zerocopy/pointer/
ptr.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

use core::{
    fmt::{Debug, Formatter},
    marker::PhantomData,
    ptr::NonNull,
};

use super::{inner::PtrInner, invariant::*};
use crate::{
    util::{AlignmentVariance, Covariant, TransparentWrapper, ValidityVariance},
    AlignmentError, CastError, CastType, KnownLayout, SizeError, TryFromBytes, ValidityError,
};

/// Module used to gate access to [`Ptr`]'s fields.
mod def {
    use super::*;

    #[cfg(doc)]
    use super::super::invariant;

    /// A raw pointer with more restrictions.
    ///
    /// `Ptr<T>` is similar to [`NonNull<T>`], but it is more restrictive in the
    /// following ways (note that these requirements only hold of non-zero-sized
    /// referents):
    /// - It must derive from a valid allocation.
    /// - It must reference a byte range which is contained inside the
    ///   allocation from which it derives.
    ///   - As a consequence, the byte range it references must have a size
    ///     which does not overflow `isize`.
    ///
    /// Depending on how `Ptr` is parameterized, it may have additional
    /// invariants:
    /// - `ptr` conforms to the aliasing invariant of
    ///   [`I::Aliasing`](invariant::Aliasing).
    /// - `ptr` conforms to the alignment invariant of
    ///   [`I::Alignment`](invariant::Alignment).
    /// - `ptr` conforms to the validity invariant of
    ///   [`I::Validity`](invariant::Validity).
    ///
    /// `Ptr<'a, T>` is [covariant] in `'a` and invariant in `T`.
    ///
    /// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
    pub struct Ptr<'a, T, I>
    where
        T: ?Sized,
        I: Invariants,
    {
        /// # Invariants
        ///
        /// 0. `ptr` conforms to the aliasing invariant of
        ///    [`I::Aliasing`](invariant::Aliasing).
        /// 1. `ptr` conforms to the alignment invariant of
        ///    [`I::Alignment`](invariant::Alignment).
        /// 2. `ptr` conforms to the validity invariant of
        ///    [`I::Validity`](invariant::Validity).
        // SAFETY: `PtrInner<'a, T>` is covariant in `'a` and invariant in `T`.
        ptr: PtrInner<'a, T>,
        _invariants: PhantomData<I>,
    }

    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants,
    {
        /// Constructs a `Ptr` from a [`NonNull`].
        ///
        /// # Safety
        ///
        /// The caller promises that:
        ///
        /// 0. If `ptr`'s referent is not zero sized, then `ptr` is derived from
        ///    some valid Rust allocation, `A`.
        /// 1. If `ptr`'s referent is not zero sized, then `ptr` has valid
        ///    provenance for `A`.
        /// 2. If `ptr`'s referent is not zero sized, then `ptr` addresses a
        ///    byte range which is entirely contained in `A`.
        /// 3. `ptr` addresses a byte range whose length fits in an `isize`.
        /// 4. `ptr` addresses a byte range which does not wrap around the
        ///    address space.
        /// 5. If `ptr`'s referent is not zero sized, then `A` is guaranteed to
        ///    live for at least `'a`.
        /// 6. `ptr` conforms to the aliasing invariant of
        ///    [`I::Aliasing`](invariant::Aliasing).
        /// 7. `ptr` conforms to the alignment invariant of
        ///    [`I::Alignment`](invariant::Alignment).
        /// 8. `ptr` conforms to the validity invariant of
        ///    [`I::Validity`](invariant::Validity).
        pub(super) unsafe fn new(ptr: NonNull<T>) -> Ptr<'a, T, I> {
            // SAFETY: The caller has promised (in 0 - 5) to satisfy all safety
            // invariants of `PtrInner::new`.
            let ptr = unsafe { PtrInner::new(ptr) };
            // SAFETY: The caller has promised (in 6 - 8) to satisfy all safety
            // invariants of `Ptr`.
            Self { ptr, _invariants: PhantomData }
        }

        /// Constructs a new `Ptr` from a [`PtrInner`].
        ///
        /// # Safety
        ///
        /// The caller promises that:
        ///
        /// 0. `ptr` conforms to the aliasing invariant of
        ///    [`I::Aliasing`](invariant::Aliasing).
        /// 1. `ptr` conforms to the alignment invariant of
        ///    [`I::Alignment`](invariant::Alignment).
        /// 2. `ptr` conforms to the validity invariant of
        ///    [`I::Validity`](invariant::Validity).
        pub(super) unsafe fn from_inner(ptr: PtrInner<'a, T>) -> Ptr<'a, T, I> {
            // SAFETY: The caller has promised to satisfy all safety invariants
            // of `Ptr`.
            Self { ptr, _invariants: PhantomData }
        }

        /// Converts this `Ptr<T>` to a [`PtrInner<T>`].
        ///
        /// Note that this method does not consume `self`. The caller should
        /// watch out for `unsafe` code which uses the returned value in a way
        /// that violates the safety invariants of `self`.
        pub(crate) fn as_inner(&self) -> PtrInner<'a, T> {
            self.ptr
        }
    }
}

#[allow(unreachable_pub)] // This is a false positive on our MSRV toolchain.
pub use def::Ptr;

/// External trait implementations on [`Ptr`].
mod _external {
    use super::*;

    /// SAFETY: Shared pointers are safely `Copy`. `Ptr`'s other invariants
    /// (besides aliasing) are unaffected by the number of references that exist
    /// to `Ptr`'s referent.
    impl<'a, T, I> Copy for Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants<Aliasing = Shared>,
    {
    }

    /// SAFETY: Shared pointers are safely `Clone`. `Ptr`'s other invariants
    /// (besides aliasing) are unaffected by the number of references that exist
    /// to `Ptr`'s referent.
    impl<'a, T, I> Clone for Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants<Aliasing = Shared>,
    {
        #[inline]
        fn clone(&self) -> Self {
            *self
        }
    }

    impl<'a, T, I> Debug for Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants,
    {
        #[inline]
        fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
            self.as_inner().as_non_null().fmt(f)
        }
    }
}

/// Methods for converting to and from `Ptr` and Rust's safe reference types.
mod _conversions {
    use super::*;

    /// `&'a T` → `Ptr<'a, T>`
    impl<'a, T> Ptr<'a, T, (Shared, Aligned, Valid)>
    where
        T: 'a + ?Sized,
    {
        /// Constructs a `Ptr` from a shared reference.
        #[doc(hidden)]
        #[inline]
        pub fn from_ref(ptr: &'a T) -> Self {
            let inner = PtrInner::from_ref(ptr);
            // SAFETY:
            // 0. `ptr`, by invariant on `&'a T`, conforms to the aliasing
            //    invariant of `Shared`.
            // 1. `ptr`, by invariant on `&'a T`, conforms to the alignment
            //    invariant of `Aligned`.
            // 2. `ptr`, by invariant on `&'a T`, conforms to the validity
            //    invariant of `Valid`.
            unsafe { Self::from_inner(inner) }
        }
    }

