regalloc2/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
/*
 * The following license applies to this file, which derives many
 * details (register and constraint definitions, for example) from the
 * files `BacktrackingAllocator.h`, `BacktrackingAllocator.cpp`,
 * `LIR.h`, and possibly definitions in other related files in
 * `js/src/jit/`:
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 */

#![allow(dead_code)]
#![no_std]

#[cfg(feature = "std")]
extern crate std;

extern crate alloc;

// Even when trace logging is disabled, the trace macro has a significant
// performance cost so we disable it in release builds.
macro_rules! trace {
    ($($tt:tt)*) => {
        if cfg!(feature = "trace-log") {
            ::log::trace!($($tt)*);
        }
    };
}

macro_rules! trace_enabled {
    () => {
        cfg!(feature = "trace-log") && ::log::log_enabled!(::log::Level::Trace)
    };
}

use core::hash::BuildHasherDefault;
use rustc_hash::FxHasher;
type FxHashMap<K, V> = hashbrown::HashMap<K, V, BuildHasherDefault<FxHasher>>;
type FxHashSet<V> = hashbrown::HashSet<V, BuildHasherDefault<FxHasher>>;

pub(crate) mod cfg;
pub(crate) mod domtree;
pub mod indexset;
pub(crate) mod ion;
pub(crate) mod moves;
pub(crate) mod postorder;
pub mod ssa;

#[macro_use]
mod index;

use alloc::vec::Vec;
pub use index::{Block, Inst, InstRange};

pub mod checker;

#[cfg(feature = "fuzzing")]
pub mod fuzzing;

#[cfg(feature = "enable-serde")]
pub mod serialize;

#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};

/// Register classes.
///
/// Every value has a "register class", which is like a type at the
/// register-allocator level. Every register must belong to only one
/// class; i.e., they are disjoint.
///
/// For tight bit-packing throughout our data structures, we support
/// only three classes, "int", "float" and "vector". Usually two will
/// be enough on modern machines, as they have one class of general-purpose
/// integer registers of machine width (e.g. 64 bits), and another
/// class of float/vector registers used both for FP and for vector
/// operations. Additionally for machines with totally separate vector
/// registers a third class is provided.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum RegClass {
    Int = 0,
    Float = 1,
    Vector = 2,
}

/// A physical register. Contains a physical register number and a class.
///
/// The `hw_enc` field contains the physical register number and is in
/// a logically separate index space per class; in other words, Int
/// register 0 is different than Float register 0.
///
/// Because of bit-packed encodings throughout the implementation,
/// `hw_enc` must fit in 6 bits, i.e., at most 64 registers per class.
///
/// The value returned by `index()`, in contrast, is in a single index
/// space shared by all classes, in order to enable uniform reasoning
/// about physical registers. This is done by putting the class bit at
/// the MSB, or equivalently, declaring that indices 0..=63 are the 64
/// integer registers and indices 64..=127 are the 64 float registers.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct PReg {
    bits: u8,
}

impl PReg {
    pub const MAX_BITS: usize = 6;
    pub const MAX: usize = (1 << Self::MAX_BITS) - 1;
    pub const NUM_INDEX: usize = 1 << (Self::MAX_BITS + 2); // including RegClass bits

    /// Create a new PReg. The `hw_enc` range is 6 bits.
    #[inline(always)]
    pub const fn new(hw_enc: usize, class: RegClass) -> Self {
        debug_assert!(hw_enc <= PReg::MAX);
        PReg {
            bits: ((class as u8) << Self::MAX_BITS) | (hw_enc as u8),
        }
    }

    /// The physical register number, as encoded by the ISA for the particular register class.
    #[inline(always)]
    pub const fn hw_enc(self) -> usize {
        self.bits as usize & Self::MAX
    }

    /// The register class.
    #[inline(always)]
    pub const fn class(self) -> RegClass {
        match (self.bits >> Self::MAX_BITS) & 0b11 {
            0 => RegClass::Int,
            1 => RegClass::Float,
            2 => RegClass::Vector,
            _ => unreachable!(),
        }
    }

    /// Get an index into the (not necessarily contiguous) index space of
    /// all physical registers. Allows one to maintain an array of data for
    /// all PRegs and index it efficiently.
    #[inline(always)]
    pub const fn index(self) -> usize {
        self.bits as usize
    }

    /// Construct a PReg from the value returned from `.index()`.
    #[inline(always)]
    pub const fn from_index(index: usize) -> Self {
        PReg {
            bits: (index & (Self::NUM_INDEX - 1)) as u8,
        }
    }

    /// Return the "invalid PReg", which can be used to initialize
    /// data structures.
    #[inline(always)]
    pub const fn invalid() -> Self {
        PReg::new(Self::MAX, RegClass::Int)
    }
}

impl core::fmt::Debug for PReg {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(
            f,
            "PReg(hw = {}, class = {:?}, index = {})",
            self.hw_enc(),
            self.class(),
            self.index()
        )
    }
}

impl core::fmt::Display for PReg {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let class = match self.class() {
            RegClass::Int => "i",
            RegClass::Float => "f",
            RegClass::Vector => "v",
        };
        write!(f, "p{}{}", self.hw_enc(), class)
    }
}

/// A type for internal bit arrays.
type Bits = u64;

/// A physical register set. Used to represent clobbers
/// efficiently.
///
/// The set is `Copy` and is guaranteed to have constant, and small,
/// size, as it is based on a bitset internally.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct PRegSet {
    bits: [Bits; Self::LEN],
}

impl PRegSet {
    /// The number of bits per element in the internal bit array.
    const BITS: usize = core::mem::size_of::<Bits>() * 8;

    /// Length of the internal bit array.
    const LEN: usize = (PReg::NUM_INDEX + Self::BITS - 1) / Self::BITS;

