regalloc2/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/*
* The following license applies to this file, which derives many
* details (register and constraint definitions, for example) from the
* files `BacktrackingAllocator.h`, `BacktrackingAllocator.cpp`,
* `LIR.h`, and possibly definitions in other related files in
* `js/src/jit/`:
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*/
#![allow(dead_code)]
#![no_std]
#[cfg(feature = "std")]
extern crate std;
extern crate alloc;
// Even when trace logging is disabled, the trace macro has a significant
// performance cost so we disable it in release builds.
macro_rules! trace {
($($tt:tt)*) => {
if cfg!(feature = "trace-log") {
::log::trace!($($tt)*);
}
};
}
macro_rules! trace_enabled {
() => {
cfg!(feature = "trace-log") && ::log::log_enabled!(::log::Level::Trace)
};
}
use core::hash::BuildHasherDefault;
use rustc_hash::FxHasher;
type FxHashMap<K, V> = hashbrown::HashMap<K, V, BuildHasherDefault<FxHasher>>;
type FxHashSet<V> = hashbrown::HashSet<V, BuildHasherDefault<FxHasher>>;
pub(crate) mod cfg;
pub(crate) mod domtree;
pub mod indexset;
pub(crate) mod ion;
pub(crate) mod moves;
pub(crate) mod postorder;
pub mod ssa;
#[macro_use]
mod index;
use alloc::vec::Vec;
pub use index::{Block, Inst, InstRange};
pub mod checker;
#[cfg(feature = "fuzzing")]
pub mod fuzzing;
#[cfg(feature = "enable-serde")]
pub mod serialize;
#[cfg(feature = "enable-serde")]
use serde::{Deserialize, Serialize};
/// Register classes.
///
/// Every value has a "register class", which is like a type at the
/// register-allocator level. Every register must belong to only one
/// class; i.e., they are disjoint.
///
/// For tight bit-packing throughout our data structures, we support
/// only three classes, "int", "float" and "vector". Usually two will
/// be enough on modern machines, as they have one class of general-purpose
/// integer registers of machine width (e.g. 64 bits), and another
/// class of float/vector registers used both for FP and for vector
/// operations. Additionally for machines with totally separate vector
/// registers a third class is provided.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum RegClass {
Int = 0,
Float = 1,
Vector = 2,
}
/// A physical register. Contains a physical register number and a class.
///
/// The `hw_enc` field contains the physical register number and is in
/// a logically separate index space per class; in other words, Int
/// register 0 is different than Float register 0.
///
/// Because of bit-packed encodings throughout the implementation,
/// `hw_enc` must fit in 6 bits, i.e., at most 64 registers per class.
///
/// The value returned by `index()`, in contrast, is in a single index
/// space shared by all classes, in order to enable uniform reasoning
/// about physical registers. This is done by putting the class bit at
/// the MSB, or equivalently, declaring that indices 0..=63 are the 64
/// integer registers and indices 64..=127 are the 64 float registers.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct PReg {
bits: u8,
}
impl PReg {
pub const MAX_BITS: usize = 6;
pub const MAX: usize = (1 << Self::MAX_BITS) - 1;
pub const NUM_INDEX: usize = 1 << (Self::MAX_BITS + 2); // including RegClass bits
/// Create a new PReg. The `hw_enc` range is 6 bits.
#[inline(always)]
pub const fn new(hw_enc: usize, class: RegClass) -> Self {
debug_assert!(hw_enc <= PReg::MAX);
PReg {
bits: ((class as u8) << Self::MAX_BITS) | (hw_enc as u8),
}
}
/// The physical register number, as encoded by the ISA for the particular register class.
#[inline(always)]
pub const fn hw_enc(self) -> usize {
self.bits as usize & Self::MAX
}
/// The register class.
#[inline(always)]
pub const fn class(self) -> RegClass {
match (self.bits >> Self::MAX_BITS) & 0b11 {
0 => RegClass::Int,
1 => RegClass::Float,
2 => RegClass::Vector,
_ => unreachable!(),
}
}
/// Get an index into the (not necessarily contiguous) index space of
/// all physical registers. Allows one to maintain an array of data for
/// all PRegs and index it efficiently.
#[inline(always)]
pub const fn index(self) -> usize {
self.bits as usize
}
/// Construct a PReg from the value returned from `.index()`.
#[inline(always)]
pub const fn from_index(index: usize) -> Self {
PReg {
bits: (index & (Self::NUM_INDEX - 1)) as u8,
}
}
/// Return the "invalid PReg", which can be used to initialize
/// data structures.
#[inline(always)]
pub const fn invalid() -> Self {
PReg::new(Self::MAX, RegClass::Int)
}
}
impl core::fmt::Debug for PReg {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"PReg(hw = {}, class = {:?}, index = {})",
self.hw_enc(),
self.class(),
self.index()
)
}
}
impl core::fmt::Display for PReg {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
let class = match self.class() {
RegClass::Int => "i",
RegClass::Float => "f",
RegClass::Vector => "v",
};
write!(f, "p{}{}", self.hw_enc(), class)
}
}
/// A type for internal bit arrays.
type Bits = u64;
/// A physical register set. Used to represent clobbers
/// efficiently.
