opentelemetry_sdk/trace/
span_processor_with_async_runtime.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
use crate::error::{OTelSdkError, OTelSdkResult};
use crate::resource::Resource;
use crate::runtime::{RuntimeChannel, TrySend};
use crate::trace::BatchConfig;
use crate::trace::Span;
use crate::trace::SpanProcessor;
use crate::trace::{SpanData, SpanExporter};
use futures_channel::oneshot;
use futures_util::{
    future::{self, BoxFuture, Either},
    select,
    stream::{self, FusedStream, FuturesUnordered},
    StreamExt as _,
};
use opentelemetry::Context;
use opentelemetry::{otel_debug, otel_error, otel_warn};
use std::fmt;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

/// A [`SpanProcessor`] that asynchronously buffers finished spans and reports
/// them at a preconfigured interval.
///
/// Batch span processors need to run a background task to collect and send
/// spans. Different runtimes need different ways to handle the background task.
///
/// Note: Configuring an opentelemetry `Runtime` that's not compatible with the
/// underlying runtime can cause deadlocks (see tokio section).
///
/// ### Use with Tokio
///
/// Tokio currently offers two different schedulers. One is
/// `current_thread_scheduler`, the other is `multiple_thread_scheduler`. Both
/// of them default to use batch span processors to install span exporters.
///
/// Tokio's `current_thread_scheduler` can cause the program to hang forever if
/// blocking work is scheduled with other tasks in the same runtime. To avoid
/// this, be sure to enable the `rt-tokio-current-thread` feature in this crate
/// if you are using that runtime (e.g. users of actix-web), and blocking tasks
/// will then be scheduled on a different thread.
///
/// # Examples
///
/// This processor can be configured with an [`executor`] of your choice to
/// batch and upload spans asynchronously when they end. If you have added a
/// library like [`tokio`] or [`async-std`], you can pass in their respective
/// `spawn` and `interval` functions to have batching performed in those
/// contexts.
///
/// ```
/// # #[cfg(feature="tokio")]
/// # {
/// use opentelemetry::global;
/// use opentelemetry_sdk::{runtime, testing::trace::NoopSpanExporter, trace};
/// use opentelemetry_sdk::trace::BatchConfigBuilder;
/// use std::time::Duration;
/// use opentelemetry_sdk::trace::span_processor_with_async_runtime::BatchSpanProcessor;
///
/// #[tokio::main]
/// async fn main() {
///     // Configure your preferred exporter
///     let exporter = NoopSpanExporter::new();
///
///     // Create a batch span processor using an exporter and a runtime
///     let batch = BatchSpanProcessor::builder(exporter, runtime::Tokio)
///         .with_batch_config(BatchConfigBuilder::default().with_max_queue_size(4096).build())
///         .build();
///
///     // Then use the `with_batch_exporter` method to have the provider export spans in batches.
///     let provider = trace::TracerProvider::builder()
///         .with_span_processor(batch)
///         .build();
///
///     let _ = global::set_tracer_provider(provider);
/// }
/// # }
/// ```
///
/// [`executor`]: https://docs.rs/futures/0.3/futures/executor/index.html
/// [`tokio`]: https://tokio.rs
/// [`async-std`]: https://async.rs
pub struct BatchSpanProcessor<R: RuntimeChannel> {
    message_sender: R::Sender<BatchMessage>,

    // Track dropped spans
    dropped_spans_count: AtomicUsize,

    // Track the maximum queue size that was configured for this processor
    max_queue_size: usize,
}

impl<R: RuntimeChannel> fmt::Debug for BatchSpanProcessor<R> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("BatchSpanProcessor")
            .field("message_sender", &self.message_sender)
            .finish()
    }
}

impl<R: RuntimeChannel> SpanProcessor for BatchSpanProcessor<R> {
    fn on_start(&self, _span: &mut Span, _cx: &Context) {
        // Ignored
    }

    fn on_end(&self, span: SpanData) {
        if !span.span_context.is_sampled() {
            return;
        }

        let result = self.message_sender.try_send(BatchMessage::ExportSpan(span));