    /// Create an empty set.
    pub const fn empty() -> Self {
        Self {
            bits: [0; Self::LEN],
        }
    }

    /// Splits the given register index into parts to access the internal bit array.
    const fn split_index(reg: PReg) -> (usize, usize) {
        let index = reg.index();
        (index >> Self::BITS.ilog2(), index & (Self::BITS - 1))
    }

    /// Returns whether the given register is part of the set.
    pub fn contains(&self, reg: PReg) -> bool {
        let (index, bit) = Self::split_index(reg);
        self.bits[index] & (1 << bit) != 0
    }

    /// Add a physical register (PReg) to the set, returning the new value.
    pub const fn with(self, reg: PReg) -> Self {
        let (index, bit) = Self::split_index(reg);
        let mut out = self;
        out.bits[index] |= 1 << bit;
        out
    }

    /// Add a physical register (PReg) to the set.
    pub fn add(&mut self, reg: PReg) {
        let (index, bit) = Self::split_index(reg);
        self.bits[index] |= 1 << bit;
    }

    /// Remove a physical register (PReg) from the set.
    pub fn remove(&mut self, reg: PReg) {
        let (index, bit) = Self::split_index(reg);
        self.bits[index] &= !(1 << bit);
    }

    /// Add all of the registers in one set to this one, mutating in
    /// place.
    pub fn union_from(&mut self, other: PRegSet) {
        for i in 0..self.bits.len() {
            self.bits[i] |= other.bits[i];
        }
    }
}

impl IntoIterator for PRegSet {
    type Item = PReg;
    type IntoIter = PRegSetIter;
    fn into_iter(self) -> PRegSetIter {
        PRegSetIter {
            bits: self.bits,
            cur: 0,
        }
    }
}

pub struct PRegSetIter {
    bits: [Bits; PRegSet::LEN],
    cur: usize,
}

impl Iterator for PRegSetIter {
    type Item = PReg;
    fn next(&mut self) -> Option<PReg> {
        loop {
            let bits = self.bits.get_mut(self.cur)?;
            if *bits != 0 {
                let bit = bits.trailing_zeros();
                *bits &= !(1 << bit);
                let index = bit as usize + self.cur * PRegSet::BITS;
                return Some(PReg::from_index(index));
            }
            self.cur += 1;
        }
    }
}

impl From<&MachineEnv> for PRegSet {
    fn from(env: &MachineEnv) -> Self {
        let mut res = Self::default();

        for class in env.preferred_regs_by_class.iter() {
            for preg in class {
                res.add(*preg)
            }
        }

        for class in env.non_preferred_regs_by_class.iter() {
            for preg in class {
                res.add(*preg)
            }
        }

        res
    }
}

/// A virtual register. Contains a virtual register number and a
/// class.
///
/// A virtual register ("vreg") corresponds to an SSA value. All
/// dataflow in the input program is specified via flow through a
/// virtual register; even uses of specially-constrained locations,
/// such as fixed physical registers, are done by using vregs, because
/// we need the vreg's live range in order to track the use of that
/// location.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VReg {
    bits: u32,
}

impl VReg {
    pub const MAX_BITS: usize = 21;
    pub const MAX: usize = (1 << Self::MAX_BITS) - 1;

    #[inline(always)]
    pub const fn new(virt_reg: usize, class: RegClass) -> Self {
        debug_assert!(virt_reg <= VReg::MAX);
        VReg {
            bits: ((virt_reg as u32) << 2) | (class as u8 as u32),
        }
    }

    #[inline(always)]
    pub const fn vreg(self) -> usize {
        let vreg = (self.bits >> 2) as usize;
        vreg
    }

    #[inline(always)]
    pub const fn class(self) -> RegClass {
        match self.bits & 0b11 {
            0 => RegClass::Int,
            1 => RegClass::Float,
            2 => RegClass::Vector,
            _ => unreachable!(),
        }
    }

    #[inline(always)]
    pub const fn invalid() -> Self {
        VReg::new(Self::MAX, RegClass::Int)
    }
}

impl core::fmt::Debug for VReg {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(
            f,
            "VReg(vreg = {}, class = {:?})",
            self.vreg(),
            self.class()
        )
    }
}

impl core::fmt::Display for VReg {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "v{}", self.vreg())
    }
}

/// A spillslot is a space in the stackframe used by the allocator to
/// temporarily store a value.
///
/// The allocator is responsible for allocating indices in this space,
/// and will specify how many spillslots have been used when the
/// allocation is completed.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct SpillSlot {
    bits: u32,
}

impl SpillSlot {
    /// The maximum spillslot index.
    pub const MAX: usize = (1 << 24) - 1;

    /// Create a new SpillSlot.
    #[inline(always)]
    pub fn new(slot: usize) -> Self {
        debug_assert!(slot <= Self::MAX);
        SpillSlot { bits: slot as u32 }
    }

    /// Get the spillslot index for this spillslot.
    #[inline(always)]
    pub fn index(self) -> usize {
        (self.bits & 0x00ffffff) as usize
    }

    /// Get the spillslot `offset` slots away.
    #[inline(always)]
    pub fn plus(self, offset: usize) -> Self {
        SpillSlot::new(self.index() + offset)
    }

    /// Get the invalid spillslot, used for initializing data structures.
    #[inline(always)]
    pub fn invalid() -> Self {
        SpillSlot { bits: 0xffff_ffff }
    }

    /// Is this the invalid spillslot?
    #[inline(always)]
    pub fn is_invalid(self) -> bool {
        self == Self::invalid()
    }