///
/// The set is `Copy` and is guaranteed to have constant, and small,
/// size, as it is based on a bitset internally.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct PRegSet {
bits: [Bits; Self::LEN],
}
impl PRegSet {
/// The number of bits per element in the internal bit array.
const BITS: usize = core::mem::size_of::<Bits>() * 8;
/// Length of the internal bit array.
const LEN: usize = (PReg::NUM_INDEX + Self::BITS - 1) / Self::BITS;
/// Create an empty set.
pub const fn empty() -> Self {
Self {
bits: [0; Self::LEN],
}
}
/// Splits the given register index into parts to access the internal bit array.
const fn split_index(reg: PReg) -> (usize, usize) {
let index = reg.index();
(index >> Self::BITS.ilog2(), index & (Self::BITS - 1))
}
/// Returns whether the given register is part of the set.
pub fn contains(&self, reg: PReg) -> bool {
let (index, bit) = Self::split_index(reg);
self.bits[index] & (1 << bit) != 0
}
/// Add a physical register (PReg) to the set, returning the new value.
pub const fn with(self, reg: PReg) -> Self {
let (index, bit) = Self::split_index(reg);
let mut out = self;
out.bits[index] |= 1 << bit;
out
}
/// Add a physical register (PReg) to the set.
pub fn add(&mut self, reg: PReg) {
let (index, bit) = Self::split_index(reg);
self.bits[index] |= 1 << bit;
}
/// Remove a physical register (PReg) from the set.
pub fn remove(&mut self, reg: PReg) {
let (index, bit) = Self::split_index(reg);
self.bits[index] &= !(1 << bit);
}
/// Add all of the registers in one set to this one, mutating in
/// place.
pub fn union_from(&mut self, other: PRegSet) {
for i in 0..self.bits.len() {
self.bits[i] |= other.bits[i];
}
}
}
impl IntoIterator for PRegSet {
type Item = PReg;
type IntoIter = PRegSetIter;
fn into_iter(self) -> PRegSetIter {
PRegSetIter {
bits: self.bits,
cur: 0,
}
}
}
pub struct PRegSetIter {
bits: [Bits; PRegSet::LEN],
cur: usize,
}
impl Iterator for PRegSetIter {
type Item = PReg;
fn next(&mut self) -> Option<PReg> {
loop {
let bits = self.bits.get_mut(self.cur)?;
if *bits != 0 {
let bit = bits.trailing_zeros();
*bits &= !(1 << bit);
let index = bit as usize + self.cur * PRegSet::BITS;
return Some(PReg::from_index(index));
}
self.cur += 1;
}
}
}
impl From<&MachineEnv> for PRegSet {
fn from(env: &MachineEnv) -> Self {
let mut res = Self::default();
for class in env.preferred_regs_by_class.iter() {
for preg in class {
res.add(*preg)
}
}
for class in env.non_preferred_regs_by_class.iter() {
for preg in class {
res.add(*preg)
}
}
res
}
}
/// A virtual register. Contains a virtual register number and a
/// class.
///
/// A virtual register ("vreg") corresponds to an SSA value. All
/// dataflow in the input program is specified via flow through a
/// virtual register; even uses of specially-constrained locations,
/// such as fixed physical registers, are done by using vregs, because
/// we need the vreg's live range in order to track the use of that
/// location.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct VReg {
bits: u32,
}
impl VReg {
pub const MAX_BITS: usize = 21;
pub const MAX: usize = (1 << Self::MAX_BITS) - 1;
#[inline(always)]
pub const fn new(virt_reg: usize, class: RegClass) -> Self {
debug_assert!(virt_reg <= VReg::MAX);
VReg {
bits: ((virt_reg as u32) << 2) | (class as u8 as u32),
}
}
#[inline(always)]
pub const fn vreg(self) -> usize {
let vreg = (self.bits >> 2) as usize;
vreg
}
#[inline(always)]
pub const fn class(self) -> RegClass {
match self.bits & 0b11 {
0 => RegClass::Int,
1 => RegClass::Float,
2 => RegClass::Vector,
_ => unreachable!(),
}
}
#[inline(always)]
pub const fn invalid() -> Self {
VReg::new(Self::MAX, RegClass::Int)
}
}
impl core::fmt::Debug for VReg {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"VReg(vreg = {}, class = {:?})",
self.vreg(),
self.class()
)
}
}
impl core::fmt::Display for VReg {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "v{}", self.vreg())
}
}
/// A spillslot is a space in the stackframe used by the allocator to
/// temporarily store a value.
///
/// The allocator is responsible for allocating indices in this space,
/// and will specify how many spillslots have been used when the
/// allocation is completed.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct SpillSlot {
bits: u32,
}
impl SpillSlot {
/// The maximum spillslot index.
pub const MAX: usize = (1 << 24) - 1;
/// Create a new SpillSlot.
#[inline(always)]
pub fn new(slot: usize) -> Self {
debug_assert!(slot <= Self::MAX);
SpillSlot { bits: slot as u32 }
}
/// Get the spillslot index for this spillslot.
#[inline(always)]
pub fn index(self) -> usize {
(self.bits & 0x00ffffff) as usize
}
/// Get the spillslot `offset` slots away.
#[inline(always)]
pub fn plus(self, offset: usize) -> Self {
SpillSlot::new(self.index() + offset)
}
/// Get the invalid spillslot, used for initializing data structures.
#[inline(always)]
pub fn invalid() -> Self {
SpillSlot { bits: 0xffff_ffff }
}
/// Is this the invalid spillslot?
#[inline(always)]
pub fn is_invalid(self) -> bool {
self == Self::invalid()
}
/// Is this a valid spillslot (not `SpillSlot::invalid()`)?