    /// `&'a mut T` → `Ptr<'a, T>`
    impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
    where
        T: 'a + ?Sized,
    {
        /// Constructs a `Ptr` from an exclusive reference.
        #[inline]
        pub(crate) fn from_mut(ptr: &'a mut T) -> Self {
            let inner = PtrInner::from_mut(ptr);
            // SAFETY:
            // 0. `ptr`, by invariant on `&'a mut T`, conforms to the aliasing
            //    invariant of `Exclusive`.
            // 1. `ptr`, by invariant on `&'a mut T`, conforms to the alignment
            //    invariant of `Aligned`.
            // 2. `ptr`, by invariant on `&'a mut T`, conforms to the validity
            //    invariant of `Valid`.
            unsafe { Self::from_inner(inner) }
        }
    }

    /// `Ptr<'a, T>` → `&'a T`
    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants<Alignment = Aligned, Validity = Valid>,
        I::Aliasing: Reference,
    {
        /// Converts `self` to a shared reference.
        // This consumes `self`, not `&self`, because `self` is, logically, a
        // pointer. For `I::Aliasing = invariant::Shared`, `Self: Copy`, and so
        // this doesn't prevent the caller from still using the pointer after
        // calling `as_ref`.
        #[allow(clippy::wrong_self_convention)]
        pub(crate) fn as_ref(self) -> &'a T {
            let raw = self.as_inner().as_non_null();
            // SAFETY: This invocation of `NonNull::as_ref` satisfies its
            // documented safety preconditions:
            //
            // 1. The pointer is properly aligned. This is ensured by-contract
            //    on `Ptr`, because the `I::Alignment` is `Aligned`.
            //
            // 2. If the pointer's referent is not zero-sized, then the pointer
            //    must be “dereferenceable” in the sense defined in the module
            //    documentation; i.e.:
            //
            //    > The memory range of the given size starting at the pointer
            //    > must all be within the bounds of a single allocated object.
            //    > [2]
            //
            //   This is ensured by contract on all `PtrInner`s.
            //
            // 3. The pointer must point to an initialized instance of `T`. This
            //    is ensured by-contract on `Ptr`, because the `I::Validity` is
            //    `Valid`.
            //
            // 4. You must enforce Rust’s aliasing rules. This is ensured by
            //    contract on `Ptr`, because `I::Aliasing: Reference`. Either it
            //    is `Shared` or `Exclusive`. If it is `Shared`, other
            //    references may not mutate the referent outside of
            //    `UnsafeCell`s.
            //
            // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_ref
            // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
            unsafe { raw.as_ref() }
        }
    }

    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants,
        I::Aliasing: Reference,
    {
        /// Reborrows `self`, producing another `Ptr`.
        ///
        /// Since `self` is borrowed immutably, this prevents any mutable
        /// methods from being called on `self` as long as the returned `Ptr`
        /// exists.
        #[doc(hidden)]
        #[inline]
        #[allow(clippy::needless_lifetimes)] // Allows us to name the lifetime in the safety comment below.
        pub fn reborrow<'b>(&'b mut self) -> Ptr<'b, T, I>
        where
            'a: 'b,
        {
            // SAFETY: The following all hold by invariant on `self`, and thus
            // hold of `ptr = self.as_inner()`:
            // 0. SEE BELOW.
            // 1. `ptr` conforms to the alignment invariant of
            //   [`I::Alignment`](invariant::Alignment).
            // 2. `ptr` conforms to the validity invariant of
            //   [`I::Validity`](invariant::Validity).
            //
            // For aliasing (6 above), since `I::Aliasing: Reference`,
            // there are two cases for `I::Aliasing`:
            // - For `invariant::Shared`: `'a` outlives `'b`, and so the
            //   returned `Ptr` does not permit accessing the referent any
            //   longer than is possible via `self`. For shared aliasing, it is
            //   sound for multiple `Ptr`s to exist simultaneously which
            //   reference the same memory, so creating a new one is not
            //   problematic.
            // - For `invariant::Exclusive`: Since `self` is `&'b mut` and we
            //   return a `Ptr` with lifetime `'b`, `self` is inaccessible to
            //   the caller for the lifetime `'b` - in other words, `self` is
            //   inaccessible to the caller as long as the returned `Ptr`
            //   exists. Since `self` is an exclusive `Ptr`, no other live
            //   references or `Ptr`s may exist which refer to the same memory
            //   while `self` is live. Thus, as long as the returned `Ptr`
            //   exists, no other references or `Ptr`s which refer to the same
            //   memory may be live.
            unsafe { Ptr::from_inner(self.as_inner()) }
        }
    }

    /// `Ptr<'a, T>` → `&'a mut T`
    impl<'a, T> Ptr<'a, T, (Exclusive, Aligned, Valid)>
    where
        T: 'a + ?Sized,
    {
        /// Converts `self` to a mutable reference.
        #[allow(clippy::wrong_self_convention)]
        pub(crate) fn as_mut(self) -> &'a mut T {
            let mut raw = self.as_inner().as_non_null();
            // SAFETY: This invocation of `NonNull::as_mut` satisfies its
            // documented safety preconditions:
            //
            // 1. The pointer is properly aligned. This is ensured by-contract
            //    on `Ptr`, because the `ALIGNMENT_INVARIANT` is `Aligned`.
            //
            // 2. If the pointer's referent is not zero-sized, then the pointer
            //    must be “dereferenceable” in the sense defined in the module
            //    documentation; i.e.:
            //
            //    > The memory range of the given size starting at the pointer
            //    > must all be within the bounds of a single allocated object.
            //    > [2]
            //
            //   This is ensured by contract on all `PtrInner`s.
            //
            // 3. The pointer must point to an initialized instance of `T`. This
            //    is ensured by-contract on `Ptr`, because the validity
            //    invariant is `Valid`.
            //
            // 4. You must enforce Rust’s aliasing rules. This is ensured by
            //    contract on `Ptr`, because the `ALIASING_INVARIANT` is
            //    `Exclusive`.
            //
            // [1]: https://doc.rust-lang.org/std/ptr/struct.NonNull.html#method.as_mut
            // [2]: https://doc.rust-lang.org/std/ptr/index.html#safety
            unsafe { raw.as_mut() }
        }
    }