    /// Is this a valid spillslot (not `SpillSlot::invalid()`)?
    #[inline(always)]
    pub fn is_valid(self) -> bool {
        self != Self::invalid()
    }
}

impl core::fmt::Display for SpillSlot {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "stack{}", self.index())
    }
}

/// An `OperandConstraint` specifies where a vreg's value must be
/// placed at a particular reference to that vreg via an
/// `Operand`. The constraint may be loose -- "any register of a given
/// class", for example -- or very specific, such as "this particular
/// physical register". The allocator's result will always satisfy all
/// given constraints; however, if the input has a combination of
/// constraints that are impossible to satisfy, then allocation may
/// fail or the allocator may panic (providing impossible constraints
/// is usually a programming error in the client, rather than a
/// function of bad input).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum OperandConstraint {
    /// Any location is fine (register or stack slot).
    Any,
    /// Operand must be in a register. Register is read-only for Uses.
    Reg,
    /// Operand must be in a fixed register.
    FixedReg(PReg),
    /// On defs only: reuse a use's register.
    Reuse(usize),
}

impl core::fmt::Display for OperandConstraint {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        match self {
            Self::Any => write!(f, "any"),
            Self::Reg => write!(f, "reg"),
            Self::FixedReg(preg) => write!(f, "fixed({})", preg),
            Self::Reuse(idx) => write!(f, "reuse({})", idx),
        }
    }
}

/// The "kind" of the operand: whether it reads a vreg (Use) or writes
/// a vreg (Def).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum OperandKind {
    Def = 0,
    Use = 1,
}

/// The "position" of the operand: where it has its read/write
/// effects. These are positions "in" the instruction, and "early" and
/// "late" are relative to the instruction's main effect or
/// computation. In other words, the allocator assumes that the
/// instruction (i) performs all reads and writes of "early" operands,
/// (ii) does its work, and (iii) performs all reads and writes of its
/// "late" operands.
///
/// A "write" (def) at "early" or a "read" (use) at "late" may be
/// slightly nonsensical, given the above, if the read is necessary
/// for the computation or the write is a result of it. A way to think
/// of it is that the value (even if a result of execution) *could*
/// have been read or written at the given location without causing
/// any register-usage conflicts. In other words, these write-early or
/// use-late operands ensure that the particular allocations are valid
/// for longer than usual and that a register is not reused between
/// the use (normally complete at "Early") and the def (normally
/// starting at "Late"). See `Operand` for more.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum OperandPos {
    Early = 0,
    Late = 1,
}

/// An `Operand` encodes everything about a mention of a register in
/// an instruction: virtual register number, and any constraint that
/// applies to the register at this program point.
///
/// An Operand may be a use or def (this corresponds to `LUse` and
/// `LAllocation` in Ion).
///
/// Generally, regalloc2 considers operands to have their effects at
/// one of two points that exist in an instruction: "Early" or
/// "Late". All operands at a given program-point are assigned
/// non-conflicting locations based on their constraints. Each operand
/// has a "kind", one of use/def/mod, corresponding to
/// read/write/read-write, respectively.
///
/// Usually, an instruction's inputs will be "early uses" and outputs
/// will be "late defs", though there are valid use-cases for other
/// combinations too. For example, a single "instruction" seen by the
/// regalloc that lowers into multiple machine instructions and reads
/// some of its inputs after it starts to write outputs must either
/// make those input(s) "late uses" or those output(s) "early defs" so
/// that the conflict (overlap) is properly accounted for. See
/// comments on the constructors below for more.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Operand {
    /// Bit-pack into 32 bits.
    ///
    /// constraint:7 kind:1 pos:1 class:2 vreg:21
    ///
    /// where `constraint` is an `OperandConstraint`, `kind` is an
    /// `OperandKind`, `pos` is an `OperandPos`, `class` is a
    /// `RegClass`, and `vreg` is a vreg index.
    ///
    /// The constraints are encoded as follows:
    /// - 1xxxxxx => FixedReg(preg)
    /// - 01xxxxx => Reuse(index)
    /// - 0000000 => Any
    /// - 0000001 => Reg
    /// - 0000010 => Stack
    /// - _ => Unused for now
    bits: u32,
}

impl Operand {
    /// Construct a new operand.
    #[inline(always)]
    pub fn new(
        vreg: VReg,
        constraint: OperandConstraint,
        kind: OperandKind,
        pos: OperandPos,
    ) -> Self {
        let constraint_field = match constraint {
            OperandConstraint::Any => 0,
            OperandConstraint::Reg => 1,
            OperandConstraint::FixedReg(preg) => {
                debug_assert_eq!(preg.class(), vreg.class());
                0b1000000 | preg.hw_enc() as u32
            }
            OperandConstraint::Reuse(which) => {
                debug_assert!(which <= 31);
                0b0100000 | which as u32
            }
        };
        let class_field = vreg.class() as u8 as u32;
        let pos_field = pos as u8 as u32;
        let kind_field = kind as u8 as u32;
        Operand {
            bits: vreg.vreg() as u32
                | (class_field << 21)
                | (pos_field << 23)
                | (kind_field << 24)
                | (constraint_field << 25),
        }
    }

    /// Create an `Operand` that designates a use of a VReg that must
    /// be in a register, and that is used at the "before" point,
    /// i.e., can be overwritten by a result.
    #[inline(always)]
    pub fn reg_use(vreg: VReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Reg,
            OperandKind::Use,
            OperandPos::Early,
        )
    }

    /// Create an `Operand` that designates a use of a VReg that must
    /// be in a register, and that is used up until the "after" point,
    /// i.e., must not conflict with any results.
    #[inline(always)]
    pub fn reg_use_at_end(vreg: VReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Reg,
            OperandKind::Use,
            OperandPos::Late,
        )
    }

