wit_parser/ast/
toposort.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
use crate::ast::{Id, Span};
use anyhow::Result;
use indexmap::IndexMap;
use std::collections::BinaryHeap;
use std::fmt;
use std::mem;

#[derive(Default, Clone)]
struct State {
    /// Number of outbound edges from this node which have still not been
    /// processed into the topological ordering.
    outbound_remaining: usize,

    /// Indices of nodes that depend on this one, used when this node is added
    /// to the binary heap to decrement `outbound_remaining`.
    reverse_deps: Vec<usize>,
}

/// Performs a topological sort of the `deps` provided, returning the order in
/// which to visit the nodes in reverse-dep order.
///
/// This sort goes one level further as well to produce a stable ordering
/// regardless of the input edges so long as the structure of the graph has
/// changed. Notably the nodes are sorted, by name, in the output in addition to
/// being sorted in dependency order. This is done to assist with round-tripping
/// documents where new edges are discovered during world elaboration that
/// doesn't change the dependency graph but can change the dependency listings
/// between serializations.
///
/// The algorithm chosen here to do this is:
///
/// * Build some metadata about all nodes including their count of outbound
///   edges remaining to be added to the order and a reverse dependency list.
/// * Collect all nodes with 0 outbound edges into a binary heap.
/// * Pop from the binary heap and decrement outbound edges that depend on
///   this node.
/// * Iterate until the dependency ordering is the same size as the dependency
///   array.
///
/// This sort will also detect when dependencies are missing or when cycles are
/// present and return an error.
pub fn toposort<'a>(
    kind: &str,
    deps: &IndexMap<&'a str, Vec<Id<'a>>>,
) -> Result<Vec<&'a str>, Error> {
    // Initialize a `State` per-node with the number of outbound edges and
    // additionally filling out the `reverse_deps` array.
    let mut states = vec![State::default(); deps.len()];
    for (i, (_, edges)) in deps.iter().enumerate() {
        states[i].outbound_remaining = edges.len();
        for edge in edges {
            let (j, _, _) = deps
                .get_full(edge.name)
                .ok_or_else(|| Error::NonexistentDep {
                    span: edge.span,
                    name: edge.name.to_string(),
                    kind: kind.to_string(),
                    highlighted: None,
                })?;
            states[j].reverse_deps.push(i);
        }
    }

    let mut order = Vec::new();
    let mut heap = BinaryHeap::new();

    // Seed the `heap` with edges that have no outbound edges
    //
    // The heap here is keyed by `(usize, &str, usize)` where the first `usize`
    // is unique which is what determines the order of the heap. The other two
    // fields are metadata used when pulling from the heap. The first `usize` is
    // the index of the item within the original dependency map which should
    // reflect the original source order of the item. Note that this is stored
    // in reverse order to ensure that when there are multiple items in the heap
    // the first item in the original order is popped first.
    for (i, dep) in deps.keys().enumerate() {
        if states[i].outbound_remaining == 0 {
            heap.push((deps.len() - i, *dep, i));
        }
    }

    // Drain the binary heap which represents all nodes that have had all their
    // dependencies processed. Iteratively add to the heap as well as nodes are
    // removed.
    while let Some((_order, node, i)) = heap.pop() {
        order.push(node);
        for i in mem::take(&mut states[i].reverse_deps) {
            states[i].outbound_remaining -= 1;
            if states[i].outbound_remaining == 0 {
                let (dep, _) = deps.get_index(i).unwrap();
                heap.push((deps.len() - i, *dep, i));
            }
        }
    }

    // If all nodes are present in order then a topological ordering was
    // achieved and it can be returned.
    if order.len() == deps.len() {
        return Ok(order);
    }