        // If the queue is full, and we can't buffer a span
        if result.is_err() {
            // Increment the number of dropped spans. If this is the first time we've had to drop,
            // emit a warning.
            if self.dropped_spans_count.fetch_add(1, Ordering::Relaxed) == 0 {
                otel_warn!(name: "BatchSpanProcessor.SpanDroppingStarted",
                    message = "Beginning to drop span messages due to full/internal errors. No further log will be emitted for further drops until Shutdown. During Shutdown time, a log will be emitted with exact count of total spans dropped.");
            }
        }
    }

    fn force_flush(&self) -> OTelSdkResult {
        let (res_sender, res_receiver) = oneshot::channel();
        self.message_sender
            .try_send(BatchMessage::Flush(Some(res_sender)))
            .map_err(|err| {
                OTelSdkError::InternalFailure(format!("Failed to send flush message: {}", err))
            })?;

        futures_executor::block_on(res_receiver).map_err(|err| {
            OTelSdkError::InternalFailure(format!("Flush response channel error: {}", err))
        })?
    }

    fn shutdown(&self) -> OTelSdkResult {
        let dropped_spans = self.dropped_spans_count.load(Ordering::Relaxed);
        let max_queue_size = self.max_queue_size;
        if dropped_spans > 0 {
            otel_warn!(
                name: "BatchSpanProcessor.Shutdown",
                dropped_spans = dropped_spans,
                max_queue_size = max_queue_size,
                message = "Spans were dropped due to a full or closed queue. The count represents the total count of span records dropped in the lifetime of the BatchSpanProcessor. Consider increasing the queue size and/or decrease delay between intervals."
            );
        }

        let (res_sender, res_receiver) = oneshot::channel();
        self.message_sender
            .try_send(BatchMessage::Shutdown(res_sender))
            .map_err(|err| {
                OTelSdkError::InternalFailure(format!("Failed to send shutdown message: {}", err))
            })?;

        futures_executor::block_on(res_receiver).map_err(|err| {
            OTelSdkError::InternalFailure(format!("Shutdown response channel error: {}", err))
        })?
    }

    fn set_resource(&mut self, resource: &Resource) {
        let resource = Arc::new(resource.clone());
        let _ = self
            .message_sender
            .try_send(BatchMessage::SetResource(resource));
    }
}

/// Messages sent between application thread and batch span processor's work thread.
// In this enum the size difference is not a concern because:
// 1. If we wrap SpanData into a pointer, it will add overhead when processing.
// 2. Most of the messages will be ExportSpan.
#[allow(clippy::large_enum_variant)]
#[derive(Debug)]
enum BatchMessage {
    /// Export spans, usually called when span ends
    ExportSpan(SpanData),
    /// Flush the current buffer to the backend, it can be triggered by
    /// pre configured interval or a call to `force_push` function.
    Flush(Option<oneshot::Sender<OTelSdkResult>>),
    /// Shut down the worker thread, push all spans in buffer to the backend.
    Shutdown(oneshot::Sender<OTelSdkResult>),
    /// Set the resource for the exporter.
    SetResource(Arc<Resource>),
}

struct BatchSpanProcessorInternal<R> {
    spans: Vec<SpanData>,
    export_tasks: FuturesUnordered<BoxFuture<'static, OTelSdkResult>>,
    runtime: R,
    exporter: Box<dyn SpanExporter>,
    config: BatchConfig,
}

impl<R: RuntimeChannel> BatchSpanProcessorInternal<R> {
    async fn flush(&mut self, res_channel: Option<oneshot::Sender<OTelSdkResult>>) {
        let export_task = self.export();
        let task = Box::pin(async move {
            let result = export_task.await;

            if let Some(channel) = res_channel {
                // If a response channel is provided, attempt to send the export result through it.
                if let Err(result) = channel.send(result) {
                    otel_debug!(
                        name: "BatchSpanProcessor.Flush.SendResultError",
                        reason = format!("{:?}", result)
                    );
                }
            } else if let Err(err) = result {
                // If no channel is provided and the export operation encountered an error,
                // log the error directly here.
                // TODO: Consider returning the status instead of logging it.
                otel_error!(
                    name: "BatchSpanProcessor.Flush.ExportError",
                    reason = format!("{:?}", err),
                    message = "Failed during the export process"
                );
            }

            Ok(())
        });

        if self.config.max_concurrent_exports == 1 {
            let _ = task.await;
        } else {
            self.export_tasks.push(task);
            while self.export_tasks.next().await.is_some() {}
        }
    }

    /// Process a single message
    ///
    /// A return value of false indicates shutdown
    async fn process_message(&mut self, message: BatchMessage) -> bool {
        match message {
            // Span has finished, add to buffer of pending spans.
            BatchMessage::ExportSpan(span) => {
                self.spans.push(span);

                if self.spans.len() == self.config.max_export_batch_size {
                    // If concurrent exports are saturated, wait for one to complete.
                    if !self.export_tasks.is_empty()
                        && self.export_tasks.len() == self.config.max_concurrent_exports
                    {
                        self.export_tasks.next().await;
                    }

                    let export_task = self.export();
                    let task = async move {
                        if let Err(err) = export_task.await {
                            otel_error!(
                                name: "BatchSpanProcessor.Export.Error",
                                reason = format!("{}", err)
                            );
                        }