    /// Create an `Operand` that designates a definition of a VReg
    /// that must be in a register, and that occurs at the "after"
    /// point, i.e. may reuse a register that carried a use into this
    /// instruction.
    #[inline(always)]
    pub fn reg_def(vreg: VReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Reg,
            OperandKind::Def,
            OperandPos::Late,
        )
    }

    /// Create an `Operand` that designates a definition of a VReg
    /// that must be in a register, and that occurs early at the
    /// "before" point, i.e., must not conflict with any input to the
    /// instruction.
    ///
    /// Note that the register allocator will ensure that such an
    /// early-def operand is live throughout the instruction, i.e., also
    /// at the after-point. Hence it will also avoid conflicts with all
    /// outputs to the instruction. As such, early defs are appropriate
    /// for use as "temporary registers" that an instruction can use
    /// throughout its execution separately from the inputs and outputs.
    #[inline(always)]
    pub fn reg_def_at_start(vreg: VReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Reg,
            OperandKind::Def,
            OperandPos::Early,
        )
    }

    /// Create an `Operand` that designates a def (and use) of a
    /// temporary *within* the instruction. This register is assumed
    /// to be written by the instruction, and will not conflict with
    /// any input or output, but should not be used after the
    /// instruction completes.
    ///
    /// Note that within a single instruction, the dedicated scratch
    /// register (as specified in the `MachineEnv`) is also always
    /// available for use. The register allocator may use the register
    /// *between* instructions in order to implement certain sequences
    /// of moves, but will never hold a value live in the scratch
    /// register across an instruction.
    #[inline(always)]
    pub fn reg_temp(vreg: VReg) -> Self {
        // For now a temp is equivalent to a def-at-start operand,
        // which gives the desired semantics but does not enforce the
        // "not reused later" constraint.
        Operand::new(
            vreg,
            OperandConstraint::Reg,
            OperandKind::Def,
            OperandPos::Early,
        )
    }

    /// Create an `Operand` that designates a def of a vreg that must
    /// reuse the register assigned to an input to the
    /// instruction. The input is identified by `idx` (is the `idx`th
    /// `Operand` for the instruction) and must be constraint to a
    /// register, i.e., be the result of `Operand::reg_use(vreg)`.
    #[inline(always)]
    pub fn reg_reuse_def(vreg: VReg, idx: usize) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Reuse(idx),
            OperandKind::Def,
            OperandPos::Late,
        )
    }

    /// Create an `Operand` that designates a use of a vreg and
    /// ensures that it is placed in the given, fixed PReg at the
    /// use. It is guaranteed that the `Allocation` resulting for this
    /// operand will be `preg`.
    #[inline(always)]
    pub fn reg_fixed_use(vreg: VReg, preg: PReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::FixedReg(preg),
            OperandKind::Use,
            OperandPos::Early,
        )
    }

    /// Create an `Operand` that designates a def of a vreg and
    /// ensures that it is placed in the given, fixed PReg at the
    /// def. It is guaranteed that the `Allocation` resulting for this
    /// operand will be `preg`.
    #[inline(always)]
    pub fn reg_fixed_def(vreg: VReg, preg: PReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::FixedReg(preg),
            OperandKind::Def,
            OperandPos::Late,
        )
    }

    /// Same as `reg_fixed_use` but at `OperandPos::Late`.
    #[inline(always)]
    pub fn reg_fixed_use_at_end(vreg: VReg, preg: PReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::FixedReg(preg),
            OperandKind::Use,
            OperandPos::Late,
        )
    }

    /// Same as `reg_fixed_def` but at `OperandPos::Early`.
    #[inline(always)]
    pub fn reg_fixed_def_at_start(vreg: VReg, preg: PReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::FixedReg(preg),
            OperandKind::Def,
            OperandPos::Early,
        )
    }

    /// Create an `Operand` that designates a use of a vreg and places
    /// no constraints on its location (i.e., it can be allocated into
    /// either a register or on the stack).
    #[inline(always)]
    pub fn any_use(vreg: VReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Any,
            OperandKind::Use,
            OperandPos::Early,
        )
    }

    /// Create an `Operand` that designates a def of a vreg and places
    /// no constraints on its location (i.e., it can be allocated into
    /// either a register or on the stack).
    #[inline(always)]
    pub fn any_def(vreg: VReg) -> Self {
        Operand::new(
            vreg,
            OperandConstraint::Any,
            OperandKind::Def,
            OperandPos::Late,
        )
    }

    /// Create an `Operand` that always results in an assignment to the
    /// given fixed `preg`, *without* tracking liveranges in that
    /// `preg`. Must only be used for non-allocatable registers.
    #[inline(always)]
    pub fn fixed_nonallocatable(preg: PReg) -> Self {
        Operand::new(
            VReg::new(VReg::MAX, preg.class()),
            OperandConstraint::FixedReg(preg),
            OperandKind::Use,
            OperandPos::Early,
        )
    }

    /// Get the virtual register designated by an operand. Every
    /// operand must name some virtual register, even if it constrains
    /// the operand to a fixed physical register as well; the vregs
    /// are used to track dataflow.
    #[inline(always)]
    pub fn vreg(self) -> VReg {
        let vreg_idx = ((self.bits as usize) & VReg::MAX) as usize;
        VReg::new(vreg_idx, self.class())
    }

    /// Get the register class used by this operand.
    #[inline(always)]
    pub fn class(self) -> RegClass {
        let class_field = (self.bits >> 21) & 3;
        match class_field {
            0 => RegClass::Int,
            1 => RegClass::Float,
            2 => RegClass::Vector,
            _ => unreachable!(),
        }
    }

