wasmtime/runtime/vm/
parking_spot.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
//! Implements thread wait and notify primitives with `std::sync` primitives.
//!
//! This is a simplified version of the `parking_lot_core` crate.
//!
//! There are two main operations that can be performed:
//!
//! - *Parking* refers to suspending the thread while simultaneously enqueuing it
//!   on a queue keyed by some address.
//! - *Unparking* refers to dequeuing a thread from a queue keyed by some address
//!   and resuming it.

#![deny(missing_docs)]

use crate::prelude::*;
use crate::runtime::vm::{SendSyncPtr, WaitResult};
use std::collections::BTreeMap;
use std::ptr::NonNull;
use std::sync::atomic::{AtomicU32, AtomicU64, Ordering::SeqCst};
use std::sync::Mutex;
use std::thread::{self, Thread};
use std::time::{Duration, Instant};

#[derive(Default, Debug)]
struct Spot {
    head: Option<SendSyncPtr<WaiterInner>>,
    tail: Option<SendSyncPtr<WaiterInner>>,
}

/// The thread global `ParkingSpot`.
#[derive(Default, Debug)]
pub struct ParkingSpot {
    inner: Mutex<BTreeMap<u64, Spot>>,
}

#[derive(Default)]
pub struct Waiter {
    inner: Option<Box<WaiterInner>>,
}

struct WaiterInner {
    // NB: this field may be read concurrently, but is only written under the
    // lock of a `ParkingSpot`.
    thread: Thread,

    // NB: these fields are only modified/read under the lock of a
    // `ParkingSpot`.
    notified: bool,
    next: Option<SendSyncPtr<WaiterInner>>,
    prev: Option<SendSyncPtr<WaiterInner>>,
}

impl ParkingSpot {
    /// Atomically validates if `atomic == expected` and, if so, blocks the
    /// current thread.
    ///
    /// This method will first check to see if `atomic == expected` using a
    /// `SeqCst` load ordering. If the values are not equal then the method
    /// immediately returns with `WaitResult::Mismatch`. Otherwise the thread
    /// will be blocked and can only be woken up with `notify` on the same
    /// address. Note that the check-and-block operation is atomic with respect
    /// to `notify`.
    ///
    /// The optional `deadline` specified can indicate a point in time after
    /// which this thread will be unblocked. If this thread is not notified and
    /// `deadline` is reached then `WaitResult::TimedOut` is returned. If
    /// `deadline` is `None` then this thread will block forever waiting for
    /// `notify`.
    ///
    /// The `waiter` argument is metadata used by this structure to block
    /// the current thread.
    ///
    /// This method will not spuriously wake up one blocked.
    pub fn wait32(
        &self,
        atomic: &AtomicU32,
        expected: u32,
        deadline: impl Into<Option<Instant>>,
        waiter: &mut Waiter,
    ) -> WaitResult {
        self.wait(
            atomic.as_ptr() as u64,
            || atomic.load(SeqCst) == expected,
            deadline.into(),
            waiter,
        )
    }

    /// Same as `wait32`, but for 64-bit values.
    pub fn wait64(
        &self,
        atomic: &AtomicU64,
        expected: u64,
        deadline: impl Into<Option<Instant>>,
        waiter: &mut Waiter,
    ) -> WaitResult {
        self.wait(
            atomic.as_ptr() as u64,
            || atomic.load(SeqCst) == expected,
            deadline.into(),
            waiter,
        )
    }

    fn wait(
        &self,
        key: u64,
        validate: impl FnOnce() -> bool,
        deadline: Option<Instant>,
        waiter: &mut Waiter,
    ) -> WaitResult {
        let mut inner = self
            .inner
            .lock()
            .expect("failed to lock inner parking table");

        // This is the "atomic" part of the `validate` check which ensure that
        // the memory location still indicates that we're allowed to block.
        if !validate() {
            return WaitResult::Mismatch;
        }