                        Ok(())
                    };
                    // Special case when not using concurrent exports
                    if self.config.max_concurrent_exports == 1 {
                        let _ = task.await;
                    } else {
                        self.export_tasks.push(Box::pin(task));
                    }
                }
            }
            // Span batch interval time reached or a force flush has been invoked, export
            // current spans.
            //
            // This is a hint to ensure that any tasks associated with Spans for which the
            // SpanProcessor had already received events prior to the call to ForceFlush
            // SHOULD be completed as soon as possible, preferably before returning from
            // this method.
            //
            // In particular, if any SpanProcessor has any associated exporter, it SHOULD
            // try to call the exporter's Export with all spans for which this was not
            // already done and then invoke ForceFlush on it. The built-in SpanProcessors
            // MUST do so. If a timeout is specified (see below), the SpanProcessor MUST
            // prioritize honoring the timeout over finishing all calls. It MAY skip or
            // abort some or all Export or ForceFlush calls it has made to achieve this
            // goal.
            //
            // NB: `force_flush` is not currently implemented on exporters; the equivalent
            // would be waiting for exporter tasks to complete. In the case of
            // channel-coupled exporters, they will need a `force_flush` implementation to
            // properly block.
            BatchMessage::Flush(res_channel) => {
                self.flush(res_channel).await;
            }
            // Stream has terminated or processor is shutdown, return to finish execution.
            BatchMessage::Shutdown(ch) => {
                self.flush(Some(ch)).await;
                let _ = self.exporter.shutdown();
                return false;
            }
            // propagate the resource
            BatchMessage::SetResource(resource) => {
                self.exporter.set_resource(&resource);
            }
        }
        true
    }

    fn export(&mut self) -> BoxFuture<'static, OTelSdkResult> {
        // Batch size check for flush / shutdown. Those methods may be called
        // when there's no work to do.
        if self.spans.is_empty() {
            return Box::pin(future::ready(Ok(())));
        }

        let export = self.exporter.export(self.spans.split_off(0));
        let timeout = self.runtime.delay(self.config.max_export_timeout);
        let time_out = self.config.max_export_timeout;

        Box::pin(async move {
            match future::select(export, timeout).await {
                Either::Left((export_res, _)) => export_res,
                Either::Right((_, _)) => Err(OTelSdkError::Timeout(time_out)),
            }
        })
    }

    async fn run(mut self, mut messages: impl FusedStream<Item = BatchMessage> + Unpin) {
        loop {
            select! {
                // FuturesUnordered implements Fuse intelligently such that it
                // will become eligible again once new tasks are added to it.
                _ = self.export_tasks.next() => {
                    // An export task completed; do we need to do anything with it?
                },
                message = messages.next() => {
                    match message {
                        Some(message) => {
                            if !self.process_message(message).await {
                                break;
                            }
                        },
                        None => break,
                    }
                },
            }
        }
    }
}

impl<R: RuntimeChannel> BatchSpanProcessor<R> {
    pub(crate) fn new(exporter: Box<dyn SpanExporter>, config: BatchConfig, runtime: R) -> Self {
        let (message_sender, message_receiver) =
            runtime.batch_message_channel(config.max_queue_size);

        let max_queue_size = config.max_queue_size;

        let inner_runtime = runtime.clone();
        // Spawn worker process via user-defined spawn function.
        runtime.spawn(Box::pin(async move {
            // Timer will take a reference to the current runtime, so its important we do this within the
            // runtime.spawn()
            let ticker = inner_runtime
                .interval(config.scheduled_delay)
                .skip(1) // The ticker is fired immediately, so we should skip the first one to align with the interval.
                .map(|_| BatchMessage::Flush(None));
            let timeout_runtime = inner_runtime.clone();

            let messages = Box::pin(stream::select(message_receiver, ticker));
            let processor = BatchSpanProcessorInternal {
                spans: Vec::new(),
                export_tasks: FuturesUnordered::new(),
                runtime: timeout_runtime,
                config,
                exporter,
            };

            processor.run(messages).await
        }));

        // Return batch processor with link to worker
        BatchSpanProcessor {
            message_sender,
            dropped_spans_count: AtomicUsize::new(0),
            max_queue_size,
        }
    }