    /// `Ptr<'a, T = Wrapper<U>>` → `Ptr<'a, U>`
    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + TransparentWrapper<I, UnsafeCellVariance = Covariant> + ?Sized,
        I: Invariants,
    {
        /// Converts `self` to a transparent wrapper type into a `Ptr` to the
        /// wrapped inner type.
        pub(crate) fn transparent_wrapper_into_inner(
            self,
        ) -> Ptr<
            'a,
            T::Inner,
            (
                I::Aliasing,
                <T::AlignmentVariance as AlignmentVariance<I::Alignment>>::Applied,
                <T::ValidityVariance as ValidityVariance<I::Validity>>::Applied,
            ),
        > {
            // SAFETY:
            // - By invariant on `TransparentWrapper::cast_into_inner`:
            //   - This cast preserves address and referent size, and thus the
            //     returned pointer addresses the same bytes as `p`
            //   - This cast preserves provenance
            // - By invariant on `TransparentWrapper<UnsafeCellVariance =
            //   Covariant>`, `T` and `T::Inner` have `UnsafeCell`s at the same
            //   byte ranges. Since `p` and the returned pointer address the
            //   same byte range, they refer to `UnsafeCell`s at the same byte
            //   ranges.
            // - By invariant on `TransparentWrapper`, since `self` satisfies
            //   the validity invariant `I::Validity`, the returned pointer (of
            //   type `T::Inner`) satisfies the given "applied" validity
            //   invariant.
            let ptr = unsafe { self.transmute_unchecked(|p| T::cast_into_inner(p)) };
            // SAFETY: By invariant on `TransparentWrapper`, since `self`
            // satisfies the alignment invariant `I::Alignment`, the returned
            // pointer (of type `T::Inner`) satisfies the given "applied"
            // alignment invariant.
            unsafe { ptr.assume_alignment() }
        }
    }

    /// `Ptr<'a, T>` → `Ptr<'a, U>`
    impl<'a, T: ?Sized, I> Ptr<'a, T, I>
    where
        I: Invariants,
    {
        /// Casts to a different (unsized) target type without checking interior
        /// mutability.
        ///
        /// Callers should prefer [`cast_unsized`] where possible.
        ///
        /// [`cast_unsized`]: Ptr::cast_unsized
        ///
        /// # Safety
        ///
        /// The caller promises that `u = cast(p)` is a pointer cast with the
        /// following properties:
        /// - `u` addresses a subset of the bytes addressed by `p`
        /// - `u` has the same provenance as `p`
        /// - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must exist
        ///   at ranges identical to those at which `UnsafeCell`s exist in `*p`
        /// - It is sound to transmute a pointer of type `T` with aliasing
        ///   `I::Aliasing` and validity `I::Validity` to a pointer of type `U`
        ///   with aliasing `I::Aliasing` and validity `V`. This is a subtle
        ///   soundness requirement that is a function of `T`, `U`,
        ///   `I::Aliasing`, `I::Validity`, and `V`, and may depend upon the
        ///   presence, absence, or specific location of `UnsafeCell`s in `T`
        ///   and/or `U`.
        #[doc(hidden)]
        #[inline]
        pub unsafe fn transmute_unchecked<U: ?Sized, V, F>(
            self,
            cast: F,
        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, V)>
        where
            V: Validity,
            F: FnOnce(*mut T) -> *mut U,
        {
            let ptr = cast(self.as_inner().as_non_null().as_ptr());

            // SAFETY: Caller promises that `cast` returns a pointer whose
            // address is in the range of `self.as_inner().as_non_null()`'s referent. By
            // invariant, none of these addresses are null.
            let ptr = unsafe { NonNull::new_unchecked(ptr) };

            // SAFETY:
            //
            // Lemma 1: `ptr` has the same provenance as `self`. The caller
            // promises that `cast` preserves provenance, and we call it with
            // `self.as_inner().as_non_null()`.
            //
            // 0. By invariant,  if `self`'s referent is not zero sized, then
            //    `self` is derived from some valid Rust allocation, `A`. By
            //    Lemma 1, `ptr` has the same provenance as `self`. Thus, `ptr`
            //    is derived from `A`.
            // 1. By invariant, if `self`'s referent is not zero sized, then
            //    `self` has valid provenance for `A`. By Lemma 1, so does
            //    `ptr`.
            // 2. By invariant on `self` and caller precondition, if `ptr`'s
            //    referent is not zero sized, then `ptr` addresses a byte range
            //    which is entirely contained in `A`.
            // 3. By invariant on `self` and caller precondition, `ptr`
            //    addresses a byte range whose length fits in an `isize`.
            // 4. By invariant on `self` and caller precondition, `ptr`
            //    addresses a byte range which does not wrap around the address
            //    space.
            // 5. By invariant on `self`, if `self`'s referent is not zero
            //    sized, then `A` is guaranteed to live for at least `'a`.
            // 6. `ptr` conforms to the aliasing invariant of `I::Aliasing`:
            //    - `Exclusive`: `self` is the only `Ptr` or reference which is
            //      permitted to read or modify the referent for the lifetime
            //      `'a`. Since we consume `self` by value, the returned pointer
            //      remains the only `Ptr` or reference which is permitted to
            //      read or modify the referent for the lifetime `'a`.
            //    - `Shared`: Since `self` has aliasing `Shared`, we know that
            //      no other code may mutate the referent during the lifetime
            //      `'a`, except via `UnsafeCell`s. The caller promises that
            //      `UnsafeCell`s cover the same byte ranges in `*self` and
            //      `*ptr`. For each byte in the referent, there are two cases:
            //      - If the byte is not covered by an `UnsafeCell` in `*ptr`,
            //        then it is not covered in `*self`. By invariant on `self`,
            //        it will not be mutated during `'a`, as required by the
            //        constructed pointer. Similarly, the returned pointer will
            //        not permit any mutations to these locations, as required
            //        by the invariant on `self`.
            //      - If the byte is covered by an `UnsafeCell` in `*ptr`, then
            //        the returned pointer's invariants do not assume that the
            //        byte will not be mutated during `'a`. While the returned
            //        pointer will permit mutation of this byte during `'a`, by
            //        invariant on `self`, no other code assumes that this will
            //        not happen.
            //    - `Inaccessible`: There are no restrictions we need to uphold.
            // 7. `ptr` trivially satisfies the alignment invariant `Unaligned`.
            // 8. The caller promises that `ptr` conforms to the validity
            //    invariant `V` with respect to its referent type, `U`.
            unsafe { Ptr::new(ptr) }
        }
    }

    /// `Ptr<'a, T, (_, _, _)>` → `Ptr<'a, Unalign<T>, (_, Aligned, _)>`
    impl<'a, T, I> Ptr<'a, T, I>
    where
        I: Invariants,
    {
        /// Converts a `Ptr` an unaligned `T` into a `Ptr` to an aligned
        /// `Unalign<T>`.
        pub(crate) fn into_unalign(
            self,
        ) -> Ptr<'a, crate::Unalign<T>, (I::Aliasing, Aligned, I::Validity)> {
            // SAFETY:
            // - This cast preserves provenance.
            // - This cast preserves address. `Unalign<T>` promises to have the
            //   same size as `T`, and so the cast returns a pointer addressing
            //   the same byte range as `p`.
            // - By the same argument, the returned pointer refers to
            //   `UnsafeCell`s at the same locations as `p`.
            // - `Unalign<T>` promises to have the same bit validity as `T`
            let ptr = unsafe {
                #[allow(clippy::as_conversions)]
                self.transmute_unchecked(|p: *mut T| p as *mut crate::Unalign<T>)
            };
            ptr.bikeshed_recall_aligned()
        }
    }
}