        // Lazily initialize the `waiter` node if it hasn't been already, and
        // additionally ensure it's not accidentally in some other queue.
        let waiter = waiter.inner.get_or_insert_with(|| {
            Box::new(WaiterInner {
                next: None,
                prev: None,
                notified: false,
                thread: thread::current(),
            })
        });
        assert!(waiter.next.is_none());
        assert!(waiter.prev.is_none());

        // Clear the `notified` flag if it was previously notified and
        // configure the thread to wakeup as our own.
        waiter.notified = false;
        waiter.thread = thread::current();

        let ptr = SendSyncPtr::new(NonNull::from(&mut **waiter));
        let spot = inner.entry(key).or_insert_with(Spot::default);
        unsafe {
            // Enqueue our `waiter` in the internal queue for this spot.
            spot.push(ptr);

            // Wait for a notification to arrive. This is done through
            // `std::thread::park_timeout` by dropping the lock that is held.
            // This loop is somewhat similar to a condition variable.
            //
            // If no timeout was given then the maximum duration is effectively
            // infinite (500 billion years), otherwise the timeout is
            // calculated relative to the `deadline` specified.
            //
            // To handle spurious wakeups if the thread wakes up but a
            // notification wasn't received then the thread goes back to sleep.
            let timed_out = loop {
                let timeout = match deadline {
                    Some(deadline) => {
                        let now = Instant::now();
                        if deadline <= now {
                            break true;
                        } else {
                            deadline - now
                        }
                    }
                    None => Duration::MAX,
                };

                drop(inner);
                thread::park_timeout(timeout);
                inner = self.inner.lock().unwrap();

                if ptr.as_ref().notified {
                    break false;
                }
            };

            if timed_out {
                // If this thread timed out then it is still present in the
                // waiter queue, so remove it.
                inner.get_mut(&key).unwrap().remove(ptr);
                WaitResult::TimedOut
            } else {
                // If this node was notified then we should not be in a queue
                // at this point.
                assert!(ptr.as_ref().next.is_none());
                assert!(ptr.as_ref().prev.is_none());
                WaitResult::Ok
            }
        }
    }

    /// Notify at most `n` threads that are blocked on the given address.
    ///
    /// Returns the number of threads that were actually unparked.
    pub fn notify<T>(&self, addr: &T, n: u32) -> u32 {
        if n == 0 {
            return 0;
        }
        let mut unparked = 0;

        // It's known here that `n > 0` so dequeue items until `unparked`
        // equals `n` or the queue runs out. Each thread dequeued is signaled
        // that it's been notified and then woken up.
        self.with_lot(addr, |spot| unsafe {
            while let Some(mut head) = spot.pop() {
                let head = head.as_mut();
                assert!(head.next.is_none());
                head.notified = true;
                head.thread.unpark();
                unparked += 1;
                if unparked == n {
                    break;
                }
            }
        });

        unparked
    }

    fn with_lot<T, F: FnMut(&mut Spot)>(&self, addr: &T, mut f: F) {
        let key = addr as *const _ as u64;
        let mut inner = self
            .inner
            .lock()
            .expect("failed to lock inner parking table");
        if let Some(spot) = inner.get_mut(&key) {
            f(spot);
        }
    }
}

impl Waiter {
    pub const fn new() -> Waiter {
        Waiter { inner: None }
    }
}

impl Spot {
    /// Adds `waiter` to the queue at the end.
    ///
    /// # Unsafety
    ///
    /// This method is `unsafe` as it can only be invoked under the parking
    /// spot's mutex. Additionally `waiter` must be a valid pointer not already
    /// in any other queue and additionally only exclusively used by this queue
    /// now.
    unsafe fn push(&mut self, mut waiter: SendSyncPtr<WaiterInner>) {
        assert!(waiter.as_ref().next.is_none());
        assert!(waiter.as_ref().prev.is_none());

        waiter.as_mut().prev = self.tail;
        match self.tail {
            Some(mut tail) => tail.as_mut().next = Some(waiter),
            None => self.head = Some(waiter),
        }
        self.tail = Some(waiter);
    }