    /// Get the "kind" of this operand: a definition (write) or a use
    /// (read).
    #[inline(always)]
    pub fn kind(self) -> OperandKind {
        let kind_field = (self.bits >> 24) & 1;
        match kind_field {
            0 => OperandKind::Def,
            1 => OperandKind::Use,
            _ => unreachable!(),
        }
    }

    /// Get the "position" of this operand, i.e., where its read
    /// and/or write occurs: either before the instruction executes,
    /// or after it does. Ordinarily, uses occur at "before" and defs
    /// at "after", though there are cases where this is not true.
    #[inline(always)]
    pub fn pos(self) -> OperandPos {
        let pos_field = (self.bits >> 23) & 1;
        match pos_field {
            0 => OperandPos::Early,
            1 => OperandPos::Late,
            _ => unreachable!(),
        }
    }

    /// Get the "constraint" of this operand, i.e., what requirements
    /// its allocation must fulfill.
    #[inline(always)]
    pub fn constraint(self) -> OperandConstraint {
        let constraint_field = ((self.bits >> 25) as usize) & 127;
        if constraint_field & 0b1000000 != 0 {
            OperandConstraint::FixedReg(PReg::new(constraint_field & 0b0111111, self.class()))
        } else if constraint_field & 0b0100000 != 0 {
            OperandConstraint::Reuse(constraint_field & 0b0011111)
        } else {
            match constraint_field {
                0 => OperandConstraint::Any,
                1 => OperandConstraint::Reg,
                _ => unreachable!(),
            }
        }
    }

    /// If this operand is for a fixed non-allocatable register (see
    /// [`Operand::fixed`]), then returns the physical register that it will
    /// be assigned to.
    #[inline(always)]
    pub fn as_fixed_nonallocatable(self) -> Option<PReg> {
        match self.constraint() {
            OperandConstraint::FixedReg(preg) if self.vreg().vreg() == VReg::MAX => Some(preg),
            _ => None,
        }
    }

    /// Get the raw 32-bit encoding of this operand's fields.
    #[inline(always)]
    pub fn bits(self) -> u32 {
        self.bits
    }

    /// Construct an `Operand` from the raw 32-bit encoding returned
    /// from `bits()`.
    #[inline(always)]
    pub fn from_bits(bits: u32) -> Self {
        debug_assert!(bits >> 29 <= 4);
        Operand { bits }
    }
}

impl core::fmt::Debug for Operand {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        core::fmt::Display::fmt(self, f)
    }
}

impl core::fmt::Display for Operand {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        if let Some(preg) = self.as_fixed_nonallocatable() {
            return write!(f, "Fixed: {preg}");
        }
        match (self.kind(), self.pos()) {
            (OperandKind::Def, OperandPos::Late) | (OperandKind::Use, OperandPos::Early) => {
                write!(f, "{:?}", self.kind())?;
            }
            _ => {
                write!(f, "{:?}@{:?}", self.kind(), self.pos())?;
            }
        }
        write!(
            f,
            ": {}{} {}",
            self.vreg(),
            match self.class() {
                RegClass::Int => "i",
                RegClass::Float => "f",
                RegClass::Vector => "v",
            },
            self.constraint()
        )
    }
}

/// An Allocation represents the end result of regalloc for an
/// Operand.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Allocation {
    /// Bit-pack in 32 bits.
    ///
    /// kind:3 unused:1 index:28
    bits: u32,
}

impl core::fmt::Debug for Allocation {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        core::fmt::Display::fmt(self, f)
    }
}

impl core::fmt::Display for Allocation {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        match self.kind() {
            AllocationKind::None => write!(f, "none"),
            AllocationKind::Reg => write!(f, "{}", self.as_reg().unwrap()),
            AllocationKind::Stack => write!(f, "{}", self.as_stack().unwrap()),
        }
    }
}

impl Allocation {
    /// Construct a new Allocation.
    #[inline(always)]
    pub(crate) fn new(kind: AllocationKind, index: usize) -> Self {
        debug_assert!(index < (1 << 28));
        Self {
            bits: ((kind as u8 as u32) << 29) | (index as u32),
        }
    }

    /// Get the "none" allocation, which is distinct from the other
    /// possibilities and is used to initialize data structures.
    #[inline(always)]
    pub fn none() -> Allocation {
        Allocation::new(AllocationKind::None, 0)
    }

    /// Create an allocation into a register.
    #[inline(always)]
    pub fn reg(preg: PReg) -> Allocation {
        Allocation::new(AllocationKind::Reg, preg.index())
    }

    /// Create an allocation into a spillslot.
    #[inline(always)]
    pub fn stack(slot: SpillSlot) -> Allocation {
        Allocation::new(AllocationKind::Stack, slot.bits as usize)
    }

    /// Get the allocation's "kind": none, register, or stack (spillslot).
    #[inline(always)]
    pub fn kind(self) -> AllocationKind {
        match (self.bits >> 29) & 7 {
            0 => AllocationKind::None,
            1 => AllocationKind::Reg,
            2 => AllocationKind::Stack,
            _ => unreachable!(),
        }
    }

    /// Is the allocation "none"?
    #[inline(always)]
    pub fn is_none(self) -> bool {
        self.kind() == AllocationKind::None
    }

    /// Is the allocation not "none"?
    #[inline(always)]
    pub fn is_some(self) -> bool {
        self.kind() != AllocationKind::None
    }

    /// Is the allocation a register?
    #[inline(always)]
    pub fn is_reg(self) -> bool {
        self.kind() == AllocationKind::Reg
    }

    /// Is the allocation on the stack (a spillslot)?
    #[inline(always)]
    pub fn is_stack(self) -> bool {
        self.kind() == AllocationKind::Stack
    }

    /// Get the index of the spillslot or register. If register, this
    /// is an index that can be used by `PReg::from_index()`.
    #[inline(always)]
    pub fn index(self) -> usize {
        (self.bits & ((1 << 28) - 1)) as usize
    }

