wasmtime/runtime/vm/gc/enabled/free_list.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
use crate::prelude::*;
use alloc::collections::BTreeMap;
use core::cmp;
use core::{alloc::Layout, num::NonZeroU32, ops::Bound};
/// A very simple first-fit free list for use by our garbage collectors.
pub(crate) struct FreeList {
/// The total capacity of the contiguous range of memory we are managing.
capacity: usize,
/// Our free blocks, as a map from index to length of the free block at that
/// index.
free_block_index_to_len: BTreeMap<u32, u32>,
}
/// Our minimum and maximum supported alignment. Every allocation is aligned to
/// this.
const ALIGN_U32: u32 = 8;
const ALIGN_USIZE: usize = ALIGN_U32 as usize;
/// Our minimum allocation size.
const MIN_BLOCK_SIZE: u32 = 24;
impl FreeList {
/// Create a new `Layout` from the given `size` with an alignment that is
/// compatible with this free list.
pub fn layout(size: usize) -> Layout {
Layout::from_size_align(size, ALIGN_USIZE).unwrap()
}
/// Create a new `FreeList` for a contiguous region of memory of the given
/// size.
pub fn new(capacity: usize) -> Self {
let mut free_list = FreeList {
capacity,
free_block_index_to_len: BTreeMap::new(),
};
free_list.reset();
free_list
}
fn max_size(&self) -> usize {
let cap = cmp::min(self.capacity, usize::try_from(u32::MAX).unwrap());
round_usize_down_to_pow2(cap.saturating_sub(ALIGN_USIZE), ALIGN_USIZE)
}
/// Check the given layout for compatibility with this free list and return
/// the actual block size we will use for this layout.
fn check_layout(&self, layout: Layout) -> Result<u32> {
ensure!(
layout.align() <= ALIGN_USIZE,
"requested allocation's alignment of {} is greater than max supported alignment of {ALIGN_USIZE}",
layout.align(),
);
ensure!(
layout.size() <= self.max_size(),
"requested allocation's size of {} is greater than the max supported size of {}",
layout.size(),
self.max_size(),
);
let alloc_size = u32::try_from(layout.size())
.context("requested allocation's size does not fit in a u32")?;
alloc_size
.checked_next_multiple_of(ALIGN_U32)
.ok_or_else(|| {
anyhow!(
"failed to round allocation size of {alloc_size} up to next \
multiple of {ALIGN_USIZE}"
)
})
}
/// Find the first free block that can hold an allocation of the given size
/// and remove it from the free list.
fn first_fit(&mut self, alloc_size: u32) -> Option<(u32, u32)> {
debug_assert_eq!(alloc_size % ALIGN_U32, 0);
let (&block_index, &block_len) = self
.free_block_index_to_len
.iter()
.find(|(_idx, len)| **len >= alloc_size)?;
debug_assert_eq!(block_index % ALIGN_U32, 0);
debug_assert_eq!(block_len % ALIGN_U32, 0);
let entry = self.free_block_index_to_len.remove(&block_index);
debug_assert!(entry.is_some());
Some((block_index, block_len))
}
/// If the given allocated block is large enough such that we can split it
/// and still have enough space left for future allocations, then split it.
///
/// Returns the new length of the allocated block.
fn maybe_split(&mut self, alloc_size: u32, block_index: u32, block_len: u32) -> u32 {
debug_assert_eq!(alloc_size % ALIGN_U32, 0);
debug_assert_eq!(block_index % ALIGN_U32, 0);
debug_assert_eq!(block_len % ALIGN_U32, 0);
if block_len - alloc_size < MIN_BLOCK_SIZE {
// The block is not large enough to split.
return block_len;
}
// The block is large enough to split. Split the block at exactly the
// requested allocation size and put the tail back in the free list.
let new_block_len = alloc_size;
let split_start = block_index + alloc_size;
let split_len = block_len - alloc_size;
debug_assert_eq!(new_block_len % ALIGN_U32, 0);
debug_assert_eq!(split_start % ALIGN_U32, 0);
debug_assert_eq!(split_len % ALIGN_U32, 0);
self.free_block_index_to_len.insert(split_start, split_len);
new_block_len
}
/// Allocate space for an object of the given layout.