    /// Removes `waiter` from the queue.
    ///
    /// # Unsafety
    ///
    /// This method is `unsafe` as it can only be invoked under the parking
    /// spot's mutex. Additionally `waiter` must be a valid pointer in this
    /// queue.
    unsafe fn remove(&mut self, mut waiter: SendSyncPtr<WaiterInner>) {
        let w = waiter.as_mut();
        match w.prev {
            Some(mut prev) => prev.as_mut().next = w.next,
            None => self.head = w.next,
        }
        match w.next {
            Some(mut next) => next.as_mut().prev = w.prev,
            None => self.tail = w.prev,
        }
        w.prev = None;
        w.next = None;
    }

    /// Pops the head of the queue from this linked list to wake up a waiter.
    ///
    /// # Unsafety
    ///
    /// This method is `unsafe` as it can only be invoked under the parking
    /// spot's mutex.
    unsafe fn pop(&mut self) -> Option<SendSyncPtr<WaiterInner>> {
        let ret = self.head?;
        self.remove(ret);
        Some(ret)
    }

    #[cfg(test)]
    fn num_parked(&self) -> u32 {
        let mut ret = 0;
        let mut cur = self.head;
        while let Some(next) = cur {
            ret += 1;
            cur = unsafe { next.as_ref().next };
        }
        ret
    }
}

#[cfg(test)]
mod tests {
    use super::{ParkingSpot, Waiter};
    use crate::prelude::*;
    use std::sync::atomic::{AtomicU64, Ordering};
    use std::thread;
    use std::time::{Duration, Instant};

    #[test]
    fn atomic_wait_notify() {
        let parking_spot = ParkingSpot::default();
        let atomic = AtomicU64::new(0);

        let wait_until_value = |val: u64, waiter: &mut Waiter| loop {
            let cur = atomic.load(Ordering::SeqCst);
            if cur == val {
                break;
            } else {
                parking_spot.wait64(&atomic, cur, None, waiter);
            }
        };

        thread::scope(|s| {
            let thread1 = s.spawn(|| {
                let mut waiter = Waiter::default();
                atomic.store(1, Ordering::SeqCst);
                parking_spot.notify(&atomic, u32::MAX);
                parking_spot.wait64(&atomic, 1, None, &mut waiter);
            });

            let thread2 = s.spawn(|| {
                let mut waiter = Waiter::default();
                wait_until_value(1, &mut waiter);
                atomic.store(2, Ordering::SeqCst);
                parking_spot.notify(&atomic, u32::MAX);
                parking_spot.wait64(&atomic, 2, None, &mut waiter);
            });

            let thread3 = s.spawn(|| {
                let mut waiter = Waiter::default();
                wait_until_value(2, &mut waiter);
                atomic.store(3, Ordering::SeqCst);
                parking_spot.notify(&atomic, u32::MAX);
                parking_spot.wait64(&atomic, 3, None, &mut waiter);
            });

            let mut waiter = Waiter::default();
            wait_until_value(3, &mut waiter);
            atomic.store(4, Ordering::SeqCst);
            parking_spot.notify(&atomic, u32::MAX);

            thread1.join().unwrap();
            thread2.join().unwrap();
            thread3.join().unwrap();
        });
    }

    mod parking_lot {
        // This is a modified version of the parking_lot_core tests,
        // which are licensed under the MIT and Apache 2.0 licenses.
        use super::*;
        use std::sync::atomic::AtomicU32;
        use std::sync::Arc;

        macro_rules! test {
            ( $( $name:ident(
                repeats: $repeats:expr,
                latches: $latches:expr,
                delay: $delay:expr,
                threads: $threads:expr,
                single_unparks: $single_unparks:expr);
            )* ) => {
                $(
                #[test]
                #[cfg_attr(miri, ignore)]
                fn $name() {
                    if std::env::var("WASMTIME_TEST_NO_HOG_MEMORY").is_ok() {
                        return;
                    }
                    let delay = Duration::from_micros($delay);
                    for _ in 0..$repeats {
                        run_parking_test($latches, delay, $threads, $single_unparks);
                    }
                })*
            };
        }