    /// Get the allocation as a physical register, if any.
    #[inline(always)]
    pub fn as_reg(self) -> Option<PReg> {
        if self.kind() == AllocationKind::Reg {
            Some(PReg::from_index(self.index()))
        } else {
            None
        }
    }

    /// Get the allocation as a spillslot, if any.
    #[inline(always)]
    pub fn as_stack(self) -> Option<SpillSlot> {
        if self.kind() == AllocationKind::Stack {
            Some(SpillSlot {
                bits: self.index() as u32,
            })
        } else {
            None
        }
    }

    /// Get the raw bits for the packed encoding of this allocation.
    #[inline(always)]
    pub fn bits(self) -> u32 {
        self.bits
    }

    /// Construct an allocation from its packed encoding.
    #[inline(always)]
    pub fn from_bits(bits: u32) -> Self {
        debug_assert!(bits >> 29 >= 5);
        Self { bits }
    }
}

/// An allocation is one of two "kinds" (or "none"): register or
/// spillslot/stack.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(u8)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum AllocationKind {
    None = 0,
    Reg = 1,
    Stack = 2,
}

/// A trait defined by the regalloc client to provide access to its
/// machine-instruction / CFG representation.
///
/// (This trait's design is inspired by, and derives heavily from, the
/// trait of the same name in regalloc.rs.)
pub trait Function {
    // -------------
    // CFG traversal
    // -------------

    /// How many instructions are there?
    fn num_insts(&self) -> usize;

    /// How many blocks are there?
    fn num_blocks(&self) -> usize;

    /// Get the index of the entry block.
    fn entry_block(&self) -> Block;

    /// Provide the range of instruction indices contained in each block.
    fn block_insns(&self, block: Block) -> InstRange;

    /// Get CFG successors for a given block.
    fn block_succs(&self, block: Block) -> &[Block];

    /// Get the CFG predecessors for a given block.
    fn block_preds(&self, block: Block) -> &[Block];

    /// Get the block parameters for a given block.
    fn block_params(&self, block: Block) -> &[VReg];

    /// Determine whether an instruction is a return instruction.
    fn is_ret(&self, insn: Inst) -> bool;

    /// Determine whether an instruction is the end-of-block
    /// branch.
    fn is_branch(&self, insn: Inst) -> bool;

    /// If `insn` is a branch at the end of `block`, returns the
    /// outgoing blockparam arguments for the given successor. The
    /// number of arguments must match the number incoming blockparams
    /// for each respective successor block.
    fn branch_blockparams(&self, block: Block, insn: Inst, succ_idx: usize) -> &[VReg];

    // --------------------------
    // Instruction register slots
    // --------------------------

    /// Get the Operands for an instruction.
    fn inst_operands(&self, insn: Inst) -> &[Operand];

    /// Get the clobbers for an instruction; these are the registers
    /// that, after the instruction has executed, hold values that are
    /// arbitrary, separately from the usual outputs to the
    /// instruction. It is invalid to read a register that has been
    /// clobbered; the register allocator is free to assume that
    /// clobbered registers are filled with garbage and available for
    /// reuse. It will avoid storing any value in a clobbered register
    /// that must be live across the instruction.
    ///
    /// Another way of seeing this is that a clobber is equivalent to
    /// a "late def" of a fresh vreg that is not used anywhere else
    /// in the program, with a fixed-register constraint that places
    /// it in a given PReg chosen by the client prior to regalloc.
    ///
    /// Every register written by an instruction must either
    /// correspond to (be assigned to) an Operand of kind `Def`, or
    /// else must be a "clobber".
    ///
    /// This can be used to, for example, describe ABI-specified
    /// registers that are not preserved by a call instruction, or
    /// fixed physical registers written by an instruction but not
    /// used as a vreg output, or fixed physical registers used as
    /// temps within an instruction out of necessity.
    ///
    /// Note that it is legal for a register to be both a clobber and
    /// an actual def (via pinned vreg or via operand constrained to
    /// the reg). This is for convenience: e.g., a call instruction
    /// might have a constant clobber set determined by the ABI, but
    /// some of those clobbered registers are sometimes return
    /// value(s).
    fn inst_clobbers(&self, insn: Inst) -> PRegSet;

    /// Get the number of `VReg` in use in this function.
    fn num_vregs(&self) -> usize;

    /// Get the VRegs for which we should generate value-location
    /// metadata for debugging purposes. This can be used to generate
    /// e.g. DWARF with valid prgram-point ranges for each value
    /// expression in a way that is more efficient than a post-hoc
    /// analysis of the allocator's output.
    ///
    /// Each tuple is (vreg, inclusive_start, exclusive_end,
    /// label). In the `Output` there will be (label, inclusive_start,
    /// exclusive_end, alloc)` tuples. The ranges may not exactly
    /// match -- specifically, the returned metadata may cover only a
    /// subset of the requested ranges -- if the value is not live for
    /// the entire requested ranges.
    ///
    /// The instruction indices imply a program point just *before*
    /// the instruction.
    ///
    /// Precondition: we require this slice to be sorted by vreg.
    fn debug_value_labels(&self) -> &[(VReg, Inst, Inst, u32)] {
        &[]
    }

    // --------------
    // Spills/reloads
    // --------------

    /// How many logical spill slots does the given regclass require?  E.g., on
    /// a 64-bit machine, spill slots may nominally be 64-bit words, but a
    /// 128-bit vector value will require two slots.  The regalloc will always
    /// align on this size.
    ///
    /// (This trait method's design and doc text derives from
    /// regalloc.rs' trait of the same name.)
    fn spillslot_size(&self, regclass: RegClass) -> usize;