#[inline(always)]
pub fn is_valid(self) -> bool {
self != Self::invalid()
}
}
impl core::fmt::Display for SpillSlot {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "stack{}", self.index())
}
}
/// An `OperandConstraint` specifies where a vreg's value must be
/// placed at a particular reference to that vreg via an
/// `Operand`. The constraint may be loose -- "any register of a given
/// class", for example -- or very specific, such as "this particular
/// physical register". The allocator's result will always satisfy all
/// given constraints; however, if the input has a combination of
/// constraints that are impossible to satisfy, then allocation may
/// fail or the allocator may panic (providing impossible constraints
/// is usually a programming error in the client, rather than a
/// function of bad input).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum OperandConstraint {
/// Any location is fine (register or stack slot).
Any,
/// Operand must be in a register. Register is read-only for Uses.
Reg,
/// Operand must be in a fixed register.
FixedReg(PReg),
/// On defs only: reuse a use's register.
Reuse(usize),
}
impl core::fmt::Display for OperandConstraint {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
Self::Any => write!(f, "any"),
Self::Reg => write!(f, "reg"),
Self::FixedReg(preg) => write!(f, "fixed({})", preg),
Self::Reuse(idx) => write!(f, "reuse({})", idx),
}
}
}
/// The "kind" of the operand: whether it reads a vreg (Use) or writes
/// a vreg (Def).
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum OperandKind {
Def = 0,
Use = 1,
}
/// The "position" of the operand: where it has its read/write
/// effects. These are positions "in" the instruction, and "early" and
/// "late" are relative to the instruction's main effect or
/// computation. In other words, the allocator assumes that the
/// instruction (i) performs all reads and writes of "early" operands,
/// (ii) does its work, and (iii) performs all reads and writes of its
/// "late" operands.
///
/// A "write" (def) at "early" or a "read" (use) at "late" may be
/// slightly nonsensical, given the above, if the read is necessary
/// for the computation or the write is a result of it. A way to think
/// of it is that the value (even if a result of execution) *could*
/// have been read or written at the given location without causing
/// any register-usage conflicts. In other words, these write-early or
/// use-late operands ensure that the particular allocations are valid
/// for longer than usual and that a register is not reused between
/// the use (normally complete at "Early") and the def (normally
/// starting at "Late"). See `Operand` for more.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum OperandPos {
Early = 0,
Late = 1,
}
/// An `Operand` encodes everything about a mention of a register in
/// an instruction: virtual register number, and any constraint that
/// applies to the register at this program point.
///
/// An Operand may be a use or def (this corresponds to `LUse` and
/// `LAllocation` in Ion).
///
/// Generally, regalloc2 considers operands to have their effects at
/// one of two points that exist in an instruction: "Early" or
/// "Late". All operands at a given program-point are assigned
/// non-conflicting locations based on their constraints. Each operand
/// has a "kind", one of use/def/mod, corresponding to
/// read/write/read-write, respectively.
///
/// Usually, an instruction's inputs will be "early uses" and outputs
/// will be "late defs", though there are valid use-cases for other
/// combinations too. For example, a single "instruction" seen by the
/// regalloc that lowers into multiple machine instructions and reads
/// some of its inputs after it starts to write outputs must either
/// make those input(s) "late uses" or those output(s) "early defs" so
/// that the conflict (overlap) is properly accounted for. See
/// comments on the constructors below for more.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Operand {
/// Bit-pack into 32 bits.
///
/// constraint:7 kind:1 pos:1 class:2 vreg:21
///
/// where `constraint` is an `OperandConstraint`, `kind` is an
/// `OperandKind`, `pos` is an `OperandPos`, `class` is a
/// `RegClass`, and `vreg` is a vreg index.
///
/// The constraints are encoded as follows:
/// - 1xxxxxx => FixedReg(preg)
/// - 01xxxxx => Reuse(index)
/// - 0000000 => Any
/// - 0000001 => Reg
/// - 0000010 => Stack
/// - _ => Unused for now
bits: u32,
}
impl Operand {
/// Construct a new operand.
#[inline(always)]
pub fn new(
vreg: VReg,
constraint: OperandConstraint,
kind: OperandKind,
pos: OperandPos,
) -> Self {
let constraint_field = match constraint {
OperandConstraint::Any => 0,
OperandConstraint::Reg => 1,
OperandConstraint::FixedReg(preg) => {
debug_assert_eq!(preg.class(), vreg.class());
0b1000000 | preg.hw_enc() as u32
}
OperandConstraint::Reuse(which) => {
debug_assert!(which <= 31);
0b0100000 | which as u32
}
};
let class_field = vreg.class() as u8 as u32;
let pos_field = pos as u8 as u32;
let kind_field = kind as u8 as u32;
Operand {
bits: vreg.vreg() as u32
| (class_field << 21)
| (pos_field << 23)
| (kind_field << 24)
| (constraint_field << 25),
}
}
/// Create an `Operand` that designates a use of a VReg that must
/// be in a register, and that is used at the "before" point,
/// i.e., can be overwritten by a result.
#[inline(always)]
pub fn reg_use(vreg: VReg) -> Self {
Operand::new(
vreg,
OperandConstraint::Reg,
OperandKind::Use,
OperandPos::Early,
)
}
/// Create an `Operand` that designates a use of a VReg that must
/// be in a register, and that is used up until the "after" point,
/// i.e., must not conflict with any results.
#[inline(always)]
pub fn reg_use_at_end(vreg: VReg) -> Self {
Operand::new(
vreg,
OperandConstraint::Reg,
OperandKind::Use,
OperandPos::Late,
)
}
/// Create an `Operand` that designates a definition of a VReg
/// that must be in a register, and that occurs at the "after"
/// point, i.e. may reuse a register that carried a use into this
/// instruction.