        test! {
            unpark_all_one_fast(
                repeats: 10000, latches: 1, delay: 0, threads: 1, single_unparks: 0
            );
            unpark_all_hundred_fast(
                repeats: 100, latches: 1, delay: 0, threads: 100, single_unparks: 0
            );
            unpark_one_one_fast(
                repeats: 1000, latches: 1, delay: 0, threads: 1, single_unparks: 1
            );
            unpark_one_hundred_fast(
                repeats: 20, latches: 1, delay: 0, threads: 100, single_unparks: 100
            );
            unpark_one_fifty_then_fifty_all_fast(
                repeats: 50, latches: 1, delay: 0, threads: 100, single_unparks: 50
            );
            unpark_all_one(
                repeats: 100, latches: 1, delay: 10000, threads: 1, single_unparks: 0
            );
            unpark_all_hundred(
                repeats: 100, latches: 1, delay: 10000, threads: 100, single_unparks: 0
            );
            unpark_one_one(
                repeats: 10, latches: 1, delay: 10000, threads: 1, single_unparks: 1
            );
            unpark_one_fifty(
                repeats: 1, latches: 1, delay: 10000, threads: 50, single_unparks: 50
            );
            unpark_one_fifty_then_fifty_all(
                repeats: 2, latches: 1, delay: 10000, threads: 100, single_unparks: 50
            );
            hundred_unpark_all_one_fast(
                repeats: 100, latches: 100, delay: 0, threads: 1, single_unparks: 0
            );
            hundred_unpark_all_one(
                repeats: 1, latches: 100, delay: 10000, threads: 1, single_unparks: 0
            );
        }

        fn run_parking_test(
            num_latches: usize,
            delay: Duration,
            num_threads: u32,
            num_single_unparks: u32,
        ) {
            let spot = ParkingSpot::default();

            thread::scope(|s| {
                let mut tests = Vec::with_capacity(num_latches);

                for _ in 0..num_latches {
                    let test = Arc::new(SingleLatchTest::new(num_threads, &spot));
                    let mut threads = Vec::with_capacity(num_threads as _);
                    for _ in 0..num_threads {
                        let test = test.clone();
                        threads.push(s.spawn(move || test.run()));
                    }
                    tests.push((test, threads));
                }

                for unpark_index in 0..num_single_unparks {
                    thread::sleep(delay);
                    for (test, _) in &tests {
                        test.unpark_one(unpark_index);
                    }
                }

                for (test, threads) in tests {
                    test.finish(num_single_unparks);
                    for thread in threads {
                        thread.join().expect("Test thread panic");
                    }
                }
            });
        }

        struct SingleLatchTest<'a> {
            semaphore: AtomicU32,
            num_awake: AtomicU32,
            /// Total number of threads participating in this test.
            num_threads: u32,
            spot: &'a ParkingSpot,
        }

        impl<'a> SingleLatchTest<'a> {
            pub fn new(num_threads: u32, spot: &'a ParkingSpot) -> Self {
                Self {
                    // This implements a fair (FIFO) semaphore, and it starts out unavailable.
                    semaphore: AtomicU32::new(0),
                    num_awake: AtomicU32::new(0),
                    num_threads,
                    spot,
                }
            }

            pub fn run(&self) {
                // Get one slot from the semaphore
                self.down();

                self.num_awake.fetch_add(1, Ordering::SeqCst);
            }

            pub fn unpark_one(&self, _single_unpark_index: u32) {
                let num_awake_before_up = self.num_awake.load(Ordering::SeqCst);

                self.up();

