cranelift_codegen/isa/x64/abi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
//! Implementation of the standard x64 ABI.
use crate::ir::{self, types, LibCall, MemFlags, Signature, TrapCode};
use crate::ir::{types::*, ExternalName};
use crate::isa;
use crate::isa::winch;
use crate::isa::x64::X64Backend;
use crate::isa::{unwind::UnwindInst, x64::inst::*, x64::settings as x64_settings, CallConv};
use crate::machinst::abi::*;
use crate::machinst::*;
use crate::settings;
use crate::CodegenResult;
use alloc::boxed::Box;
use alloc::vec::Vec;
use args::*;
use regalloc2::{MachineEnv, PReg, PRegSet};
use smallvec::{smallvec, SmallVec};
use std::borrow::ToOwned;
use std::sync::OnceLock;
/// Support for the x64 ABI from the callee side (within a function body).
pub(crate) type X64Callee = Callee<X64ABIMachineSpec>;
/// Support for the x64 ABI from the caller side (at a callsite).
pub(crate) type X64CallSite = CallSite<X64ABIMachineSpec>;
/// Implementation of ABI primitives for x64.
pub struct X64ABIMachineSpec;
impl X64ABIMachineSpec {
fn gen_probestack_unroll(insts: &mut SmallInstVec<Inst>, guard_size: u32, probe_count: u32) {
insts.reserve(probe_count as usize);
for _ in 0..probe_count {
// "Allocate" stack space for the probe by decrementing the stack pointer before
// the write. This is required to make valgrind happy.
// See: https://github.com/bytecodealliance/wasmtime/issues/7454
insts.extend(Self::gen_sp_reg_adjust(-(guard_size as i32)));
// TODO: It would be nice if we could store the imm 0, but we don't have insts for those
// so store the stack pointer. Any register will do, since the stack is undefined at this point
insts.push(Inst::store(
I32,
regs::rsp(),
Amode::imm_reg(0, regs::rsp()),
));
}
// Restore the stack pointer to its original value
insts.extend(Self::gen_sp_reg_adjust((guard_size * probe_count) as i32));
}
fn gen_probestack_loop(
insts: &mut SmallInstVec<Inst>,
_call_conv: isa::CallConv,
frame_size: u32,
guard_size: u32,
) {
// We have to use a caller-saved register since clobbering only
// happens after stack probing.
// `r11` is caller saved on both Fastcall and SystemV, and not used
// for argument passing, so it's pretty much free. It is also not
// used by the stacklimit mechanism.
let tmp = regs::r11();
debug_assert!({
let real_reg = tmp.to_real_reg().unwrap();
!is_callee_save_systemv(real_reg, false) && !is_callee_save_fastcall(real_reg, false)
});
insts.push(Inst::StackProbeLoop {
tmp: Writable::from_reg(tmp),
frame_size,
guard_size,
});
}
}
impl IsaFlags for x64_settings::Flags {}
impl ABIMachineSpec for X64ABIMachineSpec {
type I = Inst;
type F = x64_settings::Flags;
/// This is the limit for the size of argument and return-value areas on the
/// stack. We place a reasonable limit here to avoid integer overflow issues
/// with 32-bit arithmetic: for now, 128 MB.
const STACK_ARG_RET_SIZE_LIMIT: u32 = 128 * 1024 * 1024;
fn word_bits() -> u32 {
64
}
/// Return required stack alignment in bytes.
fn stack_align(_call_conv: isa::CallConv) -> u32 {
16
}
fn compute_arg_locs(
call_conv: isa::CallConv,
flags: &settings::Flags,
params: &[ir::AbiParam],
args_or_rets: ArgsOrRets,
add_ret_area_ptr: bool,
mut args: ArgsAccumulator,
) -> CodegenResult<(u32, Option<usize>)> {
let is_fastcall = call_conv == CallConv::WindowsFastcall;
let mut next_gpr = 0;
let mut next_vreg = 0;
let mut next_stack: u32 = 0;
let mut next_param_idx = 0; // Fastcall cares about overall param index
if args_or_rets == ArgsOrRets::Args && is_fastcall {
// Fastcall always reserves 32 bytes of shadow space corresponding to
// the four initial in-arg parameters.
//
// (See:
// https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160)
next_stack = 32;
}
let ret_area_ptr = if add_ret_area_ptr {
debug_assert_eq!(args_or_rets, ArgsOrRets::Args);
next_gpr += 1;
next_param_idx += 1;
// In the SystemV and WindowsFastcall ABIs, the return area pointer is the first
// argument. For the Tail and Winch ABIs we do the same for simplicity sake.
Some(ABIArg::reg(
get_intreg_for_arg(call_conv, 0, 0)
.unwrap()
.to_real_reg()
.unwrap(),
types::I64,
ir::ArgumentExtension::None,
ir::ArgumentPurpose::Normal,
))
} else {
None
};
// If any param uses extension, the winch calling convention will not pack its results
// on the stack and will instead align them to 8-byte boundaries the same way that all the
// other calling conventions do. This isn't consistent with Winch itself, but is fine as
// Winch only uses this calling convention via trampolines, and those trampolines don't add
// extension annotations. Additionally, handling extension attributes this way allows clif
// functions that use them with the Winch calling convention to interact successfully with
// testing infrastructure.
// The results are also not packed if any of the types are `f16`. This is to simplify the
// implementation of `Inst::load`/`Inst::store` (which would otherwise require multiple
// instructions), and doesn't affect Winch itself as Winch doesn't support `f16` at all.
let uses_extension = params
.iter()
.any(|p| p.extension != ir::ArgumentExtension::None || p.value_type == types::F16);
for (ix, param) in params.iter().enumerate() {
let last_param = ix == params.len() - 1;
if let ir::ArgumentPurpose::StructArgument(size) = param.purpose {
let offset = next_stack as i64;
let size = size;
assert!(size % 8 == 0, "StructArgument size is not properly aligned");
next_stack += size;
args.push(ABIArg::StructArg {
offset,
size: size as u64,
purpose: param.purpose,
});
continue;
}
// Find regclass(es) of the register(s) used to store a value of this type.
let (rcs, reg_tys) = Inst::rc_for_type(param.value_type)?;
// Now assign ABIArgSlots for each register-sized part.
