wasmtime/runtime/vm/gc/enabled/
free_list.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
use crate::prelude::*;
use alloc::collections::BTreeMap;
use core::cmp;
use core::{alloc::Layout, num::NonZeroU32, ops::Bound};

/// A very simple first-fit free list for use by our garbage collectors.
pub(crate) struct FreeList {
    /// The total capacity of the contiguous range of memory we are managing.
    capacity: usize,
    /// Our free blocks, as a map from index to length of the free block at that
    /// index.
    free_block_index_to_len: BTreeMap<u32, u32>,
}

/// Our minimum and maximum supported alignment. Every allocation is aligned to
/// this.
const ALIGN_U32: u32 = 8;
const ALIGN_USIZE: usize = ALIGN_U32 as usize;

/// Our minimum allocation size.
const MIN_BLOCK_SIZE: u32 = 24;

impl FreeList {
    /// Create a new `Layout` from the given `size` with an alignment that is
    /// compatible with this free list.
    pub fn layout(size: usize) -> Layout {
        Layout::from_size_align(size, ALIGN_USIZE).unwrap()
    }

    /// Create a new `FreeList` for a contiguous region of memory of the given
    /// size.
    pub fn new(capacity: usize) -> Self {
        let mut free_list = FreeList {
            capacity,
            free_block_index_to_len: BTreeMap::new(),
        };
        free_list.reset();
        free_list
    }

    fn max_size(&self) -> usize {
        let cap = cmp::min(self.capacity, usize::try_from(u32::MAX).unwrap());
        round_usize_down_to_pow2(cap.saturating_sub(ALIGN_USIZE), ALIGN_USIZE)
    }

    /// Check the given layout for compatibility with this free list and return
    /// the actual block size we will use for this layout.
    fn check_layout(&self, layout: Layout) -> Result<u32> {
        ensure!(
            layout.align() <= ALIGN_USIZE,
            "requested allocation's alignment of {} is greater than max supported alignment of {ALIGN_USIZE}",
            layout.align(),
        );

        ensure!(
            layout.size() <= self.max_size(),
            "requested allocation's size of {} is greater than the max supported size of {}",
            layout.size(),
            self.max_size(),
        );

        let alloc_size = u32::try_from(layout.size())
            .context("requested allocation's size does not fit in a u32")?;
        alloc_size
            .checked_next_multiple_of(ALIGN_U32)
            .ok_or_else(|| {
                anyhow!(
                    "failed to round allocation size of {alloc_size} up to next \
                     multiple of {ALIGN_USIZE}"
                )
            })
    }

    /// Find the first free block that can hold an allocation of the given size
    /// and remove it from the free list.
    fn first_fit(&mut self, alloc_size: u32) -> Option<(u32, u32)> {
        debug_assert_eq!(alloc_size % ALIGN_U32, 0);

        let (&block_index, &block_len) = self
            .free_block_index_to_len
            .iter()
            .find(|(_idx, len)| **len >= alloc_size)?;

        debug_assert_eq!(block_index % ALIGN_U32, 0);
        debug_assert_eq!(block_len % ALIGN_U32, 0);

        let entry = self.free_block_index_to_len.remove(&block_index);
        debug_assert!(entry.is_some());

        Some((block_index, block_len))
    }

    /// If the given allocated block is large enough such that we can split it
    /// and still have enough space left for future allocations, then split it.
    ///
    /// Returns the new length of the allocated block.
    fn maybe_split(&mut self, alloc_size: u32, block_index: u32, block_len: u32) -> u32 {
        debug_assert_eq!(alloc_size % ALIGN_U32, 0);
        debug_assert_eq!(block_index % ALIGN_U32, 0);
        debug_assert_eq!(block_len % ALIGN_U32, 0);

        if block_len - alloc_size < MIN_BLOCK_SIZE {
            // The block is not large enough to split.
            return block_len;
        }

