rand/seq/increasing_uniform.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
// Copyright 2018-2023 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use crate::{Rng, RngCore};
/// Similar to a Uniform distribution,
/// but after returning a number in the range [0,n], n is increased by 1.
pub(crate) struct IncreasingUniform<R: RngCore> {
pub rng: R,
n: u32,
// Chunk is a random number in [0, (n + 1) * (n + 2) *..* (n + chunk_remaining) )
chunk: u32,
chunk_remaining: u8,
}
impl<R: RngCore> IncreasingUniform<R> {
/// Create a dice roller.
/// The next item returned will be a random number in the range [0,n]
pub fn new(rng: R, n: u32) -> Self {
// If n = 0, the first number returned will always be 0
// so we don't need to generate a random number
let chunk_remaining = if n == 0 { 1 } else { 0 };
Self {
rng,
n,
chunk: 0,
chunk_remaining,
}
}
/// Returns a number in [0,n] and increments n by 1.
/// Generates new random bits as needed
/// Panics if `n >= u32::MAX`
#[inline]
pub fn next_index(&mut self) -> usize {
let next_n = self.n + 1;
// There's room for further optimisation here:
// random_range uses rejection sampling (or other method; see #1196) to avoid bias.
// When the initial sample is biased for range 0..bound
// it may still be viable to use for a smaller bound
// (especially if small biases are considered acceptable).
let next_chunk_remaining = self.chunk_remaining.checked_sub(1).unwrap_or_else(|| {
// If the chunk is empty, generate a new chunk
let (bound, remaining) = calculate_bound_u32(next_n);
// bound = (n + 1) * (n + 2) *..* (n + remaining)
self.chunk = self.rng.random_range(..bound);
// Chunk is a random number in
// [0, (n + 1) * (n + 2) *..* (n + remaining) )
remaining - 1
});
let result = if next_chunk_remaining == 0 {
// `chunk` is a random number in the range [0..n+1)
// Because `chunk_remaining` is about to be set to zero
// we do not need to clear the chunk here
self.chunk as usize
} else {
// `chunk` is a random number in a range that is a multiple of n+1
// so r will be a random number in [0..n+1)
let r = self.chunk % next_n;
self.chunk /= next_n;
r as usize
};
self.chunk_remaining = next_chunk_remaining;
self.n = next_n;
result
}
}
#[inline]
/// Calculates `bound`, `count` such that bound (m)*(m+1)*..*(m + remaining - 1)
fn calculate_bound_u32(m: u32) -> (u32, u8) {
debug_assert!(m > 0);
#[inline]
const fn inner(m: u32) -> (u32, u8) {
let mut product = m;
let mut current = m + 1;
loop {
if let Some(p) = u32::checked_mul(product, current) {
product = p;
current += 1;
} else {
// Count has a maximum value of 13 for when min is 1 or 2
let count = (current - m) as u8;
return (product, count);
}
}
}
const RESULT2: (u32, u8) = inner(2);
if m == 2 {
// Making this value a constant instead of recalculating it
// gives a significant (~50%) performance boost for small shuffles
return RESULT2;
}
inner(m)
}