#[inline(always)]
pub fn reg_def(vreg: VReg) -> Self {
Operand::new(
vreg,
OperandConstraint::Reg,
OperandKind::Def,
OperandPos::Late,
)
}
/// Create an `Operand` that designates a definition of a VReg
/// that must be in a register, and that occurs early at the
/// "before" point, i.e., must not conflict with any input to the
/// instruction.
///
/// Note that the register allocator will ensure that such an
/// early-def operand is live throughout the instruction, i.e., also
/// at the after-point. Hence it will also avoid conflicts with all
/// outputs to the instruction. As such, early defs are appropriate
/// for use as "temporary registers" that an instruction can use
/// throughout its execution separately from the inputs and outputs.
#[inline(always)]
pub fn reg_def_at_start(vreg: VReg) -> Self {
Operand::new(
vreg,
OperandConstraint::Reg,
OperandKind::Def,
OperandPos::Early,
)
}
/// Create an `Operand` that designates a def (and use) of a
/// temporary *within* the instruction. This register is assumed
/// to be written by the instruction, and will not conflict with
/// any input or output, but should not be used after the
/// instruction completes.
///
/// Note that within a single instruction, the dedicated scratch
/// register (as specified in the `MachineEnv`) is also always
/// available for use. The register allocator may use the register
/// *between* instructions in order to implement certain sequences
/// of moves, but will never hold a value live in the scratch
/// register across an instruction.
#[inline(always)]
pub fn reg_temp(vreg: VReg) -> Self {
// For now a temp is equivalent to a def-at-start operand,
// which gives the desired semantics but does not enforce the
// "not reused later" constraint.
Operand::new(
vreg,
OperandConstraint::Reg,
OperandKind::Def,
OperandPos::Early,
)
}
/// Create an `Operand` that designates a def of a vreg that must
/// reuse the register assigned to an input to the
/// instruction. The input is identified by `idx` (is the `idx`th
/// `Operand` for the instruction) and must be constraint to a
/// register, i.e., be the result of `Operand::reg_use(vreg)`.
#[inline(always)]
pub fn reg_reuse_def(vreg: VReg, idx: usize) -> Self {
Operand::new(
vreg,
OperandConstraint::Reuse(idx),
OperandKind::Def,
OperandPos::Late,
)
}
/// Create an `Operand` that designates a use of a vreg and
/// ensures that it is placed in the given, fixed PReg at the
/// use. It is guaranteed that the `Allocation` resulting for this
/// operand will be `preg`.
#[inline(always)]
pub fn reg_fixed_use(vreg: VReg, preg: PReg) -> Self {
Operand::new(
vreg,
OperandConstraint::FixedReg(preg),
OperandKind::Use,
OperandPos::Early,
)
}
/// Create an `Operand` that designates a def of a vreg and
/// ensures that it is placed in the given, fixed PReg at the
/// def. It is guaranteed that the `Allocation` resulting for this
/// operand will be `preg`.
#[inline(always)]
pub fn reg_fixed_def(vreg: VReg, preg: PReg) -> Self {
Operand::new(
vreg,
OperandConstraint::FixedReg(preg),
OperandKind::Def,
OperandPos::Late,
)
}
/// Same as `reg_fixed_use` but at `OperandPos::Late`.
#[inline(always)]
pub fn reg_fixed_use_at_end(vreg: VReg, preg: PReg) -> Self {
Operand::new(
vreg,
OperandConstraint::FixedReg(preg),
OperandKind::Use,
OperandPos::Late,
)
}
/// Same as `reg_fixed_def` but at `OperandPos::Early`.
#[inline(always)]
pub fn reg_fixed_def_at_start(vreg: VReg, preg: PReg) -> Self {
Operand::new(
vreg,
OperandConstraint::FixedReg(preg),
OperandKind::Def,
OperandPos::Early,
)
}
/// Create an `Operand` that designates a use of a vreg and places
/// no constraints on its location (i.e., it can be allocated into
/// either a register or on the stack).
#[inline(always)]
pub fn any_use(vreg: VReg) -> Self {
Operand::new(
vreg,
OperandConstraint::Any,
OperandKind::Use,
OperandPos::Early,
)
}
/// Create an `Operand` that designates a def of a vreg and places
/// no constraints on its location (i.e., it can be allocated into
/// either a register or on the stack).
#[inline(always)]
pub fn any_def(vreg: VReg) -> Self {
Operand::new(
vreg,
OperandConstraint::Any,
OperandKind::Def,
OperandPos::Late,
)
}
/// Create an `Operand` that always results in an assignment to the
/// given fixed `preg`, *without* tracking liveranges in that
/// `preg`. Must only be used for non-allocatable registers.
#[inline(always)]
pub fn fixed_nonallocatable(preg: PReg) -> Self {
Operand::new(
VReg::new(VReg::MAX, preg.class()),
OperandConstraint::FixedReg(preg),
OperandKind::Use,
OperandPos::Early,
)
}
/// Get the virtual register designated by an operand. Every
/// operand must name some virtual register, even if it constrains
/// the operand to a fixed physical register as well; the vregs
/// are used to track dataflow.
#[inline(always)]
pub fn vreg(self) -> VReg {
let vreg_idx = ((self.bits as usize) & VReg::MAX) as usize;
VReg::new(vreg_idx, self.class())
}
/// Get the register class used by this operand.