        // The block is large enough to split. Split the block at exactly the
        // requested allocation size and put the tail back in the free list.
        let new_block_len = alloc_size;
        let split_start = block_index + alloc_size;
        let split_len = block_len - alloc_size;

        debug_assert_eq!(new_block_len % ALIGN_U32, 0);
        debug_assert_eq!(split_start % ALIGN_U32, 0);
        debug_assert_eq!(split_len % ALIGN_U32, 0);

        self.free_block_index_to_len.insert(split_start, split_len);

        new_block_len
    }

    /// Allocate space for an object of the given layout.
    ///
    /// Returns:
    ///
    /// * `Ok(Some(_))`: Allocation succeeded.
    ///
    /// * `Ok(None)`: Can't currently fulfill the allocation request, but might
    ///   be able to if some stuff was reallocated.
    ///
    /// * `Err(_)`:
    pub fn alloc(&mut self, layout: Layout) -> Result<Option<NonZeroU32>> {
        let alloc_size = self.check_layout(layout)?;
        debug_assert_eq!(alloc_size % ALIGN_U32, 0);

        let (block_index, block_len) = match self.first_fit(alloc_size) {
            None => return Ok(None),
            Some(tup) => tup,
        };
        debug_assert_ne!(block_index, 0);
        debug_assert_eq!(block_index % ALIGN_U32, 0);
        debug_assert!(block_len >= alloc_size);
        debug_assert_eq!(block_len % ALIGN_U32, 0);

        let block_len = self.maybe_split(alloc_size, block_index, block_len);
        debug_assert!(block_len >= alloc_size);
        debug_assert_eq!(block_len % ALIGN_U32, 0);

        // After we've mutated the free list, double check its integrity.
        #[cfg(debug_assertions)]
        self.check_integrity();

        Ok(Some(unsafe { NonZeroU32::new_unchecked(block_index) }))
    }

    /// Deallocate an object with the given layout.
    pub fn dealloc(&mut self, index: NonZeroU32, layout: Layout) {
        let index = index.get();
        debug_assert_eq!(index % ALIGN_U32, 0);

        let alloc_size = self.check_layout(layout).unwrap();
        debug_assert_eq!(alloc_size % ALIGN_U32, 0);

        let prev_block = self
            .free_block_index_to_len
            .range((Bound::Unbounded, Bound::Excluded(index)))
            .next_back()
            .map(|(idx, len)| (*idx, *len));

        let next_block = self
            .free_block_index_to_len
            .range((Bound::Excluded(index), Bound::Unbounded))
            .next()
            .map(|(idx, len)| (*idx, *len));

        // Try and merge this block with its previous and next blocks in the
        // free list, if any and if they are contiguous.
        match (prev_block, next_block) {
            // The prev, this, and next blocks are all contiguous: merge this
            // and next into prev.
            (Some((prev_index, prev_len)), Some((next_index, next_len)))
                if blocks_are_contiguous(prev_index, prev_len, index)
                    && blocks_are_contiguous(index, alloc_size, next_index) =>
            {
                self.free_block_index_to_len.remove(&next_index);
                let merged_block_len = next_index + next_len - prev_index;
                debug_assert_eq!(merged_block_len % ALIGN_U32, 0);
                *self.free_block_index_to_len.get_mut(&prev_index).unwrap() = merged_block_len;
            }

            // The prev and this blocks are contiguous: merge this into prev.
            (Some((prev_index, prev_len)), _)
                if blocks_are_contiguous(prev_index, prev_len, index) =>
            {
                let merged_block_len = index + alloc_size - prev_index;
                debug_assert_eq!(merged_block_len % ALIGN_U32, 0);
                *self.free_block_index_to_len.get_mut(&prev_index).unwrap() = merged_block_len;
            }

            // The this and next blocks are contiguous: merge next into this.
            (_, Some((next_index, next_len)))
                if blocks_are_contiguous(index, alloc_size, next_index) =>
            {
                self.free_block_index_to_len.remove(&next_index);
                let merged_block_len = next_index + next_len - index;
                debug_assert_eq!(merged_block_len % ALIGN_U32, 0);
                self.free_block_index_to_len.insert(index, merged_block_len);
            }

            // None of the blocks are contiguous: insert this block into the
            // free list.
            (_, _) => {
                self.free_block_index_to_len.insert(index, alloc_size);
            }
        }

        // After we've added to/mutated the free list, double check its
        // integrity.
        #[cfg(debug_assertions)]
        self.check_integrity();
    }

    /// Assert that the free list is valid:
    ///
    /// 1. All blocks are within `ALIGN..self.capacity`
    ///
    /// 2. No blocks are overlapping.
    ///
    /// 3. All blocks are aligned to `ALIGN`
    ///
    /// 4. All block sizes are a multiple of `ALIGN`
    #[cfg(debug_assertions)]
    fn check_integrity(&self) {
        let mut prev_end = None;
        for (&index, &len) in self.free_block_index_to_len.iter() {
            // (1)
            let end = index + len;
            assert!(usize::try_from(end).unwrap() <= self.capacity);