/// State transitions between invariants.
mod _transitions {
    use super::*;

    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants,
    {
        /// Returns a `Ptr` with [`Exclusive`] aliasing if `self` already has
        /// `Exclusive` aliasing, or generates a compile-time assertion failure.
        ///
        /// This allows code which is generic over aliasing to down-cast to a
        /// concrete aliasing.
        ///
        /// [`Exclusive`]: crate::pointer::invariant::Exclusive
        #[inline]
        pub(crate) fn into_exclusive_or_pme(
            self,
        ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
            // NOTE(https://github.com/rust-lang/rust/issues/131625): We do this
            // rather than just having `Aliasing::IS_EXCLUSIVE` have the panic
            // behavior because doing it that way causes rustdoc to fail while
            // attempting to document hidden items (since it evaluates the
            // constant - and thus panics).
            trait AliasingExt: Aliasing {
                const IS_EXCL: bool;
            }

            impl<A: Aliasing> AliasingExt for A {
                const IS_EXCL: bool = {
                    const_assert!(Self::IS_EXCLUSIVE);
                    true
                };
            }

            assert!(I::Aliasing::IS_EXCL);

            // SAFETY: We've confirmed that `self` already has the aliasing
            // `Exclusive`. If it didn't, either the preceding assert would fail
            // or evaluating `I::Aliasing::IS_EXCL` would fail. We're *pretty*
            // sure that it's guaranteed to fail const eval, but the `assert!`
            // provides a backstop in case that doesn't work.
            unsafe { self.assume_exclusive() }
        }

        /// Assumes that `self` satisfies the invariants `H`.
        ///
        /// # Safety
        ///
        /// The caller promises that `self` satisfies the invariants `H`.
        unsafe fn assume_invariants<H: Invariants>(self) -> Ptr<'a, T, H> {
            // SAFETY: The caller has promised to satisfy all parameterized
            // invariants of `Ptr`. `Ptr`'s other invariants are satisfied
            // by-contract by the source `Ptr`.
            unsafe { Ptr::from_inner(self.as_inner()) }
        }

        /// Helps the type system unify two distinct invariant types which are
        /// actually the same.
        pub(crate) fn unify_invariants<
            H: Invariants<Aliasing = I::Aliasing, Alignment = I::Alignment, Validity = I::Validity>,
        >(
            self,
        ) -> Ptr<'a, T, H> {
            // SAFETY: The associated type bounds on `H` ensure that the
            // invariants are unchanged.
            unsafe { self.assume_invariants::<H>() }
        }

        /// Assumes that `self` satisfies the aliasing requirement of `A`.
        ///
        /// # Safety
        ///
        /// The caller promises that `self` satisfies the aliasing requirement
        /// of `A`.
        #[inline]
        pub(crate) unsafe fn assume_aliasing<A: Aliasing>(
            self,
        ) -> Ptr<'a, T, (A, I::Alignment, I::Validity)> {
            // SAFETY: The caller promises that `self` satisfies the aliasing
            // requirements of `A`.
            unsafe { self.assume_invariants() }
        }

        /// Assumes `self` satisfies the aliasing requirement of [`Exclusive`].
        ///
        /// # Safety
        ///
        /// The caller promises that `self` satisfies the aliasing requirement
        /// of `Exclusive`.
        ///
        /// [`Exclusive`]: crate::pointer::invariant::Exclusive
        #[inline]
        pub(crate) unsafe fn assume_exclusive(
            self,
        ) -> Ptr<'a, T, (Exclusive, I::Alignment, I::Validity)> {
            // SAFETY: The caller promises that `self` satisfies the aliasing
            // requirements of `Exclusive`.
            unsafe { self.assume_aliasing::<Exclusive>() }
        }

        /// Assumes that `self`'s referent is validly-aligned for `T` if
        /// required by `A`.
        ///
        /// # Safety
        ///
        /// The caller promises that `self`'s referent conforms to the alignment
        /// invariant of `T` if required by `A`.
        #[inline]
        pub(crate) unsafe fn assume_alignment<A: Alignment>(
            self,
        ) -> Ptr<'a, T, (I::Aliasing, A, I::Validity)> {
            // SAFETY: The caller promises that `self`'s referent is
            // well-aligned for `T` if required by `A` .
            unsafe { self.assume_invariants() }
        }

        /// Checks the `self`'s alignment at runtime, returning an aligned `Ptr`
        /// on success.
        pub(crate) fn bikeshed_try_into_aligned(
            self,
        ) -> Result<Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>, AlignmentError<Self, T>>
        where
            T: Sized,
        {
            if let Err(err) =
                crate::util::validate_aligned_to::<_, T>(self.as_inner().as_non_null())
            {
                return Err(err.with_src(self));
            }

            // SAFETY: We just checked the alignment.
            Ok(unsafe { self.assume_alignment::<Aligned>() })
        }

        /// Recalls that `self`'s referent is validly-aligned for `T`.
        #[inline]
        // TODO(#859): Reconsider the name of this method before making it
        // public.
        pub(crate) fn bikeshed_recall_aligned(
            self,
        ) -> Ptr<'a, T, (I::Aliasing, Aligned, I::Validity)>
        where
            T: crate::Unaligned,
        {
            // SAFETY: The bound `T: Unaligned` ensures that `T` has no
            // non-trivial alignment requirement.
            unsafe { self.assume_alignment::<Aligned>() }
        }

        /// Assumes that `self`'s referent conforms to the validity requirement
        /// of `V`.
        ///
        /// # Safety
        ///
        /// The caller promises that `self`'s referent conforms to the validity
        /// requirement of `V`.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        pub unsafe fn assume_validity<V: Validity>(
            self,
        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, V)> {
            // SAFETY: The caller promises that `self`'s referent conforms to
            // the validity requirement of `V`.
            unsafe { self.assume_invariants() }
        }

        /// A shorthand for `self.assume_validity<invariant::Initialized>()`.
        ///
        /// # Safety
        ///
        /// The caller promises to uphold the safety preconditions of
        /// `self.assume_validity<invariant::Initialized>()`.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        pub unsafe fn assume_initialized(
            self,
        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)> {
            // SAFETY: The caller has promised to uphold the safety
            // preconditions.
            unsafe { self.assume_validity::<Initialized>() }
        }

        /// A shorthand for `self.assume_validity<Valid>()`.
        ///
        /// # Safety
        ///
        /// The caller promises to uphold the safety preconditions of
        /// `self.assume_validity<Valid>()`.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        pub unsafe fn assume_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)> {
            // SAFETY: The caller has promised to uphold the safety
            // preconditions.
            unsafe { self.assume_validity::<Valid>() }
        }