    /// Create a new batch processor builder
    pub fn builder<E>(exporter: E, runtime: R) -> BatchSpanProcessorBuilder<E, R>
    where
        E: SpanExporter,
    {
        BatchSpanProcessorBuilder {
            exporter,
            config: Default::default(),
            runtime,
        }
    }
}

/// A builder for creating [`BatchSpanProcessor`] instances.
///
#[derive(Debug)]
pub struct BatchSpanProcessorBuilder<E, R> {
    exporter: E,
    config: BatchConfig,
    runtime: R,
}

impl<E, R> BatchSpanProcessorBuilder<E, R>
where
    E: SpanExporter + 'static,
    R: RuntimeChannel,
{
    /// Set the BatchConfig for [BatchSpanProcessorBuilder]
    pub fn with_batch_config(self, config: BatchConfig) -> Self {
        BatchSpanProcessorBuilder { config, ..self }
    }

    /// Build a batch processor
    pub fn build(self) -> BatchSpanProcessor<R> {
        BatchSpanProcessor::new(Box::new(self.exporter), self.config, self.runtime)
    }
}

#[cfg(all(test, feature = "testing", feature = "trace"))]
mod tests {
    // cargo test trace::span_processor::tests:: --features=testing
    use super::{BatchSpanProcessor, SpanProcessor};
    use crate::error::OTelSdkResult;
    use crate::runtime;
    use crate::testing::trace::{new_test_export_span_data, new_tokio_test_exporter};
    use crate::trace::span_processor::{
        OTEL_BSP_EXPORT_TIMEOUT, OTEL_BSP_MAX_EXPORT_BATCH_SIZE, OTEL_BSP_MAX_QUEUE_SIZE,
        OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT, OTEL_BSP_SCHEDULE_DELAY, OTEL_BSP_SCHEDULE_DELAY_DEFAULT,
    };
    use crate::trace::{BatchConfig, BatchConfigBuilder, InMemorySpanExporterBuilder};
    use crate::trace::{SpanData, SpanExporter};
    use futures_util::Future;
    use std::fmt::Debug;
    use std::time::Duration;

    struct BlockingExporter<D> {
        delay_for: Duration,
        delay_fn: D,
    }

    impl<D, DS> Debug for BlockingExporter<D>
    where
        D: Fn(Duration) -> DS + 'static + Send + Sync,
        DS: Future<Output = ()> + Send + Sync + 'static,
    {
        fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
            f.write_str("blocking exporter for testing")
        }
    }

    impl<D, DS> SpanExporter for BlockingExporter<D>
    where
        D: Fn(Duration) -> DS + 'static + Send + Sync,
        DS: Future<Output = ()> + Send + Sync + 'static,
    {
        fn export(
            &mut self,
            _batch: Vec<SpanData>,
        ) -> futures_util::future::BoxFuture<'static, OTelSdkResult> {
            use futures_util::FutureExt;
            Box::pin((self.delay_fn)(self.delay_for).map(|_| Ok(())))
        }
    }

    #[test]
    fn test_build_batch_span_processor_builder() {
        let mut env_vars = vec![
            (OTEL_BSP_MAX_EXPORT_BATCH_SIZE, Some("500")),
            (OTEL_BSP_SCHEDULE_DELAY, Some("I am not number")),
            (OTEL_BSP_EXPORT_TIMEOUT, Some("2046")),
        ];
        temp_env::with_vars(env_vars.clone(), || {
            let builder = BatchSpanProcessor::builder(
                InMemorySpanExporterBuilder::new().build(),
                runtime::Tokio,
            );
            // export batch size cannot exceed max queue size
            assert_eq!(builder.config.max_export_batch_size, 500);
            assert_eq!(
                builder.config.scheduled_delay,
                Duration::from_millis(OTEL_BSP_SCHEDULE_DELAY_DEFAULT)
            );
            assert_eq!(
                builder.config.max_queue_size,
                OTEL_BSP_MAX_QUEUE_SIZE_DEFAULT
            );
            assert_eq!(
                builder.config.max_export_timeout,
                Duration::from_millis(2046)
            );
        });

        env_vars.push((OTEL_BSP_MAX_QUEUE_SIZE, Some("120")));

        temp_env::with_vars(env_vars, || {
            let builder = BatchSpanProcessor::builder(
                InMemorySpanExporterBuilder::new().build(),
                runtime::Tokio,
            );
            assert_eq!(builder.config.max_export_batch_size, 120);
            assert_eq!(builder.config.max_queue_size, 120);
        });
    }