            // (2)
            if let Some(prev_end) = prev_end {
                // We could assert `prev_end <= index`, and that would be
                // correct, but it would also mean that we missed an opportunity
                // to merge the previous block and this current block
                // together. We don't want to allow that kind of fragmentation,
                // so do the stricter `prev_end < index` assert here.
                assert!(prev_end < index);
            }

            // (3)
            assert_eq!(index % ALIGN_U32, 0);

            // (4)
            assert_eq!(len % ALIGN_U32, 0);

            prev_end = Some(end);
        }
    }

    /// Reset this free list, making the whole range available for allocation.
    pub fn reset(&mut self) {
        let end = u32::try_from(self.capacity).unwrap_or_else(|_| {
            assert!(self.capacity > usize::try_from(u32::MAX).unwrap());
            u32::MAX
        });

        // Don't start at `0`. Reserve that for "null pointers" and this way we
        // can use `NonZeroU32` as out pointer type, giving us some more
        // bitpacking opportunities.
        let start = ALIGN_U32;

        let len = round_u32_down_to_pow2(end.saturating_sub(start), ALIGN_U32);

        let entire_range = if len >= MIN_BLOCK_SIZE {
            Some((start, len))
        } else {
            None
        };

        self.free_block_index_to_len.clear();
        self.free_block_index_to_len.extend(entire_range);
    }
}

#[inline]
fn blocks_are_contiguous(prev_index: u32, prev_len: u32, next_index: u32) -> bool {
    // NB: We might have decided *not* to split the prev block if it was larger
    // than the requested allocation size but not large enough such that if we
    // split it, the remainder could fulfill future allocations. In such cases,
    // the size of the `Layout` given to us upon deallocation (aka `prev_len`)
    // is smaller than the actual size of the block we allocated.
    let end_of_prev = prev_index + prev_len;
    debug_assert!(next_index >= end_of_prev);
    let delta_to_next = next_index - end_of_prev;
    delta_to_next < MIN_BLOCK_SIZE
}

#[inline]
fn round_u32_down_to_pow2(value: u32, divisor: u32) -> u32 {
    debug_assert!(divisor > 0);
    debug_assert!(divisor.is_power_of_two());
    value & !(divisor - 1)
}

#[inline]
fn round_usize_down_to_pow2(value: usize, divisor: usize) -> usize {
    debug_assert!(divisor > 0);
    debug_assert!(divisor.is_power_of_two());
    value & !(divisor - 1)
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::hash_map::HashMap;
    use proptest::prelude::*;
    use std::num::NonZeroUsize;

    fn free_list_block_len_and_size(free_list: &FreeList) -> (usize, Option<usize>) {
        let len = free_list.free_block_index_to_len.len();
        let size = free_list
            .free_block_index_to_len
            .values()
            .next()
            .map(|s| usize::try_from(*s).unwrap());
        (len, size)
    }

    proptest! {
        /// This property test ensures that `FreeList` doesn't suffer from
        /// permanent fragmentation. That is, it can always merge neighboring
        /// free blocks together into a single, larger free block that can be
        /// used to satisfy larger allocations than either of those smaller
        /// blocks could have. In the limit, once we've freed all blocks, that
        /// means we should end up with a single block that represents the whole
        /// range of memory that the `FreeList` is portioning out (just like
        /// what we started with when we initially created the `FreeList`).
        #[test]
        #[cfg_attr(miri, ignore)]
        fn check_no_fragmentation((capacity, ops) in ops()) {
            // Map from allocation id to ptr.
            let mut live = HashMap::new();

            // Set of deferred deallocations, where the strategy told us to
            // deallocate an id before it was allocated. These simply get
            // deallocated en-mass at the end.
            let mut deferred = vec![];

            // The free list we are testing.
            let mut free_list = FreeList::new(capacity.get());

            let (initial_len, initial_size) = free_list_block_len_and_size(&free_list);
            assert!(initial_len == 0 || initial_len == 1);
            assert!(initial_size.unwrap_or(0) <= capacity.get());
            assert_eq!(initial_size.unwrap_or(0), free_list.max_size());

            // Run through the generated ops and perform each operation.
            for (id, op) in ops {
                match op {
                    Op::Alloc(layout) => {
                        if let Ok(Some(ptr)) = free_list.alloc(layout) {
                            live.insert(id, ptr);
                        }
                    }
                    Op::Dealloc(layout) => {
                        if let Some(ptr) = live.remove(&id) {
                            free_list.dealloc(ptr, layout);
                        } else {
                            deferred.push((id, layout));
                        }
                    }
                }
            }