//
// Note that the handling of `i128` values is unique here:
//
// - If `enable_llvm_abi_extensions` is set in the flags, each
// `i128` is split into two `i64`s and assigned exactly as if it
// were two consecutive 64-bit args, except that if one of the
// two halves is forced onto the stack, the other half is too.
// This is consistent with LLVM's behavior, and is needed for
// some uses of Cranelift (e.g., the rustc backend).
//
// - Otherwise, both SysV and Fastcall specify behavior (use of
// vector register, a register pair, or passing by reference
// depending on the case), but for simplicity, we will just panic if
// an i128 type appears in a signature and the LLVM extensions flag
// is not set.
//
// For examples of how rustc compiles i128 args and return values on
// both SysV and Fastcall platforms, see:
// https://godbolt.org/z/PhG3ob
if param.value_type.bits() > 64
&& !(param.value_type.is_vector() || param.value_type.is_float())
&& !flags.enable_llvm_abi_extensions()
{
panic!(
"i128 args/return values not supported unless LLVM ABI extensions are enabled"
);
}
// As MSVC doesn't support f16/f128 there is no standard way to pass/return them with
// the Windows ABI. LLVM passes/returns them in XMM registers.
if matches!(param.value_type, types::F16 | types::F128)
&& is_fastcall
&& !flags.enable_llvm_abi_extensions()
{
panic!(
"f16/f128 args/return values not supported for windows_fastcall unless LLVM ABI extensions are enabled"
);
}
// Windows fastcall dictates that `__m128i` parameters to a function
// are passed indirectly as pointers, so handle that as a special
// case before the loop below.
if param.value_type.is_vector()
&& param.value_type.bits() >= 128
&& args_or_rets == ArgsOrRets::Args
&& is_fastcall
{
let pointer = match get_intreg_for_arg(call_conv, next_gpr, next_param_idx) {
Some(reg) => {
next_gpr += 1;
ABIArgSlot::Reg {
reg: reg.to_real_reg().unwrap(),
ty: ir::types::I64,
extension: ir::ArgumentExtension::None,
}
}
None => {
next_stack = align_to(next_stack, 8) + 8;
ABIArgSlot::Stack {
offset: (next_stack - 8) as i64,
ty: ir::types::I64,
extension: param.extension,
}
}
};
next_param_idx += 1;
args.push(ABIArg::ImplicitPtrArg {
// NB: this is filled in after this loop
offset: 0,
pointer,
ty: param.value_type,
purpose: param.purpose,
});
continue;
}
// SystemV dictates that 128bit int parameters are always either
// passed in two registers or on the stack, so handle that as a
// special case before the loop below.
if param.value_type == types::I128
&& args_or_rets == ArgsOrRets::Args
&& call_conv == CallConv::SystemV
{
let mut slots = ABIArgSlotVec::new();
match (
get_intreg_for_arg(CallConv::SystemV, next_gpr, next_param_idx),
get_intreg_for_arg(CallConv::SystemV, next_gpr + 1, next_param_idx + 1),
) {
(Some(reg1), Some(reg2)) => {
slots.push(ABIArgSlot::Reg {
reg: reg1.to_real_reg().unwrap(),
ty: ir::types::I64,
extension: ir::ArgumentExtension::None,
});
slots.push(ABIArgSlot::Reg {
reg: reg2.to_real_reg().unwrap(),
ty: ir::types::I64,
extension: ir::ArgumentExtension::None,
});
}
_ => {
let size = 16;
// Align.
next_stack = align_to(next_stack, size);
slots.push(ABIArgSlot::Stack {
offset: next_stack as i64,
ty: ir::types::I64,
extension: param.extension,
});
slots.push(ABIArgSlot::Stack {
offset: next_stack as i64 + 8,
ty: ir::types::I64,
extension: param.extension,
});
next_stack += size;
}
};
// Unconditionally increment next_gpr even when storing the
// argument on the stack to prevent reusing a possibly
// remaining register for the next argument.
next_gpr += 2;
next_param_idx += 2;
args.push(ABIArg::Slots {
slots,
purpose: param.purpose,
});
continue;
}
let mut slots = ABIArgSlotVec::new();
for (ix, (rc, reg_ty)) in rcs.iter().zip(reg_tys.iter()).enumerate() {
let last_slot = last_param && ix == rcs.len() - 1;
let intreg = *rc == RegClass::Int;
let nextreg = if intreg {
match args_or_rets {
ArgsOrRets::Args => get_intreg_for_arg(call_conv, next_gpr, next_param_idx),
ArgsOrRets::Rets => {
get_intreg_for_retval(call_conv, flags, next_gpr, last_slot)
}
}
} else {
match args_or_rets {
ArgsOrRets::Args => {
get_fltreg_for_arg(call_conv, next_vreg, next_param_idx)
}
ArgsOrRets::Rets => get_fltreg_for_retval(call_conv, next_vreg, last_slot),
}
};
next_param_idx += 1;
if let Some(reg) = nextreg {
if intreg {
next_gpr += 1;
} else {
next_vreg += 1;
}
slots.push(ABIArgSlot::Reg {
reg: reg.to_real_reg().unwrap(),
ty: *reg_ty,
extension: param.extension,
});
} else {
if args_or_rets == ArgsOrRets::Rets && !flags.enable_multi_ret_implicit_sret() {
return Err(crate::CodegenError::Unsupported(
"Too many return values to fit in registers. \
Use a StructReturn argument instead. (#9510)"
.to_owned(),
));
}
let size = reg_ty.bytes();
let size = if call_conv == CallConv::Winch
&& args_or_rets == ArgsOrRets::Rets
&& !uses_extension
{
size
} else {
let size = std::cmp::max(size, 8);
// Align.