    /// When providing a spillslot number for a multi-slot spillslot,
    /// do we provide the first or the last? This is usually related
    /// to which direction the stack grows and different clients may
    /// have different preferences.
    fn multi_spillslot_named_by_last_slot(&self) -> bool {
        false
    }

    // -----------
    // Misc config
    // -----------

    /// Allow a single instruction to define a vreg multiple times. If
    /// allowed, the semantics are as if the definition occurs only
    /// once, and all defs will get the same alloc. This flexibility is
    /// meant to allow the embedder to more easily aggregate operands
    /// together in macro/pseudoinstructions, or e.g. add additional
    /// clobbered vregs without taking care to deduplicate. This may be
    /// particularly useful when referring to physical registers via
    /// pinned vregs. It is optional functionality because a strict mode
    /// (at most one def per vreg) is also useful for finding bugs in
    /// other applications.
    fn allow_multiple_vreg_defs(&self) -> bool {
        false
    }
}

/// A position before or after an instruction at which we can make an
/// edit.
///
/// Note that this differs from `OperandPos` in that the former
/// describes specifically a constraint on an operand, while this
/// describes a program point. `OperandPos` could grow more options in
/// the future, for example if we decide that an "early write" or
/// "late read" phase makes sense, while `InstPosition` will always
/// describe these two insertion points.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(u8)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum InstPosition {
    Before = 0,
    After = 1,
}

/// A program point: a single point before or after a given instruction.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct ProgPoint {
    bits: u32,
}

impl core::fmt::Debug for ProgPoint {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(
            f,
            "progpoint{}{}",
            self.inst().index(),
            match self.pos() {
                InstPosition::Before => "-pre",
                InstPosition::After => "-post",
            }
        )
    }
}

impl ProgPoint {
    /// Create a new ProgPoint before or after the given instruction.
    #[inline(always)]
    pub fn new(inst: Inst, pos: InstPosition) -> Self {
        let bits = ((inst.0 as u32) << 1) | (pos as u8 as u32);
        Self { bits }
    }

    /// Create a new ProgPoint before the given instruction.
    #[inline(always)]
    pub fn before(inst: Inst) -> Self {
        Self::new(inst, InstPosition::Before)
    }

    /// Create a new ProgPoint after the given instruction.
    #[inline(always)]
    pub fn after(inst: Inst) -> Self {
        Self::new(inst, InstPosition::After)
    }

    /// Get the instruction that this ProgPoint is before or after.
    #[inline(always)]
    pub fn inst(self) -> Inst {
        // Cast to i32 to do an arithmetic right-shift, which will
        // preserve an `Inst::invalid()` (which is -1, or all-ones).
        Inst::new(((self.bits as i32) >> 1) as usize)
    }

    /// Get the "position" (Before or After) relative to the
    /// instruction.
    #[inline(always)]
    pub fn pos(self) -> InstPosition {
        match self.bits & 1 {
            0 => InstPosition::Before,
            1 => InstPosition::After,
            _ => unreachable!(),
        }
    }

    /// Get the "next" program point: for After, this is the Before of
    /// the next instruction, while for Before, this is After of the
    /// same instruction.
    #[inline(always)]
    pub fn next(self) -> ProgPoint {
        Self {
            bits: self.bits + 1,
        }
    }

    /// Get the "previous" program point, the inverse of `.next()`
    /// above.
    #[inline(always)]
    pub fn prev(self) -> ProgPoint {
        Self {
            bits: self.bits - 1,
        }
    }

    /// Convert to a raw encoding in 32 bits.
    #[inline(always)]
    pub fn to_index(self) -> u32 {
        self.bits
    }

    /// Construct from the raw 32-bit encoding.
    #[inline(always)]
    pub fn from_index(index: u32) -> Self {
        Self { bits: index }
    }
}

/// An instruction to insert into the program to perform some data movement.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum Edit {
    /// Move one allocation to another. Each allocation may be a
    /// register or a stack slot (spillslot). However, stack-to-stack
    /// moves will never be generated.
    ///
    /// `Move` edits will be generated even if src and dst allocation
    /// are the same if the vreg changes; this allows proper metadata
    /// tracking even when moves are elided.
    Move { from: Allocation, to: Allocation },
}

/// Wrapper around either an original instruction or an inserted edit.
#[derive(Clone, Debug)]
pub enum InstOrEdit<'a> {
    Inst(Inst),
    Edit(&'a Edit),
}

/// Iterator over the instructions and edits in a block.
pub struct OutputIter<'a> {
    /// List of edits starting at the first for the current block.
    edits: &'a [(ProgPoint, Edit)],

    /// Remaining instructions in the current block.
    inst_range: InstRange,
}

impl<'a> Iterator for OutputIter<'a> {
    type Item = InstOrEdit<'a>;

    fn next(&mut self) -> Option<InstOrEdit<'a>> {
        // There can't be any edits after the last instruction in a block, so
        // we don't need to worry about that case.
        if self.inst_range.len() == 0 {
            return None;
        }

        // Return any edits that happen before the next instruction first.
        let next_inst = self.inst_range.first();
        if let Some((edit, remaining_edits)) = self.edits.split_first() {
            if edit.0 <= ProgPoint::before(next_inst) {
                self.edits = remaining_edits;
                return Some(InstOrEdit::Edit(&edit.1));
            }
        }

        self.inst_range = self.inst_range.rest();
        Some(InstOrEdit::Inst(next_inst))
    }
}

/// A machine environment tells the register allocator which registers
/// are available to allocate and what register may be used as a
/// scratch register for each class, and some other miscellaneous info
/// as well.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct MachineEnv {
    /// Preferred physical registers for each class. These are the
    /// registers that will be allocated first, if free.
    ///
    /// If an explicit scratch register is provided in `scratch_by_class` then
    /// it must not appear in this list.
    pub preferred_regs_by_class: [Vec<PReg>; 3],