            // Now that we've completed all allocations, perform the deferred
            // deallocations.
            for (id, layout) in deferred {
                // NB: not all IDs necessarily got successful allocations, so
                // there might not be a live pointer for this ID, even after
                // we've already performed all the allocation operations.
                if let Some(ptr) = live.remove(&id) {
                    free_list.dealloc(ptr, layout);
                }
            }

            // Now we can assert various properties that should hold after we
            // have deallocated everything that was allocated.
            //
            // First, assert we did in fact deallocate everything.
            assert!(live.is_empty());

            let (final_len, final_size) = free_list_block_len_and_size(&free_list);

            // The free list should have a single chunk again (or no chunks if
            // the capacity was too small).
            assert_eq!(final_len, initial_len);

            // And the size of that chunk should be the same as the initial size.
            assert_eq!(final_size, initial_size);
        }
    }

    #[derive(Clone, Debug)]
    enum Op {
        Alloc(Layout),
        Dealloc(Layout),
    }

    /// Map an arbitrary `x` to a power of 2 that is less than or equal to
    /// `max`, but with as little bias as possible (e.g. rounding `min(x, max)`
    /// to the nearest power of 2 is unacceptable because it would majorly bias
    /// the distribution towards `max` when `max` is much smaller than
    /// `usize::MAX`).
    fn clamp_to_pow2_in_range(x: usize, max: usize) -> usize {
        let log_x = max.ilog2() as usize;
        if log_x == 0 {
            return 1;
        }
        let divisor = usize::MAX / log_x;
        let y = 1_usize << (x / divisor);
        assert!(y.is_power_of_two(), "{y} is not a power of two");
        assert!(y <= max, "{y} is larger than {max}");
        y
    }

    /// Helper to turn a pair of arbitrary `usize`s into a valid `Layout` of
    /// reasonable size for use with quickchecks.
    fn arbitrary_layout(max_size: NonZeroUsize, size: usize, align: usize) -> Layout {
        // The maximum size cannot be larger than `isize::MAX` because `Layout`
        // imposes that constraint on its size.
        let max_size = std::cmp::min(max_size.get(), usize::try_from(isize::MAX).unwrap());

        // Ensure that the alignment is a power of 2 that is less than or equal
        // to the maximum alignment that `FreeList` supports.
        let align = clamp_to_pow2_in_range(align, super::ALIGN_USIZE);

        // Ensure that `size` is less than or equal to `max_size`.
        let size = size % (max_size + 1);

        // Ensure that `size` is a multiple of `align`.
        //
        // NB: We round `size` *down* to the previous multiple of `align` to
        // preserve `size <= max_size`.
        let size = round_usize_down_to_pow2(size, align);
        assert!(size <= max_size);

        // Double check that we satisfied all of `Layout::from_size_align`'s
        // success requirements.
        assert_ne!(align, 0);
        assert!(align.is_power_of_two());
        assert_eq!(size % align, 0);
        assert!(size <= usize::try_from(isize::MAX).unwrap());

        Layout::from_size_align(size, align).unwrap()
    }

    /// Proptest strategy to generate a free list capacity and a series of
    /// allocation operations to perform in a free list of that capacity.
    fn ops() -> impl Strategy<Value = (NonZeroUsize, Vec<(usize, Op)>)> {
        any::<usize>().prop_flat_map(|capacity| {
            let capacity =
                NonZeroUsize::new(capacity).unwrap_or_else(|| NonZeroUsize::new(1 << 31).unwrap());

            (
                Just(capacity),
                (any::<usize>(), any::<usize>(), any::<usize>())
                    .prop_flat_map(move |(id, size, align)| {
                        let layout = arbitrary_layout(capacity, size, align);
                        vec![
                            Just((id, Op::Alloc(layout))),
                            Just((id, Op::Dealloc(layout))),
                        ]
                    })
                    .prop_shuffle(),
            )
        })
    }

    #[test]
    fn allocate_no_split() {
        // Create a free list with the capacity to allocate two blocks of size
        // `MIN_BLOCK_SIZE`.
        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 2);

        assert_eq!(free_list.free_block_index_to_len.len(), 1);
        assert_eq!(
            free_list.max_size(),
            usize::try_from(MIN_BLOCK_SIZE).unwrap() * 2
        );