debug_assert!(size.is_power_of_two());
next_stack = align_to(next_stack, size);
size
};
slots.push(ABIArgSlot::Stack {
offset: next_stack as i64,
ty: *reg_ty,
extension: param.extension,
});
next_stack += size;
}
}
args.push(ABIArg::Slots {
slots,
purpose: param.purpose,
});
}
// Fastcall's indirect 128+ bit vector arguments are all located on the
// stack, and stack space is reserved after all parameters are passed,
// so allocate from the space now.
if args_or_rets == ArgsOrRets::Args && is_fastcall {
for arg in args.args_mut() {
if let ABIArg::ImplicitPtrArg { offset, .. } = arg {
assert_eq!(*offset, 0);
next_stack = align_to(next_stack, 16);
*offset = next_stack as i64;
next_stack += 16;
}
}
}
let extra_arg_idx = if let Some(ret_area_ptr) = ret_area_ptr {
args.push_non_formal(ret_area_ptr);
Some(args.args().len() - 1)
} else {
None
};
// Winch writes the first result to the highest offset, so we need to iterate through the
// args and adjust the offsets down.
if call_conv == CallConv::Winch && args_or_rets == ArgsOrRets::Rets {
winch::reverse_stack(args, next_stack, uses_extension);
}
next_stack = align_to(next_stack, 16);
Ok((next_stack, extra_arg_idx))
}
fn gen_load_stack(mem: StackAMode, into_reg: Writable<Reg>, ty: Type) -> Self::I {
// For integer-typed values, we always load a full 64 bits (and we always spill a full 64
// bits as well -- see `Inst::store()`).
let ty = match ty {
types::I8 | types::I16 | types::I32 => types::I64,
// Stack slots are always at least 8 bytes, so it's fine to load 4 bytes instead of only
// two.
types::F16 => types::F32,
_ => ty,
};
Inst::load(ty, mem, into_reg, ExtKind::None)
}
fn gen_store_stack(mem: StackAMode, from_reg: Reg, ty: Type) -> Self::I {
let ty = match ty {
// See `gen_load_stack`.
types::F16 => types::F32,
_ => ty,
};
Inst::store(ty, from_reg, mem)
}
fn gen_move(to_reg: Writable<Reg>, from_reg: Reg, ty: Type) -> Self::I {
Inst::gen_move(to_reg, from_reg, ty)
}
/// Generate an integer-extend operation.
fn gen_extend(
to_reg: Writable<Reg>,
from_reg: Reg,
is_signed: bool,
from_bits: u8,
to_bits: u8,
) -> Self::I {
let ext_mode = ExtMode::new(from_bits as u16, to_bits as u16)
.unwrap_or_else(|| panic!("invalid extension: {from_bits} -> {to_bits}"));
if is_signed {
Inst::movsx_rm_r(ext_mode, RegMem::reg(from_reg), to_reg)
} else {
Inst::movzx_rm_r(ext_mode, RegMem::reg(from_reg), to_reg)
}
}
fn gen_args(args: Vec<ArgPair>) -> Inst {
Inst::Args { args }
}
fn gen_rets(rets: Vec<RetPair>) -> Inst {
Inst::Rets { rets }
}
fn gen_add_imm(
_call_conv: isa::CallConv,
into_reg: Writable<Reg>,
from_reg: Reg,
imm: u32,
) -> SmallInstVec<Self::I> {
let mut ret = SmallVec::new();
if from_reg != into_reg.to_reg() {
ret.push(Inst::gen_move(into_reg, from_reg, I64));
}
ret.push(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Add,
RegMemImm::imm(imm),
into_reg,
));
ret
}
fn gen_stack_lower_bound_trap(limit_reg: Reg) -> SmallInstVec<Self::I> {
smallvec![
Inst::cmp_rmi_r(OperandSize::Size64, limit_reg, RegMemImm::reg(regs::rsp())),
Inst::TrapIf {
// NBE == "> unsigned"; args above are reversed; this tests limit_reg > rsp.
cc: CC::NBE,
trap_code: TrapCode::STACK_OVERFLOW,
},
]
}
fn gen_get_stack_addr(mem: StackAMode, into_reg: Writable<Reg>) -> Self::I {
let mem: SyntheticAmode = mem.into();
Inst::lea(mem, into_reg)
}
fn get_stacklimit_reg(_call_conv: isa::CallConv) -> Reg {
// As per comment on trait definition, we must return a caller-save
// register that is not used as an argument here.
debug_assert!(!is_callee_save_systemv(
regs::r10().to_real_reg().unwrap(),
false
));
regs::r10()
}
fn gen_load_base_offset(into_reg: Writable<Reg>, base: Reg, offset: i32, ty: Type) -> Self::I {
// Only ever used for I64s and vectors; if that changes, see if the
// ExtKind below needs to be changed.
assert!(ty == I64 || ty.is_vector());
let mem = Amode::imm_reg(offset, base);
Inst::load(ty, mem, into_reg, ExtKind::None)
}
fn gen_store_base_offset(base: Reg, offset: i32, from_reg: Reg, ty: Type) -> Self::I {
let ty = match ty {
// See `gen_load_stack`.