        /// Recalls that `self`'s referent is initialized.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        // TODO(#859): Reconsider the name of this method before making it
        // public.
        pub fn bikeshed_recall_initialized_from_bytes(
            self,
        ) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Initialized)>
        where
            T: crate::IntoBytes + crate::FromBytes,
            I: Invariants<Validity = Valid>,
        {
            // SAFETY: The `T: IntoBytes` bound ensures that any bit-valid `T`
            // is entirely initialized. `I: Invariants<Validity = Valid>`
            // ensures that `self`'s referent is a bit-valid `T`. Producing an
            // `Initialized` `Ptr` may permit the caller to write arbitrary
            // initialized bytes to the referent (depending on aliasing mode and
            // presence of `UnsafeCell`s). `T: FromBytes` ensures that any byte
            // sequence written will remain a bit-valid `T`.
            unsafe { self.assume_initialized() }
        }

        /// Recalls that `self`'s referent is initialized.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        // TODO(#859): Reconsider the name of this method before making it
        // public.
        pub fn bikeshed_recall_initialized_immutable(
            self,
        ) -> Ptr<'a, T, (Shared, I::Alignment, Initialized)>
        where
            T: crate::IntoBytes + crate::Immutable,
            I: Invariants<Aliasing = Shared, Validity = Valid>,
        {
            // SAFETY: The `T: IntoBytes` bound ensures that any bit-valid `T`
            // is entirely initialized. `I: Invariants<Validity = Valid>`
            // ensures that `self`'s referent is a bit-valid `T`. Since `T:
            // Immutable` and the aliasing is `Shared`, the resulting `Ptr`
            // cannot be used to modify the referent, and so it's acceptable
            // that going from `Valid` to `Initialized` may increase the set of
            // values allowed in the referent.
            unsafe { self.assume_initialized() }
        }

        /// Recalls that `self`'s referent is bit-valid for `T`.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        // TODO(#859): Reconsider the name of this method before making it
        // public.
        pub fn bikeshed_recall_valid(self) -> Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>
        where
            T: crate::FromBytes,
            I: Invariants<Validity = Initialized>,
        {
            // SAFETY: The bound `T: FromBytes` ensures that any initialized
            // sequence of bytes is bit-valid for `T`. `I: Invariants<Validity =
            // invariant::Initialized>` ensures that all of the referent bytes
            // are initialized.
            unsafe { self.assume_valid() }
        }

        /// Checks that `self`'s referent is validly initialized for `T`,
        /// returning a `Ptr` with `Valid` on success.
        ///
        /// # Panics
        ///
        /// This method will panic if
        /// [`T::is_bit_valid`][TryFromBytes::is_bit_valid] panics.
        ///
        /// # Safety
        ///
        /// On error, unsafe code may rely on this method's returned
        /// `ValidityError` containing `self`.
        #[inline]
        pub(crate) fn try_into_valid<R>(
            mut self,
        ) -> Result<Ptr<'a, T, (I::Aliasing, I::Alignment, Valid)>, ValidityError<Self, T>>
        where
            T: TryFromBytes + Read<I::Aliasing, R>,
            I::Aliasing: Reference,
            I: Invariants<Validity = Initialized>,
        {
            // This call may panic. If that happens, it doesn't cause any soundness
            // issues, as we have not generated any invalid state which we need to
            // fix before returning.
            if T::is_bit_valid(self.reborrow().forget_aligned()) {
                // SAFETY: If `T::is_bit_valid`, code may assume that `self`
                // contains a bit-valid instance of `Self`.
                Ok(unsafe { self.assume_valid() })
            } else {
                Err(ValidityError::new(self))
            }
        }

        /// Forgets that `self`'s referent is validly-aligned for `T`.
        #[doc(hidden)]
        #[must_use]
        #[inline]
        pub fn forget_aligned(self) -> Ptr<'a, T, (I::Aliasing, Unaligned, I::Validity)> {
            // SAFETY: `Unaligned` is less restrictive than `Aligned`.
            unsafe { self.assume_invariants() }
        }
    }
}

/// Casts of the referent type.
mod _casts {
    use super::*;

    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + ?Sized,
        I: Invariants,
    {
        /// Casts to a different (unsized) target type without checking interior
        /// mutability.
        ///
        /// Callers should prefer [`cast_unsized`] where possible.
        ///
        /// [`cast_unsized`]: Ptr::cast_unsized
        ///
        /// # Safety
        ///
        /// The caller promises that `u = cast(p)` is a pointer cast with the
        /// following properties:
        /// - `u` addresses a subset of the bytes addressed by `p`
        /// - `u` has the same provenance as `p`
        /// - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must exist
        ///   at ranges identical to those at which `UnsafeCell`s exist in `*p`
        #[doc(hidden)]
        #[inline]
        pub unsafe fn cast_unsized_unchecked<U, F: FnOnce(*mut T) -> *mut U>(
            self,
            cast: F,
        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
        where
            U: 'a + CastableFrom<T, I::Validity, I::Validity> + ?Sized,
        {
            // SAFETY:
            // - The caller promises that `u = cast(p)` is a pointer which
            //   satisfies:
            //   - `u` addresses a subset of the bytes addressed by `p`
            //   - `u` has the same provenance as `p`
            //   - If `I::Aliasing` is [`Shared`], `UnsafeCell`s in `*u` must
            //     exist at ranges identical to those at which `UnsafeCell`s
            //     exist in `*p`
            // - By `U: CastableFrom<T, I::Validity, I::Validity>`,
            //   `I::Validity` is either `Uninit` or `Initialized`. In both
            //   cases, the bit validity `I::Validity` has the same semantics
            //   regardless of referent type. In other words, the set of allowed
            //   referent values for `Ptr<T, (_, _, I::Validity)>` and `Ptr<U,
            //   (_, _, I::Validity)>` are identical.
            unsafe { self.transmute_unchecked(cast) }
        }

        /// Casts to a different (unsized) target type.
        ///
        /// # Safety
        ///
        /// The caller promises that `u = cast(p)` is a pointer cast with the
        /// following properties:
        /// - `u` addresses a subset of the bytes addressed by `p`
        /// - `u` has the same provenance as `p`
        #[doc(hidden)]
        #[inline]
        pub unsafe fn cast_unsized<U, F, R, S>(
            self,
            cast: F,
        ) -> Ptr<'a, U, (I::Aliasing, Unaligned, I::Validity)>
        where
            T: Read<I::Aliasing, R>,
            U: 'a + ?Sized + Read<I::Aliasing, S> + CastableFrom<T, I::Validity, I::Validity>,
            F: FnOnce(*mut T) -> *mut U,
        {
            // SAFETY: Because `T` and `U` both implement `Read<I::Aliasing, _>`,
            // either:
            // - `I::Aliasing` is `Exclusive`
            // - `T` and `U` are both `Immutable`, in which case they trivially
            //   contain `UnsafeCell`s at identical locations
            //
            // The caller promises all other safety preconditions.
            unsafe { self.cast_unsized_unchecked(cast) }
        }
    }

    impl<'a, T, I> Ptr<'a, T, I>
    where
        T: 'a + KnownLayout + ?Sized,
        I: Invariants<Validity = Initialized>,
    {
        /// Casts this pointer-to-initialized into a pointer-to-bytes.
        #[allow(clippy::wrong_self_convention)]
        pub(crate) fn as_bytes<R>(self) -> Ptr<'a, [u8], (I::Aliasing, Aligned, Valid)>
        where
            T: Read<I::Aliasing, R>,
            I::Aliasing: Reference,
        {
            let bytes = match T::size_of_val_raw(self.as_inner().as_non_null()) {
                Some(bytes) => bytes,
                // SAFETY: `KnownLayout::size_of_val_raw` promises to always
                // return `Some` so long as the resulting size fits in a
                // `usize`. By invariant on `Ptr`, `self` refers to a range of
                // bytes whose size fits in an `isize`, which implies that it
                // also fits in a `usize`.
                None => unsafe { core::hint::unreachable_unchecked() },
            };