#[inline(always)]
pub fn class(self) -> RegClass {
let class_field = (self.bits >> 21) & 3;
match class_field {
0 => RegClass::Int,
1 => RegClass::Float,
2 => RegClass::Vector,
_ => unreachable!(),
}
}
/// Get the "kind" of this operand: a definition (write) or a use
/// (read).
#[inline(always)]
pub fn kind(self) -> OperandKind {
let kind_field = (self.bits >> 24) & 1;
match kind_field {
0 => OperandKind::Def,
1 => OperandKind::Use,
_ => unreachable!(),
}
}
/// Get the "position" of this operand, i.e., where its read
/// and/or write occurs: either before the instruction executes,
/// or after it does. Ordinarily, uses occur at "before" and defs
/// at "after", though there are cases where this is not true.
#[inline(always)]
pub fn pos(self) -> OperandPos {
let pos_field = (self.bits >> 23) & 1;
match pos_field {
0 => OperandPos::Early,
1 => OperandPos::Late,
_ => unreachable!(),
}
}
/// Get the "constraint" of this operand, i.e., what requirements
/// its allocation must fulfill.
#[inline(always)]
pub fn constraint(self) -> OperandConstraint {
let constraint_field = ((self.bits >> 25) as usize) & 127;
if constraint_field & 0b1000000 != 0 {
OperandConstraint::FixedReg(PReg::new(constraint_field & 0b0111111, self.class()))
} else if constraint_field & 0b0100000 != 0 {
OperandConstraint::Reuse(constraint_field & 0b0011111)
} else {
match constraint_field {
0 => OperandConstraint::Any,
1 => OperandConstraint::Reg,
_ => unreachable!(),
}
}
}
/// If this operand is for a fixed non-allocatable register (see
/// [`Operand::fixed`]), then returns the physical register that it will
/// be assigned to.
#[inline(always)]
pub fn as_fixed_nonallocatable(self) -> Option<PReg> {
match self.constraint() {
OperandConstraint::FixedReg(preg) if self.vreg().vreg() == VReg::MAX => Some(preg),
_ => None,
}
}
/// Get the raw 32-bit encoding of this operand's fields.
#[inline(always)]
pub fn bits(self) -> u32 {
self.bits
}
/// Construct an `Operand` from the raw 32-bit encoding returned
/// from `bits()`.
#[inline(always)]
pub fn from_bits(bits: u32) -> Self {
debug_assert!(bits >> 29 <= 4);
Operand { bits }
}
}
impl core::fmt::Debug for Operand {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
core::fmt::Display::fmt(self, f)
}
}
impl core::fmt::Display for Operand {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
if let Some(preg) = self.as_fixed_nonallocatable() {
return write!(f, "Fixed: {preg}");
}
match (self.kind(), self.pos()) {
(OperandKind::Def, OperandPos::Late) | (OperandKind::Use, OperandPos::Early) => {
write!(f, "{:?}", self.kind())?;
}
_ => {
write!(f, "{:?}@{:?}", self.kind(), self.pos())?;
}
}
write!(
f,
": {}{} {}",
self.vreg(),
match self.class() {
RegClass::Int => "i",
RegClass::Float => "f",
RegClass::Vector => "v",
},
self.constraint()
)
}
}
/// An Allocation represents the end result of regalloc for an
/// Operand.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Allocation {
/// Bit-pack in 32 bits.
///
/// kind:3 unused:1 index:28
bits: u32,
}
impl core::fmt::Debug for Allocation {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
core::fmt::Display::fmt(self, f)
}
}
impl core::fmt::Display for Allocation {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self.kind() {
AllocationKind::None => write!(f, "none"),
AllocationKind::Reg => write!(f, "{}", self.as_reg().unwrap()),
AllocationKind::Stack => write!(f, "{}", self.as_stack().unwrap()),
}
}
}
impl Allocation {
/// Construct a new Allocation.
#[inline(always)]
pub(crate) fn new(kind: AllocationKind, index: usize) -> Self {
debug_assert!(index < (1 << 28));
Self {
bits: ((kind as u8 as u32) << 29) | (index as u32),
}
}
/// Get the "none" allocation, which is distinct from the other
/// possibilities and is used to initialize data structures.
#[inline(always)]
pub fn none() -> Allocation {
Allocation::new(AllocationKind::None, 0)
}
/// Create an allocation into a register.
#[inline(always)]
pub fn reg(preg: PReg) -> Allocation {
Allocation::new(AllocationKind::Reg, preg.index())
}
/// Create an allocation into a spillslot.
#[inline(always)]
pub fn stack(slot: SpillSlot) -> Allocation {
Allocation::new(AllocationKind::Stack, slot.bits as usize)
}
/// Get the allocation's "kind": none, register, or stack (spillslot).
#[inline(always)]
pub fn kind(self) -> AllocationKind {
match (self.bits >> 29) & 7 {
0 => AllocationKind::None,
1 => AllocationKind::Reg,
2 => AllocationKind::Stack,
_ => unreachable!(),
}
}
/// Is the allocation "none"?
#[inline(always)]
pub fn is_none(self) -> bool {
self.kind() == AllocationKind::None
}
/// Is the allocation not "none"?
#[inline(always)]
pub fn is_some(self) -> bool {
self.kind() != AllocationKind::None
}
/// Is the allocation a register?
#[inline(always)]
pub fn is_reg(self) -> bool {
self.kind() == AllocationKind::Reg
}
/// Is the allocation on the stack (a spillslot)?