types::F16 => types::F32,
_ => ty,
};
let mem = Amode::imm_reg(offset, base);
Inst::store(ty, from_reg, mem)
}
fn gen_sp_reg_adjust(amount: i32) -> SmallInstVec<Self::I> {
let (alu_op, amount) = if amount >= 0 {
(AluRmiROpcode::Add, amount)
} else {
(AluRmiROpcode::Sub, -amount)
};
let amount = amount as u32;
smallvec![Inst::alu_rmi_r(
OperandSize::Size64,
alu_op,
RegMemImm::imm(amount),
Writable::from_reg(regs::rsp()),
)]
}
fn gen_prologue_frame_setup(
_call_conv: isa::CallConv,
flags: &settings::Flags,
_isa_flags: &x64_settings::Flags,
frame_layout: &FrameLayout,
) -> SmallInstVec<Self::I> {
let r_rsp = regs::rsp();
let r_rbp = regs::rbp();
let w_rbp = Writable::from_reg(r_rbp);
let mut insts = SmallVec::new();
// `push %rbp`
// RSP before the call will be 0 % 16. So here, it is 8 % 16.
insts.push(Inst::push64(RegMemImm::reg(r_rbp)));
if flags.unwind_info() {
insts.push(Inst::Unwind {
inst: UnwindInst::PushFrameRegs {
offset_upward_to_caller_sp: frame_layout.setup_area_size,
},
});
}
// `mov %rsp, %rbp`
// RSP is now 0 % 16
insts.push(Inst::mov_r_r(OperandSize::Size64, r_rsp, w_rbp));
insts
}
fn gen_epilogue_frame_restore(
_call_conv: isa::CallConv,
_flags: &settings::Flags,
_isa_flags: &x64_settings::Flags,
_frame_layout: &FrameLayout,
) -> SmallInstVec<Self::I> {
let mut insts = SmallVec::new();
// `mov %rbp, %rsp`
insts.push(Inst::mov_r_r(
OperandSize::Size64,
regs::rbp(),
Writable::from_reg(regs::rsp()),
));
// `pop %rbp`
insts.push(Inst::pop64(Writable::from_reg(regs::rbp())));
insts
}
fn gen_return(
call_conv: CallConv,
_isa_flags: &x64_settings::Flags,
frame_layout: &FrameLayout,
) -> SmallInstVec<Self::I> {
// Emit return instruction.
let stack_bytes_to_pop = if call_conv == CallConv::Tail {
frame_layout.tail_args_size
} else {
0
};
smallvec![Inst::ret(stack_bytes_to_pop)]
}
fn gen_probestack(insts: &mut SmallInstVec<Self::I>, frame_size: u32) {
insts.push(Inst::imm(
OperandSize::Size32,
frame_size as u64,
Writable::from_reg(regs::rax()),
));
insts.push(Inst::CallKnown {
// No need to include arg here: we are post-regalloc
// so no constraints will be seen anyway.
info: Box::new(CallInfo::empty(
ExternalName::LibCall(LibCall::Probestack),
CallConv::Probestack,
)),
});
}
fn gen_inline_probestack(
insts: &mut SmallInstVec<Self::I>,
call_conv: isa::CallConv,
frame_size: u32,
guard_size: u32,
) {
// Unroll at most n consecutive probes, before falling back to using a loop
//
// This was number was picked because the loop version is 38 bytes long. We can fit
// 4 inline probes in that space, so unroll if its beneficial in terms of code size.
const PROBE_MAX_UNROLL: u32 = 4;
// Calculate how many probes we need to perform. Round down, as we only
// need to probe whole guard_size regions we'd otherwise skip over.
let probe_count = frame_size / guard_size;
if probe_count == 0 {
// No probe necessary
} else if probe_count <= PROBE_MAX_UNROLL {
Self::gen_probestack_unroll(insts, guard_size, probe_count)
} else {
Self::gen_probestack_loop(insts, call_conv, frame_size, guard_size)
}
}
fn gen_clobber_save(
_call_conv: isa::CallConv,
flags: &settings::Flags,
frame_layout: &FrameLayout,
) -> SmallVec<[Self::I; 16]> {
let mut insts = SmallVec::new();
// When a return_call within this function required more stack arguments than we have
// present, resize the incoming argument area of the frame to accommodate those arguments.
let incoming_args_diff = frame_layout.tail_args_size - frame_layout.incoming_args_size;
if incoming_args_diff > 0 {
// Decrement the stack pointer to make space for the new arguments
insts.push(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Sub,
RegMemImm::imm(incoming_args_diff),
Writable::from_reg(regs::rsp()),
));
// Make sure to keep the frame pointer and stack pointer in sync at this point
insts.push(Inst::mov_r_r(
OperandSize::Size64,
regs::rsp(),
Writable::from_reg(regs::rbp()),
));
let incoming_args_diff = i32::try_from(incoming_args_diff).unwrap();
// Move the saved frame pointer down by `incoming_args_diff`
insts.push(Inst::mov64_m_r(
Amode::imm_reg(incoming_args_diff, regs::rsp()),
Writable::from_reg(regs::r11()),
));
insts.push(Inst::mov_r_m(
OperandSize::Size64,
regs::r11(),
Amode::imm_reg(0, regs::rsp()),
));
// Move the saved return address down by `incoming_args_diff`
insts.push(Inst::mov64_m_r(
Amode::imm_reg(incoming_args_diff + 8, regs::rsp()),
Writable::from_reg(regs::r11()),
));
insts.push(Inst::mov_r_m(
OperandSize::Size64,
regs::r11(),
Amode::imm_reg(8, regs::rsp()),
));
}
// We need to factor `incoming_args_diff` into the offset upward here, as we have grown
// the argument area -- `setup_area_size` alone will not be the correct offset up to the
// original caller's SP.
let offset_upward_to_caller_sp = frame_layout.setup_area_size + incoming_args_diff;
if flags.unwind_info() && offset_upward_to_caller_sp > 0 {
// Emit unwind info: start the frame. The frame (from unwind
// consumers' point of view) starts at clobbbers, just below
// the FP and return address. Spill slots and stack slots are
// part of our actual frame but do not concern the unwinder.