///
/// Returns:
///
/// * `Ok(Some(_))`: Allocation succeeded.
///
/// * `Ok(None)`: Can't currently fulfill the allocation request, but might
/// be able to if some stuff was reallocated.
///
/// * `Err(_)`:
pub fn alloc(&mut self, layout: Layout) -> Result<Option<NonZeroU32>> {
let alloc_size = self.check_layout(layout)?;
debug_assert_eq!(alloc_size % ALIGN_U32, 0);
let (block_index, block_len) = match self.first_fit(alloc_size) {
None => return Ok(None),
Some(tup) => tup,
};
debug_assert_ne!(block_index, 0);
debug_assert_eq!(block_index % ALIGN_U32, 0);
debug_assert!(block_len >= alloc_size);
debug_assert_eq!(block_len % ALIGN_U32, 0);
let block_len = self.maybe_split(alloc_size, block_index, block_len);
debug_assert!(block_len >= alloc_size);
debug_assert_eq!(block_len % ALIGN_U32, 0);
// After we've mutated the free list, double check its integrity.
#[cfg(debug_assertions)]
self.check_integrity();
Ok(Some(unsafe { NonZeroU32::new_unchecked(block_index) }))
}
/// Deallocate an object with the given layout.
pub fn dealloc(&mut self, index: NonZeroU32, layout: Layout) {
let index = index.get();
debug_assert_eq!(index % ALIGN_U32, 0);
let alloc_size = self.check_layout(layout).unwrap();
debug_assert_eq!(alloc_size % ALIGN_U32, 0);
let prev_block = self
.free_block_index_to_len
.range((Bound::Unbounded, Bound::Excluded(index)))
.next_back()
.map(|(idx, len)| (*idx, *len));
let next_block = self
.free_block_index_to_len
.range((Bound::Excluded(index), Bound::Unbounded))
.next()
.map(|(idx, len)| (*idx, *len));
// Try and merge this block with its previous and next blocks in the
// free list, if any and if they are contiguous.
match (prev_block, next_block) {
// The prev, this, and next blocks are all contiguous: merge this
// and next into prev.
(Some((prev_index, prev_len)), Some((next_index, next_len)))
if blocks_are_contiguous(prev_index, prev_len, index)
&& blocks_are_contiguous(index, alloc_size, next_index) =>
{
self.free_block_index_to_len.remove(&next_index);
let merged_block_len = next_index + next_len - prev_index;
debug_assert_eq!(merged_block_len % ALIGN_U32, 0);
*self.free_block_index_to_len.get_mut(&prev_index).unwrap() = merged_block_len;
}
// The prev and this blocks are contiguous: merge this into prev.
(Some((prev_index, prev_len)), _)
if blocks_are_contiguous(prev_index, prev_len, index) =>
{
let merged_block_len = index + alloc_size - prev_index;
debug_assert_eq!(merged_block_len % ALIGN_U32, 0);
*self.free_block_index_to_len.get_mut(&prev_index).unwrap() = merged_block_len;
}
// The this and next blocks are contiguous: merge next into this.
(_, Some((next_index, next_len)))
if blocks_are_contiguous(index, alloc_size, next_index) =>
{
self.free_block_index_to_len.remove(&next_index);
let merged_block_len = next_index + next_len - index;
debug_assert_eq!(merged_block_len % ALIGN_U32, 0);
self.free_block_index_to_len.insert(index, merged_block_len);
}
// None of the blocks are contiguous: insert this block into the
// free list.
(_, _) => {
self.free_block_index_to_len.insert(index, alloc_size);
}
}
// After we've added to/mutated the free list, double check its
// integrity.
#[cfg(debug_assertions)]
self.check_integrity();
}
/// Assert that the free list is valid:
///
/// 1. All blocks are within `ALIGN..self.capacity`
///
/// 2. No blocks are overlapping.
