        // always a 0x in the beginning (i.e. that the alternate formatter is
        // used.)
        if f.alternate() {
            fmt::LowerHex::fmt(&self.0, f)
        } else {
            // Unfortunately, fill and alignment aren't respected this way, but
            // it's quite hard to construct a new formatter with mostly the same
            // options but the alternate flag set.
            // https://github.com/rust-lang/rust/pull/118159 would make this
            // easier.
            write!(f, "{:#x}", self.0)
        }
    }
}

impl fmt::Display for HostAlignedByteCount {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Use the LowerHex impl as the Display impl, ensuring that there's
        // always a 0x in the beginning (i.e. that the alternate formatter is
        // used.)
        fmt::Display::fmt(&LowerHexDisplay(self.0), f)
    }
}

impl fmt::LowerHex for HostAlignedByteCount {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::LowerHex::fmt(&self.0, f)
    }
}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ByteCountNotAligned(usize);

impl fmt::Display for ByteCountNotAligned {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "byte count not page-aligned: {}",
            LowerHexDisplay(self.0)
        )
    }
}

impl core::error::Error for ByteCountNotAligned {}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct ByteCountOutOfBounds(ByteCountOutOfBoundsKind);

impl fmt::Display for ByteCountOutOfBounds {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl core::error::Error for ByteCountOutOfBounds {}

#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum ByteCountOutOfBoundsKind {
    // We don't carry the arguments that errored out to avoid the error type
    // becoming too big.
    RoundUp,
    ConvertU64,
    Add,
    Sub,
    Mul,
    Div,
    Rem,
}

impl fmt::Display for ByteCountOutOfBoundsKind {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            ByteCountOutOfBoundsKind::RoundUp => f.write_str("byte count overflow rounding up"),
            ByteCountOutOfBoundsKind::ConvertU64 => {
                f.write_str("byte count overflow converting u64")
            }
            ByteCountOutOfBoundsKind::Add => f.write_str("byte count overflow during addition"),
            ByteCountOutOfBoundsKind::Sub => f.write_str("byte count underflow during subtraction"),
            ByteCountOutOfBoundsKind::Mul => {
                f.write_str("byte count overflow during multiplication")
            }
            ByteCountOutOfBoundsKind::Div => f.write_str("division by zero"),
            ByteCountOutOfBoundsKind::Rem => f.write_str("remainder by zero"),
        }
    }
}

#[cfg(test)]
mod proptest_impls {
    use super::*;

    use proptest::prelude::*;

    impl Arbitrary for HostAlignedByteCount {
        type Strategy = BoxedStrategy<Self>;
        type Parameters = ();

        fn arbitrary_with(_: ()) -> Self::Strategy {
            // Compute the number of pages that fit in a usize, rounded down.
            // For example, if:
            //
            // * usize::MAX is 2**64 - 1
            // * host_page_size is 2**12 (4KiB)
            //
            // Then page_count = floor(usize::MAX / host_page_size) = 2**52 - 1.
            // The range 0..=page_count, when multiplied by the page size, will
            // produce values in the range 0..=(2**64 - 2**12), in steps of
            // 2**12, uniformly at random. This is the desired uniform
            // distribution of byte counts.
            let page_count = usize::MAX / host_page_size();
            (0..=page_count)
                .prop_map(|n| HostAlignedByteCount::new(n * host_page_size()).unwrap())
                .boxed()
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn byte_count_display() {
        // Pages should hopefully be 64k or smaller.
        let byte_count = HostAlignedByteCount::new(65536).unwrap();

        assert_eq!(format!("{byte_count}"), "0x10000");
        assert_eq!(format!("{byte_count:x}"), "10000");
        assert_eq!(format!("{byte_count:#x}"), "0x10000");
    }

    #[test]
    fn byte_count_ops() {
        let host_page_size = host_page_size();
        HostAlignedByteCount::new(0).expect("0 is aligned");
        HostAlignedByteCount::new(host_page_size).expect("host_page_size is aligned");
        HostAlignedByteCount::new(host_page_size * 2).expect("host_page_size * 2 is aligned");
        HostAlignedByteCount::new(host_page_size + 1)
            .expect_err("host_page_size + 1 is not aligned");
        HostAlignedByteCount::new(host_page_size / 2)
            .expect_err("host_page_size / 2 is not aligned");

        // Rounding up.
        HostAlignedByteCount::new_rounded_up(usize::MAX).expect_err("usize::MAX overflows");
        assert_eq!(
            HostAlignedByteCount::new_rounded_up(usize::MAX - host_page_size)
                .expect("(usize::MAX - 1 page) is in bounds"),
            HostAlignedByteCount::new((usize::MAX - host_page_size) + 1)
                .expect("usize::MAX is 2**N - 1"),
        );

        // Addition.
        let half_max = HostAlignedByteCount::new((usize::MAX >> 1) + 1)
            .expect("(usize::MAX >> 1) + 1 is aligned");
        half_max
            .checked_add(HostAlignedByteCount::host_page_size())
            .expect("half max + page size is in bounds");
        half_max
            .checked_add(half_max)
            .expect_err("half max + half max is out of bounds");

        // Subtraction.
        let half_max_minus_one = half_max
            .checked_sub(HostAlignedByteCount::host_page_size())
            .expect("(half_max - 1 page) is in bounds");
        assert_eq!(
            half_max.checked_sub(half_max),
            Ok(HostAlignedByteCount::ZERO)
        );
        assert_eq!(
            half_max.checked_sub(half_max_minus_one),
            Ok(HostAlignedByteCount::host_page_size())
        );
        half_max_minus_one
            .checked_sub(half_max)
            .expect_err("(half_max - 1 page) - half_max is out of bounds");

        // Multiplication.
        half_max
            .checked_mul(2)
            .expect_err("half max * 2 is out of bounds");
        half_max_minus_one
            .checked_mul(2)
            .expect("(half max - 1 page) * 2 is in bounds");
    }
}