insts.push(Inst::Unwind {
inst: UnwindInst::DefineNewFrame {
offset_downward_to_clobbers: frame_layout.clobber_size,
offset_upward_to_caller_sp,
},
});
}
// Adjust the stack pointer downward for clobbers and the function fixed
// frame (spillslots, storage slots, and argument area).
let stack_size = frame_layout.fixed_frame_storage_size
+ frame_layout.clobber_size
+ frame_layout.outgoing_args_size;
if stack_size > 0 {
insts.push(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Sub,
RegMemImm::imm(stack_size),
Writable::from_reg(regs::rsp()),
));
}
// Store each clobbered register in order at offsets from RSP,
// placing them above the fixed frame slots.
let clobber_offset =
frame_layout.fixed_frame_storage_size + frame_layout.outgoing_args_size;
let mut cur_offset = 0;
for reg in &frame_layout.clobbered_callee_saves {
let r_reg = reg.to_reg();
let ty = match r_reg.class() {
RegClass::Int => types::I64,
RegClass::Float => types::I8X16,
RegClass::Vector => unreachable!(),
};
// Align to 8 or 16 bytes as required by the storage type of the clobber.
cur_offset = align_to(cur_offset, ty.bytes());
let off = cur_offset;
cur_offset += ty.bytes();
insts.push(Inst::store(
ty,
r_reg.into(),
Amode::imm_reg(i32::try_from(off + clobber_offset).unwrap(), regs::rsp()),
));
if flags.unwind_info() {
insts.push(Inst::Unwind {
inst: UnwindInst::SaveReg {
clobber_offset: off,
reg: r_reg,
},
});
}
}
insts
}
fn gen_clobber_restore(
_call_conv: isa::CallConv,
_flags: &settings::Flags,
frame_layout: &FrameLayout,
) -> SmallVec<[Self::I; 16]> {
let mut insts = SmallVec::new();
// Restore regs by loading from offsets of RSP. We compute the offset from
// the same base as above in clobber_save, as RSP won't change between the
// prologue and epilogue.
let mut cur_offset =
frame_layout.fixed_frame_storage_size + frame_layout.outgoing_args_size;
for reg in &frame_layout.clobbered_callee_saves {
let rreg = reg.to_reg();
let ty = match rreg.class() {
RegClass::Int => types::I64,
RegClass::Float => types::I8X16,
RegClass::Vector => unreachable!(),
};
// Align to 8 or 16 bytes as required by the storage type of the clobber.
cur_offset = align_to(cur_offset, ty.bytes());
insts.push(Inst::load(
ty,
Amode::imm_reg(cur_offset.try_into().unwrap(), regs::rsp()),
Writable::from_reg(rreg.into()),
ExtKind::None,
));
cur_offset += ty.bytes();
}
let stack_size = frame_layout.fixed_frame_storage_size
+ frame_layout.clobber_size
+ frame_layout.outgoing_args_size;
// Adjust RSP back upward.
if stack_size > 0 {
insts.push(Inst::alu_rmi_r(
OperandSize::Size64,
AluRmiROpcode::Add,
RegMemImm::imm(stack_size),
Writable::from_reg(regs::rsp()),
));
}
insts
}
/// Generate a call instruction/sequence.
fn gen_call(dest: &CallDest, tmp: Writable<Reg>, info: CallInfo<()>) -> SmallVec<[Self::I; 2]> {
let mut insts = SmallVec::new();
match dest {
&CallDest::ExtName(ref name, RelocDistance::Near) => {
let info = Box::new(info.map(|()| name.clone()));
insts.push(Inst::call_known(info));
}
&CallDest::ExtName(ref name, RelocDistance::Far) => {
insts.push(Inst::LoadExtName {
dst: tmp,
name: Box::new(name.clone()),
offset: 0,
distance: RelocDistance::Far,
});
let info = Box::new(info.map(|()| RegMem::reg(tmp.to_reg())));
insts.push(Inst::call_unknown(info));
}
&CallDest::Reg(reg) => {
let info = Box::new(info.map(|()| RegMem::reg(reg)));
insts.push(Inst::call_unknown(info));
}
}
insts
}
fn gen_memcpy<F: FnMut(Type) -> Writable<Reg>>(
call_conv: isa::CallConv,
dst: Reg,
src: Reg,
size: usize,
mut alloc_tmp: F,
) -> SmallVec<[Self::I; 8]> {
let mut insts = SmallVec::new();
let arg0 = get_intreg_for_arg(call_conv, 0, 0).unwrap();
let arg1 = get_intreg_for_arg(call_conv, 1, 1).unwrap();
let arg2 = get_intreg_for_arg(call_conv, 2, 2).unwrap();
let temp = alloc_tmp(Self::word_type());
let temp2 = alloc_tmp(Self::word_type());
insts.push(Inst::imm(OperandSize::Size64, size as u64, temp));
// We use an indirect call and a full LoadExtName because we do not have
// information about the libcall `RelocDistance` here, so we
// conservatively use the more flexible calling sequence.
insts.push(Inst::LoadExtName {
dst: temp2,
name: Box::new(ExternalName::LibCall(LibCall::Memcpy)),
offset: 0,
distance: RelocDistance::Far,
});
let callee_pop_size = 0;
insts.push(Inst::call_unknown(Box::new(CallInfo {
dest: RegMem::reg(temp2.to_reg()),
uses: smallvec![
CallArgPair {
vreg: dst,
preg: arg0
},
CallArgPair {
vreg: src,
preg: arg1
},
CallArgPair {
vreg: temp.to_reg(),
preg: arg2
},
],
defs: smallvec![],
clobbers: Self::get_regs_clobbered_by_call(call_conv),
callee_pop_size,
callee_conv: call_conv,
caller_conv: call_conv,
})));
insts
}
fn get_number_of_spillslots_for_value(
rc: RegClass,
vector_scale: u32,
_isa_flags: &Self::F,
) -> u32 {
// We allocate in terms of 8-byte slots.