///
/// 3. All blocks are aligned to `ALIGN`
///
/// 4. All block sizes are a multiple of `ALIGN`
#[cfg(debug_assertions)]
fn check_integrity(&self) {
let mut prev_end = None;
for (&index, &len) in self.free_block_index_to_len.iter() {
// (1)
let end = index + len;
assert!(usize::try_from(end).unwrap() <= self.capacity);
// (2)
if let Some(prev_end) = prev_end {
// We could assert `prev_end <= index`, and that would be
// correct, but it would also mean that we missed an opportunity
// to merge the previous block and this current block
// together. We don't want to allow that kind of fragmentation,
// so do the stricter `prev_end < index` assert here.
assert!(prev_end < index);
}
// (3)
assert_eq!(index % ALIGN_U32, 0);
// (4)
assert_eq!(len % ALIGN_U32, 0);
prev_end = Some(end);
}
}
/// Reset this free list, making the whole range available for allocation.
pub fn reset(&mut self) {
let end = u32::try_from(self.capacity).unwrap_or_else(|_| {
assert!(self.capacity > usize::try_from(u32::MAX).unwrap());
u32::MAX
});
// Don't start at `0`. Reserve that for "null pointers" and this way we
// can use `NonZeroU32` as out pointer type, giving us some more
// bitpacking opportunities.
let start = ALIGN_U32;
let len = round_u32_down_to_pow2(end.saturating_sub(start), ALIGN_U32);
let entire_range = if len >= MIN_BLOCK_SIZE {
Some((start, len))
} else {
None
};
self.free_block_index_to_len.clear();
self.free_block_index_to_len.extend(entire_range);
}
}
#[inline]
fn blocks_are_contiguous(prev_index: u32, prev_len: u32, next_index: u32) -> bool {
// NB: We might have decided *not* to split the prev block if it was larger
// than the requested allocation size but not large enough such that if we
// split it, the remainder could fulfill future allocations. In such cases,
// the size of the `Layout` given to us upon deallocation (aka `prev_len`)
// is smaller than the actual size of the block we allocated.
let end_of_prev = prev_index + prev_len;
debug_assert!(next_index >= end_of_prev);
let delta_to_next = next_index - end_of_prev;
delta_to_next < MIN_BLOCK_SIZE
}
#[inline]
fn round_u32_down_to_pow2(value: u32, divisor: u32) -> u32 {
debug_assert!(divisor > 0);
debug_assert!(divisor.is_power_of_two());
value & !(divisor - 1)
}
#[inline]
fn round_usize_down_to_pow2(value: usize, divisor: usize) -> usize {
debug_assert!(divisor > 0);
debug_assert!(divisor.is_power_of_two());
value & !(divisor - 1)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::hash_map::HashMap;
use proptest::prelude::*;
use std::num::NonZeroUsize;
fn free_list_block_len_and_size(free_list: &FreeList) -> (usize, Option<usize>) {
let len = free_list.free_block_index_to_len.len();
let size = free_list
.free_block_index_to_len
.values()
.next()
.map(|s| usize::try_from(*s).unwrap());
(len, size)
}
proptest! {
/// This property test ensures that `FreeList` doesn't suffer from
/// permanent fragmentation. That is, it can always merge neighboring
/// free blocks together into a single, larger free block that can be
/// used to satisfy larger allocations than either of those smaller
/// blocks could have. In the limit, once we've freed all blocks, that
/// means we should end up with a single block that represents the whole
/// range of memory that the `FreeList` is portioning out (just like
/// what we started with when we initially created the `FreeList`).
#[test]
#[cfg_attr(miri, ignore)]
fn check_no_fragmentation((capacity, ops) in ops()) {
// Map from allocation id to ptr.
let mut live = HashMap::new();
// Set of deferred deallocations, where the strategy told us to
// deallocate an id before it was allocated. These simply get
// deallocated en-mass at the end.
let mut deferred = vec![];
// The free list we are testing.
let mut free_list = FreeList::new(capacity.get());
let (initial_len, initial_size) = free_list_block_len_and_size(&free_list);
assert!(initial_len == 0 || initial_len == 1);
assert!(initial_size.unwrap_or(0) <= capacity.get());
assert_eq!(initial_size.unwrap_or(0), free_list.max_size());
// Run through the generated ops and perform each operation.