    // ... otherwise there are still dependencies with remaining edges which
    // means that a cycle must be present, so find the cycle and report the
    // error.
    for (i, state) in states.iter().enumerate() {
        if state.outbound_remaining == 0 {
            continue;
        }
        let (_, edges) = deps.get_index(i).unwrap();
        for dep in edges {
            let (j, _, _) = deps.get_full(dep.name).unwrap();
            if states[j].outbound_remaining == 0 {
                continue;
            }
            return Err(Error::Cycle {
                span: dep.span,
                name: dep.name.to_string(),
                kind: kind.to_string(),
                highlighted: None,
            });
        }
    }

    unreachable!()
}

#[derive(Debug)]
pub enum Error {
    NonexistentDep {
        span: Span,
        name: String,
        kind: String,
        highlighted: Option<String>,
    },
    Cycle {
        span: Span,
        name: String,
        kind: String,
        highlighted: Option<String>,
    },
}

impl Error {
    pub(crate) fn highlighted(&self) -> Option<&str> {
        match self {
            Error::NonexistentDep { highlighted, .. } | Error::Cycle { highlighted, .. } => {
                highlighted.as_deref()
            }
        }
    }
    pub(crate) fn set_highlighted(&mut self, string: String) {
        match self {
            Error::NonexistentDep { highlighted, .. } | Error::Cycle { highlighted, .. } => {
                *highlighted = Some(string);
            }
        }
    }
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if let Some(s) = self.highlighted() {
            return f.write_str(s);
        }
        match self {
            Error::NonexistentDep { kind, name, .. } => {
                write!(f, "{kind} `{name}` does not exist")
            }
            Error::Cycle { kind, name, .. } => {
                write!(f, "{kind} `{name}` depends on itself")
            }
        }
    }
}

impl std::error::Error for Error {}

#[cfg(test)]
mod tests {
    use super::*;

    fn id(name: &str) -> Id<'_> {
        Id {
            name,
            span: Span { start: 0, end: 0 },
        }
    }

    #[test]
    fn smoke() {
        let empty: Vec<&str> = Vec::new();
        assert_eq!(toposort("", &IndexMap::new()).unwrap(), empty);

        let mut nonexistent = IndexMap::new();
        nonexistent.insert("a", vec![id("b")]);
        assert!(matches!(
            toposort("", &nonexistent),
            Err(Error::NonexistentDep { .. })
        ));

        let mut one = IndexMap::new();
        one.insert("a", vec![]);
        assert_eq!(toposort("", &one).unwrap(), ["a"]);

        let mut two = IndexMap::new();
        two.insert("a", vec![]);
        two.insert("b", vec![id("a")]);
        assert_eq!(toposort("", &two).unwrap(), ["a", "b"]);

        let mut two = IndexMap::new();
        two.insert("a", vec![id("b")]);
        two.insert("b", vec![]);
        assert_eq!(toposort("", &two).unwrap(), ["b", "a"]);
    }

    #[test]
    fn cycles() {
        let mut cycle = IndexMap::new();
        cycle.insert("a", vec![id("a")]);
        assert!(matches!(toposort("", &cycle), Err(Error::Cycle { .. })));

        let mut cycle = IndexMap::new();
        cycle.insert("a", vec![id("b")]);
        cycle.insert("b", vec![id("c")]);
        cycle.insert("c", vec![id("a")]);
        assert!(matches!(toposort("", &cycle), Err(Error::Cycle { .. })));
    }

    #[test]
    fn depend_twice() {
        let mut two = IndexMap::new();
        two.insert("b", vec![id("a"), id("a")]);
        two.insert("a", vec![]);
        assert_eq!(toposort("", &two).unwrap(), ["a", "b"]);
    }

    #[test]
    fn preserve_order() {
        let mut order = IndexMap::new();
        order.insert("a", vec![]);
        order.insert("b", vec![]);
        assert_eq!(toposort("", &order).unwrap(), ["a", "b"]);

        let mut order = IndexMap::new();
        order.insert("b", vec![]);
        order.insert("a", vec![]);
        assert_eq!(toposort("", &order).unwrap(), ["b", "a"]);
    }
}