match rc {
RegClass::Int => 1,
RegClass::Float => vector_scale / 8,
RegClass::Vector => unreachable!(),
}
}
fn get_machine_env(flags: &settings::Flags, _call_conv: isa::CallConv) -> &MachineEnv {
if flags.enable_pinned_reg() {
static MACHINE_ENV: OnceLock<MachineEnv> = OnceLock::new();
MACHINE_ENV.get_or_init(|| create_reg_env_systemv(true))
} else {
static MACHINE_ENV: OnceLock<MachineEnv> = OnceLock::new();
MACHINE_ENV.get_or_init(|| create_reg_env_systemv(false))
}
}
fn get_regs_clobbered_by_call(call_conv_of_callee: isa::CallConv) -> PRegSet {
match call_conv_of_callee {
CallConv::Winch => ALL_CLOBBERS,
CallConv::WindowsFastcall => WINDOWS_CLOBBERS,
_ => SYSV_CLOBBERS,
}
}
fn get_ext_mode(
_call_conv: isa::CallConv,
specified: ir::ArgumentExtension,
) -> ir::ArgumentExtension {
specified
}
fn compute_frame_layout(
call_conv: CallConv,
flags: &settings::Flags,
_sig: &Signature,
regs: &[Writable<RealReg>],
_is_leaf: bool,
incoming_args_size: u32,
tail_args_size: u32,
fixed_frame_storage_size: u32,
outgoing_args_size: u32,
) -> FrameLayout {
debug_assert!(tail_args_size >= incoming_args_size);
let mut regs: Vec<Writable<RealReg>> = match call_conv {
// The `winch` calling convention doesn't have any callee-save
// registers.
CallConv::Winch => vec![],
CallConv::Fast | CallConv::Cold | CallConv::SystemV | CallConv::Tail => regs
.iter()
.cloned()
.filter(|r| is_callee_save_systemv(r.to_reg(), flags.enable_pinned_reg()))
.collect(),
CallConv::WindowsFastcall => regs
.iter()
.cloned()
.filter(|r| is_callee_save_fastcall(r.to_reg(), flags.enable_pinned_reg()))
.collect(),
CallConv::Probestack => todo!("probestack?"),
CallConv::AppleAarch64 => unreachable!(),
};
// Sort registers for deterministic code output. We can do an unstable sort because the
// registers will be unique (there are no dups).
regs.sort_unstable();
// Compute clobber size.
let clobber_size = compute_clobber_size(®s);
// Compute setup area size.
let setup_area_size = 16; // RBP, return address
// Return FrameLayout structure.
FrameLayout {
incoming_args_size,
tail_args_size: align_to(tail_args_size, 16),
setup_area_size,
clobber_size,
fixed_frame_storage_size,
outgoing_args_size,
clobbered_callee_saves: regs,
}
}
}
impl X64CallSite {
pub fn emit_return_call(
mut self,
ctx: &mut Lower<Inst>,
args: isle::ValueSlice,
_backend: &X64Backend,
) {
let new_stack_arg_size =
u32::try_from(self.sig(ctx.sigs()).sized_stack_arg_space()).unwrap();
ctx.abi_mut().accumulate_tail_args_size(new_stack_arg_size);
// Put all arguments in registers and stack slots (within that newly
// allocated stack space).
self.emit_args(ctx, args);
self.emit_stack_ret_arg_for_tail_call(ctx);
// Finally, do the actual tail call!
let dest = self.dest().clone();
let uses = self.take_uses();
let tmp = ctx.temp_writable_gpr();
match dest {
CallDest::ExtName(callee, RelocDistance::Near) => {
let info = Box::new(ReturnCallInfo {
dest: callee,
uses,
tmp,
new_stack_arg_size,
});
ctx.emit(Inst::ReturnCallKnown { info });
}
CallDest::ExtName(callee, RelocDistance::Far) => {
let tmp2 = ctx.temp_writable_gpr();
ctx.emit(Inst::LoadExtName {
dst: tmp2.to_writable_reg(),
name: Box::new(callee),
offset: 0,
distance: RelocDistance::Far,
});
let info = Box::new(ReturnCallInfo {
dest: tmp2.to_reg().to_reg().into(),
uses,
tmp,
new_stack_arg_size,
});
ctx.emit(Inst::ReturnCallUnknown { info });
}
CallDest::Reg(callee) => {
let info = Box::new(ReturnCallInfo {
dest: callee.into(),
uses,
tmp,
new_stack_arg_size,
});
ctx.emit(Inst::ReturnCallUnknown { info });
}
}
}
}
impl From<StackAMode> for SyntheticAmode {
fn from(amode: StackAMode) -> Self {
// We enforce a 128 MB stack-frame size limit above, so these
// `expect()`s should never fail.
match amode {
StackAMode::IncomingArg(off, stack_args_size) => {
let offset = u32::try_from(off).expect(
"Offset in IncomingArg is greater than 4GB; should hit impl limit first",
);
SyntheticAmode::IncomingArg {
offset: stack_args_size - offset,
}
}
StackAMode::Slot(off) => {
let off = i32::try_from(off)
.expect("Offset in Slot is greater than 2GB; should hit impl limit first");
SyntheticAmode::slot_offset(off)
}
StackAMode::OutgoingArg(off) => {
let off = i32::try_from(off).expect(
"Offset in OutgoingArg is greater than 2GB; should hit impl limit first",
);
SyntheticAmode::Real(Amode::ImmReg {
simm32: off,
base: regs::rsp(),
flags: MemFlags::trusted(),
})
}
}
}
}
fn get_intreg_for_arg(call_conv: CallConv, idx: usize, arg_idx: usize) -> Option<Reg> {
let is_fastcall = call_conv == CallConv::WindowsFastcall;
// Fastcall counts by absolute argument number; SysV counts by argument of
// this (integer) class.