for (id, op) in ops {
match op {
Op::Alloc(layout) => {
if let Ok(Some(ptr)) = free_list.alloc(layout) {
live.insert(id, ptr);
}
}
Op::Dealloc(layout) => {
if let Some(ptr) = live.remove(&id) {
free_list.dealloc(ptr, layout);
} else {
deferred.push((id, layout));
}
}
}
}
// Now that we've completed all allocations, perform the deferred
// deallocations.
for (id, layout) in deferred {
// NB: not all IDs necessarily got successful allocations, so
// there might not be a live pointer for this ID, even after
// we've already performed all the allocation operations.
if let Some(ptr) = live.remove(&id) {
free_list.dealloc(ptr, layout);
}
}
// Now we can assert various properties that should hold after we
// have deallocated everything that was allocated.
//
// First, assert we did in fact deallocate everything.
assert!(live.is_empty());
let (final_len, final_size) = free_list_block_len_and_size(&free_list);
// The free list should have a single chunk again (or no chunks if
// the capacity was too small).
assert_eq!(final_len, initial_len);
// And the size of that chunk should be the same as the initial size.
assert_eq!(final_size, initial_size);
}
}
#[derive(Clone, Debug)]
enum Op {
Alloc(Layout),
Dealloc(Layout),
}
/// Map an arbitrary `x` to a power of 2 that is less than or equal to
/// `max`, but with as little bias as possible (e.g. rounding `min(x, max)`
/// to the nearest power of 2 is unacceptable because it would majorly bias
/// the distribution towards `max` when `max` is much smaller than
/// `usize::MAX`).
fn clamp_to_pow2_in_range(x: usize, max: usize) -> usize {
let log_x = max.ilog2() as usize;
if log_x == 0 {
return 1;
}
let divisor = usize::MAX / log_x;
let y = 1_usize << (x / divisor);
assert!(y.is_power_of_two(), "{y} is not a power of two");
assert!(y <= max, "{y} is larger than {max}");
y
}
/// Helper to turn a pair of arbitrary `usize`s into a valid `Layout` of
/// reasonable size for use with quickchecks.
fn arbitrary_layout(max_size: NonZeroUsize, size: usize, align: usize) -> Layout {
// The maximum size cannot be larger than `isize::MAX` because `Layout`
// imposes that constraint on its size.
let max_size = std::cmp::min(max_size.get(), usize::try_from(isize::MAX).unwrap());
// Ensure that the alignment is a power of 2 that is less than or equal
// to the maximum alignment that `FreeList` supports.
let align = clamp_to_pow2_in_range(align, super::ALIGN_USIZE);
// Ensure that `size` is less than or equal to `max_size`.
let size = size % (max_size + 1);
// Ensure that `size` is a multiple of `align`.
//
// NB: We round `size` *down* to the previous multiple of `align` to
// preserve `size <= max_size`.
let size = round_usize_down_to_pow2(size, align);
assert!(size <= max_size);
// Double check that we satisfied all of `Layout::from_size_align`'s
// success requirements.
assert_ne!(align, 0);
assert!(align.is_power_of_two());
assert_eq!(size % align, 0);
assert!(size <= usize::try_from(isize::MAX).unwrap());
Layout::from_size_align(size, align).unwrap()
}
/// Proptest strategy to generate a free list capacity and a series of
/// allocation operations to perform in a free list of that capacity.
fn ops() -> impl Strategy<Value = (NonZeroUsize, Vec<(usize, Op)>)> {
any::<usize>().prop_flat_map(|capacity| {
let capacity =
NonZeroUsize::new(capacity).unwrap_or_else(|| NonZeroUsize::new(1 << 31).unwrap());
(
Just(capacity),
(any::<usize>(), any::<usize>(), any::<usize>())
.prop_flat_map(move |(id, size, align)| {
let layout = arbitrary_layout(capacity, size, align);
vec![
Just((id, Op::Alloc(layout))),
Just((id, Op::Dealloc(layout))),
]
})
.prop_shuffle(),
)
})
}
#[test]
fn allocate_no_split() {
// Create a free list with the capacity to allocate two blocks of size
// `MIN_BLOCK_SIZE`.