#[inline(always)]
pub fn is_stack(self) -> bool {
self.kind() == AllocationKind::Stack
}
/// Get the index of the spillslot or register. If register, this
/// is an index that can be used by `PReg::from_index()`.
#[inline(always)]
pub fn index(self) -> usize {
(self.bits & ((1 << 28) - 1)) as usize
}
/// Get the allocation as a physical register, if any.
#[inline(always)]
pub fn as_reg(self) -> Option<PReg> {
if self.kind() == AllocationKind::Reg {
Some(PReg::from_index(self.index()))
} else {
None
}
}
/// Get the allocation as a spillslot, if any.
#[inline(always)]
pub fn as_stack(self) -> Option<SpillSlot> {
if self.kind() == AllocationKind::Stack {
Some(SpillSlot {
bits: self.index() as u32,
})
} else {
None
}
}
/// Get the raw bits for the packed encoding of this allocation.
#[inline(always)]
pub fn bits(self) -> u32 {
self.bits
}
/// Construct an allocation from its packed encoding.
#[inline(always)]
pub fn from_bits(bits: u32) -> Self {
debug_assert!(bits >> 29 >= 5);
Self { bits }
}
}
/// An allocation is one of two "kinds" (or "none"): register or
/// spillslot/stack.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(u8)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum AllocationKind {
None = 0,
Reg = 1,
Stack = 2,
}
/// A trait defined by the regalloc client to provide access to its
/// machine-instruction / CFG representation.
///
/// (This trait's design is inspired by, and derives heavily from, the
/// trait of the same name in regalloc.rs.)
pub trait Function {
// -------------
// CFG traversal
// -------------
/// How many instructions are there?
fn num_insts(&self) -> usize;
/// How many blocks are there?
fn num_blocks(&self) -> usize;
/// Get the index of the entry block.
fn entry_block(&self) -> Block;
/// Provide the range of instruction indices contained in each block.
fn block_insns(&self, block: Block) -> InstRange;
/// Get CFG successors for a given block.
fn block_succs(&self, block: Block) -> &[Block];
/// Get the CFG predecessors for a given block.
fn block_preds(&self, block: Block) -> &[Block];
/// Get the block parameters for a given block.
fn block_params(&self, block: Block) -> &[VReg];
/// Determine whether an instruction is a return instruction.
fn is_ret(&self, insn: Inst) -> bool;
/// Determine whether an instruction is the end-of-block
/// branch.
fn is_branch(&self, insn: Inst) -> bool;
/// If `insn` is a branch at the end of `block`, returns the
/// outgoing blockparam arguments for the given successor. The
/// number of arguments must match the number incoming blockparams
/// for each respective successor block.
fn branch_blockparams(&self, block: Block, insn: Inst, succ_idx: usize) -> &[VReg];
// --------------------------
// Instruction register slots
// --------------------------
/// Get the Operands for an instruction.
fn inst_operands(&self, insn: Inst) -> &[Operand];
/// Get the clobbers for an instruction; these are the registers
/// that, after the instruction has executed, hold values that are
/// arbitrary, separately from the usual outputs to the
/// instruction. It is invalid to read a register that has been
/// clobbered; the register allocator is free to assume that
/// clobbered registers are filled with garbage and available for
/// reuse. It will avoid storing any value in a clobbered register
/// that must be live across the instruction.
///
/// Another way of seeing this is that a clobber is equivalent to
/// a "late def" of a fresh vreg that is not used anywhere else
/// in the program, with a fixed-register constraint that places
/// it in a given PReg chosen by the client prior to regalloc.
///
/// Every register written by an instruction must either
/// correspond to (be assigned to) an Operand of kind `Def`, or
/// else must be a "clobber".
///
/// This can be used to, for example, describe ABI-specified
/// registers that are not preserved by a call instruction, or
/// fixed physical registers written by an instruction but not
/// used as a vreg output, or fixed physical registers used as
/// temps within an instruction out of necessity.
///
/// Note that it is legal for a register to be both a clobber and
/// an actual def (via pinned vreg or via operand constrained to
/// the reg). This is for convenience: e.g., a call instruction
/// might have a constant clobber set determined by the ABI, but
/// some of those clobbered registers are sometimes return
/// value(s).
fn inst_clobbers(&self, insn: Inst) -> PRegSet;
/// Get the number of `VReg` in use in this function.
fn num_vregs(&self) -> usize;
/// Get the VRegs for which we should generate value-location
/// metadata for debugging purposes. This can be used to generate
/// e.g. DWARF with valid prgram-point ranges for each value
/// expression in a way that is more efficient than a post-hoc
/// analysis of the allocator's output.
///
/// Each tuple is (vreg, inclusive_start, exclusive_end,
/// label). In the `Output` there will be (label, inclusive_start,
/// exclusive_end, alloc)` tuples. The ranges may not exactly
/// match -- specifically, the returned metadata may cover only a
/// subset of the requested ranges -- if the value is not live for
/// the entire requested ranges.
///
/// The instruction indices imply a program point just *before*
/// the instruction.
///
/// Precondition: we require this slice to be sorted by vreg.
fn debug_value_labels(&self) -> &[(VReg, Inst, Inst, u32)] {
&[]
}
// --------------
// Spills/reloads
// --------------
/// How many logical spill slots does the given regclass require? E.g., on
/// a 64-bit machine, spill slots may nominally be 64-bit words, but a
/// 128-bit vector value will require two slots. The regalloc will always
/// align on this size.