    /// Non-preferred physical registers for each class. These are the
    /// registers that will be allocated if a preferred register is
    /// not available; using one of these is considered suboptimal,
    /// but still better than spilling.
    ///
    /// If an explicit scratch register is provided in `scratch_by_class` then
    /// it must not appear in this list.
    pub non_preferred_regs_by_class: [Vec<PReg>; 3],

    /// Optional dedicated scratch register per class. This is needed to perform
    /// moves between registers when cyclic move patterns occur. The
    /// register should not be placed in either the preferred or
    /// non-preferred list (i.e., it is not otherwise allocatable).
    ///
    /// Note that the register allocator will freely use this register
    /// between instructions, but *within* the machine code generated
    /// by a single (regalloc-level) instruction, the client is free
    /// to use the scratch register. E.g., if one "instruction" causes
    /// the emission of two machine-code instructions, this lowering
    /// can use the scratch register between them.
    ///
    /// If a scratch register is not provided then the register allocator will
    /// automatically allocate one as needed, spilling a value to the stack if
    /// necessary.
    pub scratch_by_class: [Option<PReg>; 3],

    /// Some `PReg`s can be designated as locations on the stack rather than
    /// actual registers. These can be used to tell the register allocator about
    /// pre-defined stack slots used for function arguments and return values.
    ///
    /// `PReg`s in this list cannot be used as an allocatable or scratch
    /// register.
    pub fixed_stack_slots: Vec<PReg>,
}

/// The output of the register allocator.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Output {
    /// How many spillslots are needed in the frame?
    pub num_spillslots: usize,

    /// Edits (insertions or removals). Guaranteed to be sorted by
    /// program point.
    pub edits: Vec<(ProgPoint, Edit)>,

    /// Allocations for each operand. Mapping from instruction to
    /// allocations provided by `inst_alloc_offsets` below.
    pub allocs: Vec<Allocation>,

    /// Allocation offset in `allocs` for each instruction.
    pub inst_alloc_offsets: Vec<u32>,

    /// Debug info: a labeled value (as applied to vregs by
    /// `Function::debug_value_labels()` on the input side) is located
    /// in the given allocation from the first program point
    /// (inclusive) to the second (exclusive). Guaranteed to be sorted
    /// by label and program point, and the ranges are guaranteed to
    /// be disjoint.
    pub debug_locations: Vec<(u32, ProgPoint, ProgPoint, Allocation)>,

    /// Internal stats from the allocator.
    pub stats: ion::Stats,
}

impl Output {
    /// Get the allocations assigned to a given instruction.
    pub fn inst_allocs(&self, inst: Inst) -> &[Allocation] {
        let start = self.inst_alloc_offsets[inst.index()] as usize;
        let end = if inst.index() + 1 == self.inst_alloc_offsets.len() {
            self.allocs.len()
        } else {
            self.inst_alloc_offsets[inst.index() + 1] as usize
        };
        &self.allocs[start..end]
    }

    /// Returns an iterator over the instructions and edits in a block, in
    /// order.
    pub fn block_insts_and_edits(&self, func: &impl Function, block: Block) -> OutputIter<'_> {
        let inst_range = func.block_insns(block);

        let edit_idx = self
            .edits
            .binary_search_by(|&(pos, _)| {
                // This predicate effectively searches for a point *just* before
                // the first ProgPoint. This never returns Ordering::Equal, but
                // binary_search_by returns the index of where it would have
                // been inserted in Err.
                if pos < ProgPoint::before(inst_range.first()) {
                    core::cmp::Ordering::Less
                } else {
                    core::cmp::Ordering::Greater
                }
            })
            .unwrap_err();

        let edits = &self.edits[edit_idx..];
        OutputIter { inst_range, edits }
    }
}

/// An error that prevents allocation.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum RegAllocError {
    /// Critical edge is not split between given blocks.
    CritEdge(Block, Block),
    /// Invalid SSA for given vreg at given inst: multiple defs or
    /// illegal use. `inst` may be `Inst::invalid()` if this concerns
    /// a block param.
    SSA(VReg, Inst),
    /// Invalid basic block: does not end in branch/ret, or contains a
    /// branch/ret in the middle.
    BB(Block),
    /// Invalid branch: operand count does not match sum of block
    /// params of successor blocks.
    Branch(Inst),
    /// A VReg is live-in on entry; this is not allowed.
    EntryLivein,
    /// A branch has non-blockparam arg(s) and at least one of the
    /// successor blocks has more than one predecessor, forcing
    /// edge-moves before this branch. This is disallowed because it
    /// places a use after the edge moves occur; insert an edge block
    /// to avoid the situation.
    DisallowedBranchArg(Inst),
    /// Too many pinned VRegs + Reg-constrained Operands are live at
    /// once, making allocation impossible.
    TooManyLiveRegs,
}

impl core::fmt::Display for RegAllocError {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        write!(f, "{:?}", self)
    }
}

#[cfg(feature = "std")]
impl std::error::Error for RegAllocError {}

/// Run the allocator.
pub fn run<F: Function>(
    func: &F,
    env: &MachineEnv,
    options: &RegallocOptions,
) -> Result<Output, RegAllocError> {
    ion::run(func, env, options.verbose_log, options.validate_ssa)
}

/// Options for allocation.
#[derive(Clone, Copy, Debug, Default)]
pub struct RegallocOptions {
    /// Add extra verbosity to debug logs.
    pub verbose_log: bool,

    /// Run the SSA validator before allocating registers.
    pub validate_ssa: bool,
}