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 2);
assert_eq!(free_list.free_block_index_to_len.len(), 1);
assert_eq!(
free_list.max_size(),
usize::try_from(MIN_BLOCK_SIZE).unwrap() * 2
);
// Allocate a block such that the remainder is not worth splitting.
free_list
.alloc(
Layout::from_size_align(
usize::try_from(MIN_BLOCK_SIZE).unwrap() + ALIGN_USIZE,
ALIGN_USIZE,
)
.unwrap(),
)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
// Should not have split the block.
assert_eq!(free_list.free_block_index_to_len.len(), 0);
}
#[test]
fn allocate_and_split() {
// Create a free list with the capacity to allocate three blocks of size
// `MIN_BLOCK_SIZE`.
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 3);
assert_eq!(free_list.free_block_index_to_len.len(), 1);
assert_eq!(
free_list.max_size(),
usize::try_from(MIN_BLOCK_SIZE).unwrap() * 3
);
// Allocate a block such that the remainder is not worth splitting.
free_list
.alloc(
Layout::from_size_align(
usize::try_from(MIN_BLOCK_SIZE).unwrap() + ALIGN_USIZE,
ALIGN_USIZE,
)
.unwrap(),
)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
// Should have split the block.
assert_eq!(free_list.free_block_index_to_len.len(), 1);
}
#[test]
fn dealloc_merge_prev_and_next() {
let layout =
Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"initially one big free block"
);
let a = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"should have split the block to allocate `a`"
);
let b = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"should have split the block to allocate `b`"
);
free_list.dealloc(a, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
2,
"should have two non-contiguous free blocks after deallocating `a`"
);
free_list.dealloc(b, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"should have merged `a` and `b` blocks with the rest to form a \
single, contiguous free block after deallocating `b`"
);
}
#[test]
fn dealloc_merge_with_prev_and_not_next() {
let layout =
Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"initially one big free block"
);
let a = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let b = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let c = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"should have split the block to allocate `a`, `b`, and `c`"
);
free_list.dealloc(a, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
2,
"should have two non-contiguous free blocks after deallocating `a`"
);
free_list.dealloc(b, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
2,
"should have merged `a` and `b` blocks, but not merged with the \
rest of the free space"
);
let _ = c;
}
#[test]
fn dealloc_merge_with_next_and_not_prev() {
let layout =
Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"initially one big free block"
);
let a = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let b = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let c = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"should have split the block to allocate `a`, `b`, and `c`"
);
free_list.dealloc(a, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
2,
"should have two non-contiguous free blocks after deallocating `a`"
);
free_list.dealloc(c, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
2,
"should have merged `c` block with rest of the free space, but not \
with `a` block"
);
let _ = b;
}
#[test]
fn dealloc_no_merge() {
let layout =
Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"initially one big free block"
);
let a = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let b = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let c = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
let d = free_list
.alloc(layout)
.expect("allocation within 'static' free list limits")
.expect("have free space available for allocation");
assert_eq!(
free_list.free_block_index_to_len.len(),
1,
"should have split the block to allocate `a`, `b`, `c`, and `d`"
);
free_list.dealloc(a, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
2,
"should have two non-contiguous free blocks after deallocating `a`"
);
free_list.dealloc(c, layout);
assert_eq!(
free_list.free_block_index_to_len.len(),
3,
"should not have merged `c` block `a` block or rest of the free \
space"
);
let _ = (b, d);
}
#[test]
fn alloc_size_too_large() {
// Free list with room for 10 min-sized blocks.
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10);
assert_eq!(
free_list.max_size(),
usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10
);
// Attempt to allocate something that is 20 times the size of our
// min-sized block.
assert!(free_list
.alloc(
Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap() * 20, ALIGN_USIZE)
.unwrap(),
)
.is_err());
}
#[test]
fn alloc_align_too_large() {
// Free list with room for 10 min-sized blocks.
let mut free_list =
FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10);
assert_eq!(
free_list.max_size(),
usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10
);
// Attempt to allocate something that requires larger alignment than
// `FreeList` supports.
assert!(free_list
.alloc(
Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE * 2)
.unwrap(),
)
.is_err());
}
}