                // Wait for a parked thread to wake up and update num_awake + last_awoken.
                while self.num_awake.load(Ordering::SeqCst) != num_awake_before_up + 1 {
                    thread::yield_now();
                }
            }

            pub fn finish(&self, num_single_unparks: u32) {
                // The amount of threads not unparked via unpark_one
                let mut num_threads_left =
                    self.num_threads.checked_sub(num_single_unparks).unwrap();

                // Wake remaining threads up with unpark_all. Has to be in a loop, because there might
                // still be threads that has not yet parked.
                while num_threads_left > 0 {
                    let mut num_waiting_on_address = 0;
                    self.spot.with_lot(&self.semaphore, |thread_data| {
                        num_waiting_on_address = thread_data.num_parked();
                    });
                    assert!(num_waiting_on_address <= num_threads_left);

                    let num_awake_before_unpark = self.num_awake.load(Ordering::SeqCst);

                    let num_unparked = self.spot.notify(&self.semaphore, u32::MAX);
                    assert!(num_unparked >= num_waiting_on_address);
                    assert!(num_unparked <= num_threads_left);

                    // Wait for all unparked threads to wake up and update num_awake + last_awoken.
                    while self.num_awake.load(Ordering::SeqCst)
                        != num_awake_before_unpark + num_unparked
                    {
                        thread::yield_now();
                    }

                    num_threads_left = num_threads_left.checked_sub(num_unparked).unwrap();
                }
                // By now, all threads should have been woken up
                assert_eq!(self.num_awake.load(Ordering::SeqCst), self.num_threads);

                // Make sure no thread is parked on our semaphore address
                let mut num_waiting_on_address = 0;
                self.spot.with_lot(&self.semaphore, |thread_data| {
                    num_waiting_on_address = thread_data.num_parked();
                });
                assert_eq!(num_waiting_on_address, 0);
            }

            pub fn down(&self) {
                let mut old_semaphore_value = self.semaphore.fetch_sub(1, Ordering::SeqCst);

                if (old_semaphore_value as i32) > 0 {
                    // We acquired the semaphore. Done.
                    return;
                }

                // Force this thread to go to sleep.
                let mut waiter = Waiter::new();
                loop {
                    match self
                        .spot
                        .wait32(&self.semaphore, old_semaphore_value, None, &mut waiter)
                    {
                        crate::runtime::vm::WaitResult::Mismatch => {}
                        _ => break,
                    }
                    old_semaphore_value = self.semaphore.load(Ordering::SeqCst);
                }
            }

            pub fn up(&self) {
                let old_semaphore_value = self.semaphore.fetch_add(1, Ordering::SeqCst) as i32;

                // Check if anyone was waiting on the semaphore. If they were, then pass ownership to them.
                if old_semaphore_value < 0 {
                    // We need to continue until we have actually unparked someone. It might be that
                    // the thread we want to pass ownership to has decremented the semaphore counter,
                    // but not yet parked.
                    loop {
                        match self.spot.notify(&self.semaphore, 1) {
                            1 => break,
                            0 => (),
                            i => panic!("Should not wake up {i} threads"),
                        }
                    }
                }
            }
        }
    }

    #[test]
    fn wait_with_timeout() {
        let parking_spot = ParkingSpot::default();
        let atomic = AtomicU64::new(0);

        thread::scope(|s| {
            const N: u64 = 5;
            const M: u64 = if cfg!(miri) { 10 } else { 1000 };

            let thread = s.spawn(|| {
                let mut waiter = Waiter::new();
                loop {
                    let cur = atomic.load(Ordering::SeqCst);
                    if cur == N * M {
                        break;
                    }
                    let timeout = Instant::now() + Duration::from_millis(1);
                    parking_spot.wait64(&atomic, cur, Some(timeout), &mut waiter);
                }
            });

            let mut threads = vec![thread];
            for _ in 0..N {
                threads.push(s.spawn(|| {
                    for _ in 0..M {
                        atomic.fetch_add(1, Ordering::SeqCst);
                        parking_spot.notify(&atomic, 1);
                    }
                }));
            }

            for thread in threads {
                thread.join().unwrap();
            }
        });
    }
}