            // SAFETY:
            // - `slice_from_raw_parts_mut` and `.cast` both preserve the
            //   pointer's address, and `bytes` is the length of `p`, so the
            //   returned pointer addresses the same bytes as `p`
            // - `slice_from_raw_parts_mut` and `.cast` both preserve provenance
            let ptr: Ptr<'a, [u8], _> = unsafe {
                self.cast_unsized(|p: *mut T| {
                    #[allow(clippy::as_conversions)]
                    core::ptr::slice_from_raw_parts_mut(p.cast::<u8>(), bytes)
                })
            };

            let ptr = ptr.bikeshed_recall_aligned();

            // SAFETY: `ptr`'s referent begins as `Initialized`, denoting that
            // all bytes of the referent are initialized bytes. The referent
            // type is then casted to `[u8]`, whose only validity invariant is
            // that its bytes are initialized. This validity invariant is
            // satisfied by the `Initialized` invariant on the starting `ptr`.
            unsafe { ptr.assume_validity::<Valid>() }
        }
    }

    impl<'a, T, I, const N: usize> Ptr<'a, [T; N], I>
    where
        T: 'a,
        I: Invariants,
    {
        /// Casts this pointer-to-array into a slice.
        #[allow(clippy::wrong_self_convention)]
        pub(crate) fn as_slice(self) -> Ptr<'a, [T], I> {
            let slice = self.as_inner().as_slice();
            // SAFETY: Note that, by post-condition on `PtrInner::as_slice`,
            // `slice` refers to the same byte range as `self.as_inner()`.
            //
            // 6. Thus, `slice` conforms to the aliasing invariant of
            //    `I::Aliasing` because `self` does.
            // 7. By the above lemma, `slice` conforms to the alignment
            //    invariant of `I::Alignment` because `self` does.
            // 8. By the above lemma, `slice` conforms to the validity invariant
            //    of `I::Validity` because `self` does.
            unsafe { Ptr::from_inner(slice) }
        }
    }

    /// For caller convenience, these methods are generic over alignment
    /// invariant. In practice, the referent is always well-aligned, because the
    /// alignment of `[u8]` is 1.
    impl<'a, I> Ptr<'a, [u8], I>
    where
        I: Invariants<Validity = Valid>,
    {
        /// Attempts to cast `self` to a `U` using the given cast type.
        ///
        /// If `U` is a slice DST and pointer metadata (`meta`) is provided,
        /// then the cast will only succeed if it would produce an object with
        /// the given metadata.
        ///
        /// Returns `None` if the resulting `U` would be invalidly-aligned, if
        /// no `U` can fit in `self`, or if the provided pointer metadata
        /// describes an invalid instance of `U`. On success, returns a pointer
        /// to the largest-possible `U` which fits in `self`.
        ///
        /// # Safety
        ///
        /// The caller may assume that this implementation is correct, and may
        /// rely on that assumption for the soundness of their code. In
        /// particular, the caller may assume that, if `try_cast_into` returns
        /// `Some((ptr, remainder))`, then `ptr` and `remainder` refer to
        /// non-overlapping byte ranges within `self`, and that `ptr` and
        /// `remainder` entirely cover `self`. Finally:
        /// - If this is a prefix cast, `ptr` has the same address as `self`.
        /// - If this is a suffix cast, `remainder` has the same address as
        ///   `self`.
        #[inline(always)]
        pub(crate) fn try_cast_into<U, R>(
            self,
            cast_type: CastType,
            meta: Option<U::PointerMetadata>,
        ) -> Result<
            (Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, Ptr<'a, [u8], I>),
            CastError<Self, U>,
        >
        where
            I::Aliasing: Reference,
            U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
        {
            let (inner, remainder) =
                self.as_inner().try_cast_into(cast_type, meta).map_err(|err| {
                    err.map_src(|inner|
                    // SAFETY: `PtrInner::try_cast_into` promises to return its
                    // original argument on error, which was originally produced
                    // by `self.as_inner()`, which is guaranteed to satisfy
                    // `Ptr`'s invariants.
                    unsafe { Ptr::from_inner(inner) })
                })?;

            // SAFETY:
            // 0. Since `U: Read<I::Aliasing, _>`, either:
            //    - `I::Aliasing` is `Exclusive`, in which case both `src` and
            //      `ptr` conform to `Exclusive`
            //    - `I::Aliasing` is `Shared` and `U` is `Immutable` (we already
            //      know that `[u8]: Immutable`). In this case, neither `U` nor
            //      `[u8]` permit mutation, and so `Shared` aliasing is
            //      satisfied.
            // 1. `ptr` conforms to the alignment invariant of `Aligned` because
            //    it is derived from `try_cast_into`, which promises that the
            //    object described by `target` is validly aligned for `U`.
            // 2. By trait bound, `self` - and thus `target` - is a bit-valid
            //    `[u8]`. All bit-valid `[u8]`s have all of their bytes
            //    initialized, so `ptr` conforms to the validity invariant of
            //    `Initialized`.
            let res = unsafe { Ptr::from_inner(inner) };

            // SAFETY:
            // 0. `self` and `remainder` both have the type `[u8]`. Thus, they
            //    have `UnsafeCell`s at the same locations. Type casting does
            //    not affect aliasing.
            // 1. `[u8]` has no alignment requirement.
            // 2. `self` has validity `Valid` and has type `[u8]`. Since
            //    `remainder` references a subset of `self`'s referent, it is
            //    also bit-valid.
            let remainder = unsafe { Ptr::from_inner(remainder) };