///
/// (This trait method's design and doc text derives from
/// regalloc.rs' trait of the same name.)
fn spillslot_size(&self, regclass: RegClass) -> usize;
/// When providing a spillslot number for a multi-slot spillslot,
/// do we provide the first or the last? This is usually related
/// to which direction the stack grows and different clients may
/// have different preferences.
fn multi_spillslot_named_by_last_slot(&self) -> bool {
false
}
// -----------
// Misc config
// -----------
/// Allow a single instruction to define a vreg multiple times. If
/// allowed, the semantics are as if the definition occurs only
/// once, and all defs will get the same alloc. This flexibility is
/// meant to allow the embedder to more easily aggregate operands
/// together in macro/pseudoinstructions, or e.g. add additional
/// clobbered vregs without taking care to deduplicate. This may be
/// particularly useful when referring to physical registers via
/// pinned vregs. It is optional functionality because a strict mode
/// (at most one def per vreg) is also useful for finding bugs in
/// other applications.
fn allow_multiple_vreg_defs(&self) -> bool {
false
}
}
/// A position before or after an instruction at which we can make an
/// edit.
///
/// Note that this differs from `OperandPos` in that the former
/// describes specifically a constraint on an operand, while this
/// describes a program point. `OperandPos` could grow more options in
/// the future, for example if we decide that an "early write" or
/// "late read" phase makes sense, while `InstPosition` will always
/// describe these two insertion points.
#[derive(Clone, Copy, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[repr(u8)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum InstPosition {
Before = 0,
After = 1,
}
/// A program point: a single point before or after a given instruction.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct ProgPoint {
bits: u32,
}
impl core::fmt::Debug for ProgPoint {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(
f,
"progpoint{}{}",
self.inst().index(),
match self.pos() {
InstPosition::Before => "-pre",
InstPosition::After => "-post",
}
)
}
}
impl ProgPoint {
/// Create a new ProgPoint before or after the given instruction.
#[inline(always)]
pub fn new(inst: Inst, pos: InstPosition) -> Self {
let bits = ((inst.0 as u32) << 1) | (pos as u8 as u32);
Self { bits }
}
/// Create a new ProgPoint before the given instruction.
#[inline(always)]
pub fn before(inst: Inst) -> Self {
Self::new(inst, InstPosition::Before)
}
/// Create a new ProgPoint after the given instruction.
#[inline(always)]
pub fn after(inst: Inst) -> Self {
Self::new(inst, InstPosition::After)
}
/// Get the instruction that this ProgPoint is before or after.
#[inline(always)]
pub fn inst(self) -> Inst {
// Cast to i32 to do an arithmetic right-shift, which will
// preserve an `Inst::invalid()` (which is -1, or all-ones).
Inst::new(((self.bits as i32) >> 1) as usize)
}
/// Get the "position" (Before or After) relative to the
/// instruction.
#[inline(always)]
pub fn pos(self) -> InstPosition {
match self.bits & 1 {
0 => InstPosition::Before,
1 => InstPosition::After,
_ => unreachable!(),
}
}
/// Get the "next" program point: for After, this is the Before of
/// the next instruction, while for Before, this is After of the
/// same instruction.
#[inline(always)]
pub fn next(self) -> ProgPoint {
Self {
bits: self.bits + 1,
}
}
/// Get the "previous" program point, the inverse of `.next()`
/// above.
#[inline(always)]
pub fn prev(self) -> ProgPoint {
Self {
bits: self.bits - 1,
}
}
/// Convert to a raw encoding in 32 bits.
#[inline(always)]
pub fn to_index(self) -> u32 {
self.bits
}
/// Construct from the raw 32-bit encoding.
#[inline(always)]
pub fn from_index(index: u32) -> Self {
Self { bits: index }
}
}
/// An instruction to insert into the program to perform some data movement.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum Edit {
/// Move one allocation to another. Each allocation may be a
/// register or a stack slot (spillslot). However, stack-to-stack
/// moves will never be generated.
///
/// `Move` edits will be generated even if src and dst allocation
/// are the same if the vreg changes; this allows proper metadata
/// tracking even when moves are elided.
Move { from: Allocation, to: Allocation },
}
/// Wrapper around either an original instruction or an inserted edit.
#[derive(Clone, Debug)]
pub enum InstOrEdit<'a> {
Inst(Inst),
Edit(&'a Edit),
}
/// Iterator over the instructions and edits in a block.
pub struct OutputIter<'a> {
/// List of edits starting at the first for the current block.
edits: &'a [(ProgPoint, Edit)],
/// Remaining instructions in the current block.
inst_range: InstRange,
}
impl<'a> Iterator for OutputIter<'a> {
type Item = InstOrEdit<'a>;
fn next(&mut self) -> Option<InstOrEdit<'a>> {
// There can't be any edits after the last instruction in a block, so
// we don't need to worry about that case.
if self.inst_range.len() == 0 {
return None;
}
// Return any edits that happen before the next instruction first.
let next_inst = self.inst_range.first();
if let Some((edit, remaining_edits)) = self.edits.split_first() {
if edit.0 <= ProgPoint::before(next_inst) {
self.edits = remaining_edits;
return Some(InstOrEdit::Edit(&edit.1));
}
}
self.inst_range = self.inst_range.rest();
Some(InstOrEdit::Inst(next_inst))
}
}
/// A machine environment tells the register allocator which registers
/// are available to allocate and what register may be used as a
/// scratch register for each class, and some other miscellaneous info
/// as well.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct MachineEnv {
/// Preferred physical registers for each class. These are the
/// registers that will be allocated first, if free.