    #[tokio::test]
    async fn test_batch_span_processor() {
        let (exporter, mut export_receiver, _shutdown_receiver) = new_tokio_test_exporter();
        let config = BatchConfigBuilder::default()
            .with_scheduled_delay(Duration::from_secs(60 * 60 * 24)) // set the tick to 24 hours so we know the span must be exported via force_flush
            .build();
        let processor =
            BatchSpanProcessor::new(Box::new(exporter), config, runtime::TokioCurrentThread);
        let handle = tokio::spawn(async move {
            loop {
                if let Some(span) = export_receiver.recv().await {
                    assert_eq!(span.span_context, new_test_export_span_data().span_context);
                    break;
                }
            }
        });
        tokio::time::sleep(Duration::from_secs(1)).await; // skip the first
        processor.on_end(new_test_export_span_data());
        let flush_res = processor.force_flush();
        assert!(flush_res.is_ok());
        let _shutdown_result = processor.shutdown();

        assert!(
            tokio::time::timeout(Duration::from_secs(5), handle)
                .await
                .is_ok(),
            "timed out in 5 seconds. force_flush may not export any data when called"
        );
    }

    // If the time_out is true, then the result suppose to ended with timeout.
    // otherwise the exporter should be able to export within time out duration.
    async fn timeout_test_tokio(time_out: bool) {
        let config = BatchConfig {
            max_export_timeout: Duration::from_millis(if time_out { 5 } else { 60 }),
            scheduled_delay: Duration::from_secs(60 * 60 * 24), // set the tick to 24 hours so we know the span must be exported via force_flush,
            ..Default::default()
        };
        let exporter = BlockingExporter {
            delay_for: Duration::from_millis(if !time_out { 5 } else { 60 }),
            delay_fn: tokio::time::sleep,
        };
        let processor =
            BatchSpanProcessor::new(Box::new(exporter), config, runtime::TokioCurrentThread);
        tokio::time::sleep(Duration::from_secs(1)).await; // skip the first
        processor.on_end(new_test_export_span_data());
        let flush_res = processor.force_flush();
        if time_out {
            assert!(flush_res.is_err());
        } else {
            assert!(flush_res.is_ok());
        }
        let shutdown_res = processor.shutdown();
        assert!(shutdown_res.is_ok());
    }

    #[test]
    fn test_timeout_tokio_timeout() {
        // If time_out is true, then we ask exporter to block for 60s and set timeout to 5s.
        // If time_out is false, then we ask the exporter to block for 5s and set timeout to 60s.
        // Either way, the test should be finished within 5s.
        let runtime = tokio::runtime::Builder::new_multi_thread()
            .enable_all()
            .build()
            .unwrap();
        runtime.block_on(timeout_test_tokio(true));
    }

    #[test]
    fn test_timeout_tokio_not_timeout() {
        let runtime = tokio::runtime::Builder::new_multi_thread()
            .enable_all()
            .build()
            .unwrap();
        runtime.block_on(timeout_test_tokio(false));
    }

    #[test]
    #[cfg(feature = "rt-async-std")]
    fn test_timeout_async_std_timeout() {
        async_std::task::block_on(timeout_test_std_async(true));
    }

    #[test]
    #[cfg(feature = "rt-async-std")]
    fn test_timeout_async_std_not_timeout() {
        async_std::task::block_on(timeout_test_std_async(false));
    }

    // If the time_out is true, then the result suppose to ended with timeout.
    // otherwise the exporter should be able to export within time out duration.
    #[cfg(feature = "rt-async-std")]
    async fn timeout_test_std_async(time_out: bool) {
        let config = BatchConfig {
            max_export_timeout: Duration::from_millis(if time_out { 5 } else { 60 }),
            scheduled_delay: Duration::from_secs(60 * 60 * 24), // set the tick to 24 hours so we know the span must be exported via force_flush
            ..Default::default()
        };
        let exporter = BlockingExporter {
            delay_for: Duration::from_millis(if !time_out { 5 } else { 60 }),
            delay_fn: async_std::task::sleep,
        };
        let processor = BatchSpanProcessor::new(Box::new(exporter), config, runtime::AsyncStd);
        processor.on_end(new_test_export_span_data());
        let flush_res = processor.force_flush();
        if time_out {
            assert!(flush_res.is_err());
        } else {
            assert!(flush_res.is_ok());
        }
        let shutdown_res = processor.shutdown();
        assert!(shutdown_res.is_ok());
    }
}