            Ok((res, remainder))
        }

        /// Attempts to cast `self` into a `U`, failing if all of the bytes of
        /// `self` cannot be treated as a `U`.
        ///
        /// In particular, this method fails if `self` is not validly-aligned
        /// for `U` or if `self`'s size is not a valid size for `U`.
        ///
        /// # Safety
        ///
        /// On success, the caller may assume that the returned pointer
        /// references the same byte range as `self`.
        #[allow(unused)]
        #[inline(always)]
        pub(crate) fn try_cast_into_no_leftover<U, R>(
            self,
            meta: Option<U::PointerMetadata>,
        ) -> Result<Ptr<'a, U, (I::Aliasing, Aligned, Initialized)>, CastError<Self, U>>
        where
            I::Aliasing: Reference,
            U: 'a + ?Sized + KnownLayout + Read<I::Aliasing, R>,
        {
            // TODO(#67): Remove this allow. See NonNulSlicelExt for more
            // details.
            #[allow(unstable_name_collisions)]
            match self.try_cast_into(CastType::Prefix, meta) {
                Ok((slf, remainder)) => {
                    if remainder.len() == 0 {
                        Ok(slf)
                    } else {
                        // Undo the cast so we can return the original bytes.
                        let slf = slf.as_bytes();
                        // Restore the initial alignment invariant of `self`.
                        //
                        // SAFETY: The referent type of `slf` is now equal to
                        // that of `self`, but the alignment invariants
                        // nominally differ. Since `slf` and `self` refer to the
                        // same memory and no actions have been taken that would
                        // violate the original invariants on `self`, it is
                        // sound to apply the alignment invariant of `self` onto
                        // `slf`.
                        let slf = unsafe { slf.assume_alignment::<I::Alignment>() };
                        let slf = slf.unify_invariants();
                        Err(CastError::Size(SizeError::<_, U>::new(slf)))
                    }
                }
                Err(err) => Err(err),
            }
        }
    }

    impl<'a, T, I> Ptr<'a, core::cell::UnsafeCell<T>, I>
    where
        T: 'a + ?Sized,
        I: Invariants<Aliasing = Exclusive>,
    {
        /// Converts this `Ptr` into a pointer to the underlying data.
        ///
        /// This call borrows the `UnsafeCell` mutably (at compile-time) which
        /// guarantees that we possess the only reference.
        ///
        /// This is like [`UnsafeCell::get_mut`], but for `Ptr`.
        ///
        /// [`UnsafeCell::get_mut`]: core::cell::UnsafeCell::get_mut
        #[must_use]
        #[inline(always)]
        pub fn get_mut(self) -> Ptr<'a, T, I> {
            // SAFETY:
            // - The closure uses an `as` cast, which preserves address
            //   range and provenance.
            // - Aliasing is `Exclusive`, and so we are not required to promise
            //   anything about the locations of `UnsafeCell`s.
            // - `UnsafeCell<T>` has the same bit validity as `T` [1], and so if
            //   `self` has a particular validity invariant, then the same holds
            //   of the returned `Ptr`. Technically the term "representation"
            //   doesn't guarantee this, but the subsequent sentence in the
            //   documentation makes it clear that this is the intention.
            //
            // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
            //
            //   `UnsafeCell<T>` has the same in-memory representation as its
            //   inner type `T`. A consequence of this guarantee is that it is
            //   possible to convert between `T` and `UnsafeCell<T>`.
            #[allow(clippy::as_conversions)]
            let ptr = unsafe { self.transmute_unchecked(|p| p as *mut T) };

            // SAFETY: `UnsafeCell<T>` has the same alignment as `T` [1],
            // and so if `self` is guaranteed to be aligned, then so is the
            // returned `Ptr`.
            //
            // [1] Per https://doc.rust-lang.org/1.81.0/core/cell/struct.UnsafeCell.html#memory-layout:
            //
            //   `UnsafeCell<T>` has the same in-memory representation as
            //   its inner type `T`. A consequence of this guarantee is that
            //   it is possible to convert between `T` and `UnsafeCell<T>`.
            let ptr = unsafe { ptr.assume_alignment::<I::Alignment>() };
            ptr.unify_invariants()
        }
    }
}

/// Projections through the referent.
mod _project {
    use super::*;

    impl<'a, T, I> Ptr<'a, [T], I>
    where
        T: 'a,
        I: Invariants,
    {
        /// The number of slice elements in the object referenced by `self`.
        ///
        /// # Safety
        ///
        /// Unsafe code my rely on `len` satisfying the above contract.
        pub(crate) fn len(&self) -> usize {
            self.as_inner().len()
        }
    }

    impl<'a, T, I> Ptr<'a, [T], I>
    where
        T: 'a,
        I: Invariants,
        I::Aliasing: Reference,
    {
        /// Iteratively projects the elements `Ptr<T>` from `Ptr<[T]>`.
        pub(crate) fn iter(&self) -> impl Iterator<Item = Ptr<'a, T, I>> {
            // SAFETY:
            // 0. `elem` conforms to the aliasing invariant of `I::Aliasing`
            //    because projection does not impact the aliasing invariant.
            // 1. `elem`, conditionally, conforms to the validity invariant of
            //    `I::Alignment`. If `elem` is projected from data well-aligned
            //    for `[T]`, `elem` will be valid for `T`.
            // 2. `elem`, conditionally, conforms to the validity invariant of
            //    `I::Validity`. If `elem` is projected from data valid for
            //    `[T]`, `elem` will be valid for `T`.
            self.as_inner().iter().map(|elem| unsafe { Ptr::from_inner(elem) })
        }
    }
}

#[cfg(test)]
mod tests {
    use core::mem::{self, MaybeUninit};

    use super::*;
    #[allow(unused)] // Needed on our MSRV, but considered unused on later toolchains.
    use crate::util::AsAddress;
    use crate::{pointer::BecauseImmutable, util::testutil::AU64, FromBytes, Immutable};

    mod test_ptr_try_cast_into_soundness {
        use super::*;

        // This test is designed so that if `Ptr::try_cast_into_xxx` are
        // buggy, it will manifest as unsoundness that Miri can detect.

        // - If `size_of::<T>() == 0`, `N == 4`
        // - Else, `N == 4 * size_of::<T>()`
        //
        // Each test will be run for each metadata in `metas`.
        fn test<T, I, const N: usize>(metas: I)
        where
            T: ?Sized + KnownLayout + Immutable + FromBytes,
            I: IntoIterator<Item = Option<T::PointerMetadata>> + Clone,
        {
            let mut bytes = [MaybeUninit::<u8>::uninit(); N];
            let initialized = [MaybeUninit::new(0u8); N];
            for start in 0..=bytes.len() {
                for end in start..=bytes.len() {
                    // Set all bytes to uninitialized other than those in
                    // the range we're going to pass to `try_cast_from`.
                    // This allows Miri to detect out-of-bounds reads
                    // because they read uninitialized memory. Without this,
                    // some out-of-bounds reads would still be in-bounds of
                    // `bytes`, and so might spuriously be accepted.
                    bytes = [MaybeUninit::<u8>::uninit(); N];
                    let bytes = &mut bytes[start..end];
                    // Initialize only the byte range we're going to pass to
                    // `try_cast_from`.
                    bytes.copy_from_slice(&initialized[start..end]);

                    let bytes = {
                        let bytes: *const [MaybeUninit<u8>] = bytes;
                        #[allow(clippy::as_conversions)]
                        let bytes = bytes as *const [u8];
                        // SAFETY: We just initialized these bytes to valid
                        // `u8`s.
                        unsafe { &*bytes }
                    };