///
/// If an explicit scratch register is provided in `scratch_by_class` then
/// it must not appear in this list.
pub preferred_regs_by_class: [Vec<PReg>; 3],
/// Non-preferred physical registers for each class. These are the
/// registers that will be allocated if a preferred register is
/// not available; using one of these is considered suboptimal,
/// but still better than spilling.
///
/// If an explicit scratch register is provided in `scratch_by_class` then
/// it must not appear in this list.
pub non_preferred_regs_by_class: [Vec<PReg>; 3],
/// Optional dedicated scratch register per class. This is needed to perform
/// moves between registers when cyclic move patterns occur. The
/// register should not be placed in either the preferred or
/// non-preferred list (i.e., it is not otherwise allocatable).
///
/// Note that the register allocator will freely use this register
/// between instructions, but *within* the machine code generated
/// by a single (regalloc-level) instruction, the client is free
/// to use the scratch register. E.g., if one "instruction" causes
/// the emission of two machine-code instructions, this lowering
/// can use the scratch register between them.
///
/// If a scratch register is not provided then the register allocator will
/// automatically allocate one as needed, spilling a value to the stack if
/// necessary.
pub scratch_by_class: [Option<PReg>; 3],
/// Some `PReg`s can be designated as locations on the stack rather than
/// actual registers. These can be used to tell the register allocator about
/// pre-defined stack slots used for function arguments and return values.
///
/// `PReg`s in this list cannot be used as an allocatable or scratch
/// register.
pub fixed_stack_slots: Vec<PReg>,
}
/// The output of the register allocator.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub struct Output {
/// How many spillslots are needed in the frame?
pub num_spillslots: usize,
/// Edits (insertions or removals). Guaranteed to be sorted by
/// program point.
pub edits: Vec<(ProgPoint, Edit)>,
/// Allocations for each operand. Mapping from instruction to
/// allocations provided by `inst_alloc_offsets` below.
pub allocs: Vec<Allocation>,
/// Allocation offset in `allocs` for each instruction.
pub inst_alloc_offsets: Vec<u32>,
/// Debug info: a labeled value (as applied to vregs by
/// `Function::debug_value_labels()` on the input side) is located
/// in the given allocation from the first program point
/// (inclusive) to the second (exclusive). Guaranteed to be sorted
/// by label and program point, and the ranges are guaranteed to
/// be disjoint.
pub debug_locations: Vec<(u32, ProgPoint, ProgPoint, Allocation)>,
/// Internal stats from the allocator.
pub stats: ion::Stats,
}
impl Output {
/// Get the allocations assigned to a given instruction.
pub fn inst_allocs(&self, inst: Inst) -> &[Allocation] {
let start = self.inst_alloc_offsets[inst.index()] as usize;
let end = if inst.index() + 1 == self.inst_alloc_offsets.len() {
self.allocs.len()
} else {
self.inst_alloc_offsets[inst.index() + 1] as usize
};
&self.allocs[start..end]
}
/// Returns an iterator over the instructions and edits in a block, in
/// order.
pub fn block_insts_and_edits(&self, func: &impl Function, block: Block) -> OutputIter<'_> {
let inst_range = func.block_insns(block);
let edit_idx = self
.edits
.binary_search_by(|&(pos, _)| {
// This predicate effectively searches for a point *just* before
// the first ProgPoint. This never returns Ordering::Equal, but
// binary_search_by returns the index of where it would have
// been inserted in Err.
if pos < ProgPoint::before(inst_range.first()) {
core::cmp::Ordering::Less
} else {
core::cmp::Ordering::Greater
}
})
.unwrap_err();
let edits = &self.edits[edit_idx..];
OutputIter { inst_range, edits }
}
}
/// An error that prevents allocation.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "enable-serde", derive(Serialize, Deserialize))]
pub enum RegAllocError {
/// Critical edge is not split between given blocks.
CritEdge(Block, Block),
/// Invalid SSA for given vreg at given inst: multiple defs or
/// illegal use. `inst` may be `Inst::invalid()` if this concerns
/// a block param.
SSA(VReg, Inst),
/// Invalid basic block: does not end in branch/ret, or contains a
/// branch/ret in the middle.
BB(Block),
/// Invalid branch: operand count does not match sum of block
/// params of successor blocks.
Branch(Inst),
/// A VReg is live-in on entry; this is not allowed.
EntryLivein,
/// A branch has non-blockparam arg(s) and at least one of the
/// successor blocks has more than one predecessor, forcing
/// edge-moves before this branch. This is disallowed because it
/// places a use after the edge moves occur; insert an edge block
/// to avoid the situation.
DisallowedBranchArg(Inst),
/// Too many pinned VRegs + Reg-constrained Operands are live at
/// once, making allocation impossible.
TooManyLiveRegs,
}
impl core::fmt::Display for RegAllocError {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{:?}", self)
}
}
#[cfg(feature = "std")]
impl std::error::Error for RegAllocError {}
/// Run the allocator.
pub fn run<F: Function>(
func: &F,
env: &MachineEnv,
options: &RegallocOptions,
) -> Result<Output, RegAllocError> {
ion::run(func, env, options.verbose_log, options.validate_ssa)
}
/// Options for allocation.
#[derive(Clone, Copy, Debug, Default)]
pub struct RegallocOptions {
/// Add extra verbosity to debug logs.
pub verbose_log: bool,
/// Run the SSA validator before allocating registers.
pub validate_ssa: bool,
}