let i = if is_fastcall { arg_idx } else { idx };
match (i, is_fastcall) {
(0, false) => Some(regs::rdi()),
(1, false) => Some(regs::rsi()),
(2, false) => Some(regs::rdx()),
(3, false) => Some(regs::rcx()),
(4, false) => Some(regs::r8()),
(5, false) => Some(regs::r9()),
(0, true) => Some(regs::rcx()),
(1, true) => Some(regs::rdx()),
(2, true) => Some(regs::r8()),
(3, true) => Some(regs::r9()),
_ => None,
}
}
fn get_fltreg_for_arg(call_conv: CallConv, idx: usize, arg_idx: usize) -> Option<Reg> {
let is_fastcall = call_conv == CallConv::WindowsFastcall;
// Fastcall counts by absolute argument number; SysV counts by argument of
// this (floating-point) class.
let i = if is_fastcall { arg_idx } else { idx };
match (i, is_fastcall) {
(0, false) => Some(regs::xmm0()),
(1, false) => Some(regs::xmm1()),
(2, false) => Some(regs::xmm2()),
(3, false) => Some(regs::xmm3()),
(4, false) => Some(regs::xmm4()),
(5, false) => Some(regs::xmm5()),
(6, false) => Some(regs::xmm6()),
(7, false) => Some(regs::xmm7()),
(0, true) => Some(regs::xmm0()),
(1, true) => Some(regs::xmm1()),
(2, true) => Some(regs::xmm2()),
(3, true) => Some(regs::xmm3()),
_ => None,
}
}
fn get_intreg_for_retval(
call_conv: CallConv,
flags: &settings::Flags,
intreg_idx: usize,
is_last: bool,
) -> Option<Reg> {
match call_conv {
CallConv::Tail => match intreg_idx {
0 => Some(regs::rax()),
1 => Some(regs::rcx()),
2 => Some(regs::rdx()),
3 => Some(regs::rsi()),
4 => Some(regs::rdi()),
5 => Some(regs::r8()),
6 => Some(regs::r9()),
7 => Some(regs::r10()),
8 => Some(regs::r11()),
// NB: `r15` is reserved as a scratch register.
_ => None,
},
CallConv::Fast | CallConv::Cold | CallConv::SystemV => match intreg_idx {
0 => Some(regs::rax()),
1 => Some(regs::rdx()),
2 if flags.enable_llvm_abi_extensions() => Some(regs::rcx()),
_ => None,
},
CallConv::WindowsFastcall => match intreg_idx {
0 => Some(regs::rax()),
1 => Some(regs::rdx()), // The Rust ABI for i128s needs this.
_ => None,
},
CallConv::Winch => {
// TODO: Once Winch supports SIMD, this will need to be updated to support values
// returned in more than one register.
// https://github.com/bytecodealliance/wasmtime/issues/8093
is_last.then(|| regs::rax())
}
CallConv::Probestack => todo!(),
CallConv::AppleAarch64 => unreachable!(),
}
}
fn get_fltreg_for_retval(call_conv: CallConv, fltreg_idx: usize, is_last: bool) -> Option<Reg> {
match call_conv {
CallConv::Tail => match fltreg_idx {
0 => Some(regs::xmm0()),
1 => Some(regs::xmm1()),
2 => Some(regs::xmm2()),
3 => Some(regs::xmm3()),
4 => Some(regs::xmm4()),
5 => Some(regs::xmm5()),
6 => Some(regs::xmm6()),
7 => Some(regs::xmm7()),
_ => None,
},
CallConv::Fast | CallConv::Cold | CallConv::SystemV => match fltreg_idx {
0 => Some(regs::xmm0()),
1 => Some(regs::xmm1()),
_ => None,
},
CallConv::WindowsFastcall => match fltreg_idx {
0 => Some(regs::xmm0()),
_ => None,
},
CallConv::Winch => is_last.then(|| regs::xmm0()),
CallConv::Probestack => todo!(),
CallConv::AppleAarch64 => unreachable!(),
}
}
fn is_callee_save_systemv(r: RealReg, enable_pinned_reg: bool) -> bool {
use regs::*;
match r.class() {
RegClass::Int => match r.hw_enc() {
ENC_RBX | ENC_RBP | ENC_R12 | ENC_R13 | ENC_R14 => true,
// R15 is the pinned register; if we're using it that way,
// it is effectively globally-allocated, and is not
// callee-saved.
ENC_R15 => !enable_pinned_reg,
_ => false,
},
RegClass::Float => false,
RegClass::Vector => unreachable!(),
}
}
fn is_callee_save_fastcall(r: RealReg, enable_pinned_reg: bool) -> bool {
use regs::*;
match r.class() {
RegClass::Int => match r.hw_enc() {
ENC_RBX | ENC_RBP | ENC_RSI | ENC_RDI | ENC_R12 | ENC_R13 | ENC_R14 => true,
// See above for SysV: we must treat the pinned reg specially.