        // Allocate a block such that the remainder is not worth splitting.
        free_list
            .alloc(
                Layout::from_size_align(
                    usize::try_from(MIN_BLOCK_SIZE).unwrap() + ALIGN_USIZE,
                    ALIGN_USIZE,
                )
                .unwrap(),
            )
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");

        // Should not have split the block.
        assert_eq!(free_list.free_block_index_to_len.len(), 0);
    }

    #[test]
    fn allocate_and_split() {
        // Create a free list with the capacity to allocate three blocks of size
        // `MIN_BLOCK_SIZE`.
        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 3);

        assert_eq!(free_list.free_block_index_to_len.len(), 1);
        assert_eq!(
            free_list.max_size(),
            usize::try_from(MIN_BLOCK_SIZE).unwrap() * 3
        );

        // Allocate a block such that the remainder is not worth splitting.
        free_list
            .alloc(
                Layout::from_size_align(
                    usize::try_from(MIN_BLOCK_SIZE).unwrap() + ALIGN_USIZE,
                    ALIGN_USIZE,
                )
                .unwrap(),
            )
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");

        // Should have split the block.
        assert_eq!(free_list.free_block_index_to_len.len(), 1);
    }

    #[test]
    fn dealloc_merge_prev_and_next() {
        let layout =
            Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();

        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "initially one big free block"
        );

        let a = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "should have split the block to allocate `a`"
        );

        let b = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "should have split the block to allocate `b`"
        );

        free_list.dealloc(a, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            2,
            "should have two non-contiguous free blocks after deallocating `a`"
        );

        free_list.dealloc(b, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "should have merged `a` and `b` blocks with the rest to form a \
             single, contiguous free block after deallocating `b`"
        );
    }

    #[test]
    fn dealloc_merge_with_prev_and_not_next() {
        let layout =
            Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();

        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "initially one big free block"
        );

        let a = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let b = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let c = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "should have split the block to allocate `a`, `b`, and `c`"
        );

        free_list.dealloc(a, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            2,
            "should have two non-contiguous free blocks after deallocating `a`"
        );

        free_list.dealloc(b, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            2,
            "should have merged `a` and `b` blocks, but not merged with the \
             rest of the free space"
        );

        let _ = c;
    }

    #[test]
    fn dealloc_merge_with_next_and_not_prev() {
        let layout =
            Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();

        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "initially one big free block"
        );

        let a = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let b = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let c = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "should have split the block to allocate `a`, `b`, and `c`"
        );

        free_list.dealloc(a, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            2,
            "should have two non-contiguous free blocks after deallocating `a`"
        );

        free_list.dealloc(c, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            2,
            "should have merged `c` block with rest of the free space, but not \
             with `a` block"
        );

        let _ = b;
    }

    #[test]
    fn dealloc_no_merge() {
        let layout =
            Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE).unwrap();

        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 100);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "initially one big free block"
        );

        let a = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let b = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let c = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        let d = free_list
            .alloc(layout)
            .expect("allocation within 'static' free list limits")
            .expect("have free space available for allocation");
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            1,
            "should have split the block to allocate `a`, `b`, `c`, and `d`"
        );

        free_list.dealloc(a, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            2,
            "should have two non-contiguous free blocks after deallocating `a`"
        );

        free_list.dealloc(c, layout);
        assert_eq!(
            free_list.free_block_index_to_len.len(),
            3,
            "should not have merged `c` block `a` block or rest of the free \
             space"
        );

        let _ = (b, d);
    }

    #[test]
    fn alloc_size_too_large() {
        // Free list with room for 10 min-sized blocks.
        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10);
        assert_eq!(
            free_list.max_size(),
            usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10
        );

        // Attempt to allocate something that is 20 times the size of our
        // min-sized block.
        assert!(free_list
            .alloc(
                Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap() * 20, ALIGN_USIZE)
                    .unwrap(),
            )
            .is_err());
    }

    #[test]
    fn alloc_align_too_large() {
        // Free list with room for 10 min-sized blocks.
        let mut free_list =
            FreeList::new(ALIGN_USIZE + usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10);
        assert_eq!(
            free_list.max_size(),
            usize::try_from(MIN_BLOCK_SIZE).unwrap() * 10
        );

        // Attempt to allocate something that requires larger alignment than
        // `FreeList` supports.
        assert!(free_list
            .alloc(
                Layout::from_size_align(usize::try_from(MIN_BLOCK_SIZE).unwrap(), ALIGN_USIZE * 2)
                    .unwrap(),
            )
            .is_err());
    }
}