                    // SAFETY: The bytes in `slf` must be initialized.
                    unsafe fn validate_and_get_len<T: ?Sized + KnownLayout + FromBytes>(
                        slf: Ptr<'_, T, (Shared, Aligned, Initialized)>,
                    ) -> usize {
                        let t = slf.bikeshed_recall_valid().as_ref();

                        let bytes = {
                            let len = mem::size_of_val(t);
                            let t: *const T = t;
                            // SAFETY:
                            // - We know `t`'s bytes are all initialized
                            //   because we just read it from `slf`, which
                            //   points to an initialized range of bytes. If
                            //   there's a bug and this doesn't hold, then
                            //   that's exactly what we're hoping Miri will
                            //   catch!
                            // - Since `T: FromBytes`, `T` doesn't contain
                            //   any `UnsafeCell`s, so it's okay for `t: T`
                            //   and a `&[u8]` to the same memory to be
                            //   alive concurrently.
                            unsafe { core::slice::from_raw_parts(t.cast::<u8>(), len) }
                        };

                        // This assertion ensures that `t`'s bytes are read
                        // and compared to another value, which in turn
                        // ensures that Miri gets a chance to notice if any
                        // of `t`'s bytes are uninitialized, which they
                        // shouldn't be (see the comment above).
                        assert_eq!(bytes, vec![0u8; bytes.len()]);

                        mem::size_of_val(t)
                    }

                    for meta in metas.clone().into_iter() {
                        for cast_type in [CastType::Prefix, CastType::Suffix] {
                            if let Ok((slf, remaining)) = Ptr::from_ref(bytes)
                                .try_cast_into::<T, BecauseImmutable>(cast_type, meta)
                            {
                                // SAFETY: All bytes in `bytes` have been
                                // initialized.
                                let len = unsafe { validate_and_get_len(slf) };
                                assert_eq!(remaining.len(), bytes.len() - len);
                                #[allow(unstable_name_collisions)]
                                let bytes_addr = bytes.as_ptr().addr();
                                #[allow(unstable_name_collisions)]
                                let remaining_addr =
                                    remaining.as_inner().as_non_null().as_ptr().addr();
                                match cast_type {
                                    CastType::Prefix => {
                                        assert_eq!(remaining_addr, bytes_addr + len)
                                    }
                                    CastType::Suffix => assert_eq!(remaining_addr, bytes_addr),
                                }

                                if let Some(want) = meta {
                                    let got = KnownLayout::pointer_to_metadata(
                                        slf.as_inner().as_non_null().as_ptr(),
                                    );
                                    assert_eq!(got, want);
                                }
                            }
                        }

                        if let Ok(slf) = Ptr::from_ref(bytes)
                            .try_cast_into_no_leftover::<T, BecauseImmutable>(meta)
                        {
                            // SAFETY: All bytes in `bytes` have been
                            // initialized.
                            let len = unsafe { validate_and_get_len(slf) };
                            assert_eq!(len, bytes.len());

                            if let Some(want) = meta {
                                let got = KnownLayout::pointer_to_metadata(
                                    slf.as_inner().as_non_null().as_ptr(),
                                );
                                assert_eq!(got, want);
                            }
                        }
                    }
                }
            }
        }

        #[derive(FromBytes, KnownLayout, Immutable)]
        #[repr(C)]
        struct SliceDst<T> {
            a: u8,
            trailing: [T],
        }

        // Each test case becomes its own `#[test]` function. We do this because
        // this test in particular takes far, far longer to execute under Miri
        // than all of our other tests combined. Previously, we had these
        // execute sequentially in a single test function. We run Miri tests in
        // parallel in CI, but this test being sequential meant that most of
        // that parallelism was wasted, as all other tests would finish in a
        // fraction of the total execution time, leaving this test to execute on
        // a single thread for the remainder of the test. By putting each test
        // case in its own function, we permit better use of available
        // parallelism.
        macro_rules! test {
            ($test_name:ident: $ty:ty) => {
                #[test]
                #[allow(non_snake_case)]
                fn $test_name() {
                    const S: usize = core::mem::size_of::<$ty>();
                    const N: usize = if S == 0 { 4 } else { S * 4 };
                    test::<$ty, _, N>([None]);

                    // If `$ty` is a ZST, then we can't pass `None` as the
                    // pointer metadata, or else computing the correct trailing
                    // slice length will panic.
                    if S == 0 {
                        test::<[$ty], _, N>([Some(0), Some(1), Some(2), Some(3)]);
                        test::<SliceDst<$ty>, _, N>([Some(0), Some(1), Some(2), Some(3)]);
                    } else {
                        test::<[$ty], _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
                        test::<SliceDst<$ty>, _, N>([None, Some(0), Some(1), Some(2), Some(3)]);
                    }
                }
            };
            ($ty:ident) => {
                test!($ty: $ty);
            };
            ($($ty:ident),*) => { $(test!($ty);)* }
        }

        test!(empty_tuple: ());
        test!(u8, u16, u32, u64, u128, usize, AU64);
        test!(i8, i16, i32, i64, i128, isize);
        test!(f32, f64);
    }

    #[test]
    fn test_try_cast_into_explicit_count() {
        macro_rules! test {
            ($ty:ty, $bytes:expr, $elems:expr, $expect:expr) => {{
                let bytes = [0u8; $bytes];
                let ptr = Ptr::from_ref(&bytes[..]);
                let res =
                    ptr.try_cast_into::<$ty, BecauseImmutable>(CastType::Prefix, Some($elems));
                if let Some(expect) = $expect {
                    let (ptr, _) = res.unwrap();
                    assert_eq!(
                        KnownLayout::pointer_to_metadata(ptr.as_inner().as_non_null().as_ptr()),
                        expect
                    );
                } else {
                    let _ = res.unwrap_err();
                }
            }};
        }

        #[derive(KnownLayout, Immutable)]
        #[repr(C)]
        struct ZstDst {
            u: [u8; 8],
            slc: [()],
        }

        test!(ZstDst, 8, 0, Some(0));
        test!(ZstDst, 7, 0, None);

        test!(ZstDst, 8, usize::MAX, Some(usize::MAX));
        test!(ZstDst, 7, usize::MAX, None);

        #[derive(KnownLayout, Immutable)]
        #[repr(C)]
        struct Dst {
            u: [u8; 8],
            slc: [u8],
        }

        test!(Dst, 8, 0, Some(0));
        test!(Dst, 7, 0, None);

        test!(Dst, 9, 1, Some(1));
        test!(Dst, 8, 1, None);

        // If we didn't properly check for overflow, this would cause the
        // metadata to overflow to 0, and thus the cast would spuriously
        // succeed.
        test!(Dst, 8, usize::MAX - 8 + 1, None);
    }
}