ENC_R15 => !enable_pinned_reg,
_ => false,
},
RegClass::Float => match r.hw_enc() {
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 => true,
_ => false,
},
RegClass::Vector => unreachable!(),
}
}
fn compute_clobber_size(clobbers: &[Writable<RealReg>]) -> u32 {
let mut clobbered_size = 0;
for reg in clobbers {
match reg.to_reg().class() {
RegClass::Int => {
clobbered_size += 8;
}
RegClass::Float => {
clobbered_size = align_to(clobbered_size, 16);
clobbered_size += 16;
}
RegClass::Vector => unreachable!(),
}
}
align_to(clobbered_size, 16)
}
const WINDOWS_CLOBBERS: PRegSet = windows_clobbers();
const SYSV_CLOBBERS: PRegSet = sysv_clobbers();
pub(crate) const ALL_CLOBBERS: PRegSet = all_clobbers();
const fn windows_clobbers() -> PRegSet {
PRegSet::empty()
.with(regs::gpr_preg(regs::ENC_RAX))
.with(regs::gpr_preg(regs::ENC_RCX))
.with(regs::gpr_preg(regs::ENC_RDX))
.with(regs::gpr_preg(regs::ENC_R8))
.with(regs::gpr_preg(regs::ENC_R9))
.with(regs::gpr_preg(regs::ENC_R10))
.with(regs::gpr_preg(regs::ENC_R11))
.with(regs::fpr_preg(0))
.with(regs::fpr_preg(1))
.with(regs::fpr_preg(2))
.with(regs::fpr_preg(3))
.with(regs::fpr_preg(4))
.with(regs::fpr_preg(5))
}
const fn sysv_clobbers() -> PRegSet {
PRegSet::empty()
.with(regs::gpr_preg(regs::ENC_RAX))
.with(regs::gpr_preg(regs::ENC_RCX))
.with(regs::gpr_preg(regs::ENC_RDX))
.with(regs::gpr_preg(regs::ENC_RSI))
.with(regs::gpr_preg(regs::ENC_RDI))
.with(regs::gpr_preg(regs::ENC_R8))
.with(regs::gpr_preg(regs::ENC_R9))
.with(regs::gpr_preg(regs::ENC_R10))
.with(regs::gpr_preg(regs::ENC_R11))
.with(regs::fpr_preg(0))
.with(regs::fpr_preg(1))
.with(regs::fpr_preg(2))
.with(regs::fpr_preg(3))
.with(regs::fpr_preg(4))
.with(regs::fpr_preg(5))
.with(regs::fpr_preg(6))
.with(regs::fpr_preg(7))
.with(regs::fpr_preg(8))
.with(regs::fpr_preg(9))
.with(regs::fpr_preg(10))
.with(regs::fpr_preg(11))
.with(regs::fpr_preg(12))
.with(regs::fpr_preg(13))
.with(regs::fpr_preg(14))
.with(regs::fpr_preg(15))
}
/// For calling conventions that clobber all registers.
const fn all_clobbers() -> PRegSet {
PRegSet::empty()
.with(regs::gpr_preg(regs::ENC_RAX))
.with(regs::gpr_preg(regs::ENC_RCX))
.with(regs::gpr_preg(regs::ENC_RDX))
.with(regs::gpr_preg(regs::ENC_RBX))
.with(regs::gpr_preg(regs::ENC_RSI))
.with(regs::gpr_preg(regs::ENC_RDI))
.with(regs::gpr_preg(regs::ENC_R8))
.with(regs::gpr_preg(regs::ENC_R9))
.with(regs::gpr_preg(regs::ENC_R10))
.with(regs::gpr_preg(regs::ENC_R11))
.with(regs::gpr_preg(regs::ENC_R12))
.with(regs::gpr_preg(regs::ENC_R13))
.with(regs::gpr_preg(regs::ENC_R14))
.with(regs::gpr_preg(regs::ENC_R15))
.with(regs::fpr_preg(0))
.with(regs::fpr_preg(1))
.with(regs::fpr_preg(2))
.with(regs::fpr_preg(3))
.with(regs::fpr_preg(4))
.with(regs::fpr_preg(5))
.with(regs::fpr_preg(6))
.with(regs::fpr_preg(7))
.with(regs::fpr_preg(8))
.with(regs::fpr_preg(9))
.with(regs::fpr_preg(10))
.with(regs::fpr_preg(11))
.with(regs::fpr_preg(12))
.with(regs::fpr_preg(13))
.with(regs::fpr_preg(14))
.with(regs::fpr_preg(15))
}
fn create_reg_env_systemv(enable_pinned_reg: bool) -> MachineEnv {
fn preg(r: Reg) -> PReg {
r.to_real_reg().unwrap().into()
}
let mut env = MachineEnv {
preferred_regs_by_class: [
// Preferred GPRs: caller-saved in the SysV ABI.
vec![
preg(regs::rsi()),
preg(regs::rdi()),
preg(regs::rax()),
preg(regs::rcx()),
preg(regs::rdx()),
preg(regs::r8()),
preg(regs::r9()),
preg(regs::r10()),
preg(regs::r11()),
],
// Preferred XMMs: the first 8, which can have smaller encodings
// with AVX instructions.
vec![
preg(regs::xmm0()),
preg(regs::xmm1()),
preg(regs::xmm2()),
preg(regs::xmm3()),
preg(regs::xmm4()),
preg(regs::xmm5()),
preg(regs::xmm6()),
preg(regs::xmm7()),
],
// The Vector Regclass is unused
vec![],
],
non_preferred_regs_by_class: [
// Non-preferred GPRs: callee-saved in the SysV ABI.
vec![
preg(regs::rbx()),
preg(regs::r12()),
preg(regs::r13()),
preg(regs::r14()),
],
// Non-preferred XMMs: the last 8 registers, which can have larger
// encodings with AVX instructions.
vec![
preg(regs::xmm8()),
preg(regs::xmm9()),
preg(regs::xmm10()),
preg(regs::xmm11()),
preg(regs::xmm12()),
preg(regs::xmm13()),
preg(regs::xmm14()),
preg(regs::xmm15()),
],
// The Vector Regclass is unused
vec![],
],
fixed_stack_slots: vec![],
scratch_by_class: [None, None, None],
};
debug_assert_eq!(regs::r15(), regs::pinned_reg());
if !enable_pinned_reg {
env.non_preferred_regs_by_class[0].push(preg(regs::r15()));
}
env
}