wasmtime/runtime/vm/parking_spot.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
//! Implements thread wait and notify primitives with `std::sync` primitives.
//!
//! This is a simplified version of the `parking_lot_core` crate.
//!
//! There are two main operations that can be performed:
//!
//! - *Parking* refers to suspending the thread while simultaneously enqueuing it
//! on a queue keyed by some address.
//! - *Unparking* refers to dequeuing a thread from a queue keyed by some address
//! and resuming it.
#![deny(missing_docs)]
use crate::prelude::*;
use crate::runtime::vm::{SendSyncPtr, WaitResult};
use std::collections::BTreeMap;
use std::ptr::NonNull;
use std::sync::atomic::{AtomicU32, AtomicU64, Ordering::SeqCst};
use std::sync::Mutex;
use std::thread::{self, Thread};
use std::time::{Duration, Instant};
#[derive(Default, Debug)]
struct Spot {
head: Option<SendSyncPtr<WaiterInner>>,
tail: Option<SendSyncPtr<WaiterInner>>,
}
/// The thread global `ParkingSpot`.
#[derive(Default, Debug)]
pub struct ParkingSpot {
inner: Mutex<BTreeMap<u64, Spot>>,
}
#[derive(Default)]
pub struct Waiter {
inner: Option<Box<WaiterInner>>,
}
struct WaiterInner {
// NB: this field may be read concurrently, but is only written under the
// lock of a `ParkingSpot`.
thread: Thread,
// NB: these fields are only modified/read under the lock of a
// `ParkingSpot`.
notified: bool,
next: Option<SendSyncPtr<WaiterInner>>,
prev: Option<SendSyncPtr<WaiterInner>>,
}
impl ParkingSpot {
/// Atomically validates if `atomic == expected` and, if so, blocks the
/// current thread.
///
/// This method will first check to see if `atomic == expected` using a
/// `SeqCst` load ordering. If the values are not equal then the method
/// immediately returns with `WaitResult::Mismatch`. Otherwise the thread
/// will be blocked and can only be woken up with `notify` on the same
/// address. Note that the check-and-block operation is atomic with respect
/// to `notify`.
///
/// The optional `deadline` specified can indicate a point in time after
/// which this thread will be unblocked. If this thread is not notified and
/// `deadline` is reached then `WaitResult::TimedOut` is returned. If
/// `deadline` is `None` then this thread will block forever waiting for
/// `notify`.
///
/// The `waiter` argument is metadata used by this structure to block
/// the current thread.
///
/// This method will not spuriously wake up one blocked.
pub fn wait32(
&self,
atomic: &AtomicU32,
expected: u32,
deadline: impl Into<Option<Instant>>,
waiter: &mut Waiter,
) -> WaitResult {
self.wait(
atomic.as_ptr() as u64,
|| atomic.load(SeqCst) == expected,
deadline.into(),
waiter,
)
}
/// Same as `wait32`, but for 64-bit values.
pub fn wait64(
&self,
atomic: &AtomicU64,
expected: u64,
deadline: impl Into<Option<Instant>>,
waiter: &mut Waiter,
) -> WaitResult {
self.wait(
atomic.as_ptr() as u64,
|| atomic.load(SeqCst) == expected,
deadline.into(),
waiter,
)
}
fn wait(
&self,
key: u64,
validate: impl FnOnce() -> bool,
deadline: Option<Instant>,
waiter: &mut Waiter,
) -> WaitResult {
let mut inner = self
.inner
.lock()
.expect("failed to lock inner parking table");
// This is the "atomic" part of the `validate` check which ensure that
// the memory location still indicates that we're allowed to block.
if !validate() {
return WaitResult::Mismatch;
}
// Lazily initialize the `waiter` node if it hasn't been already, and
// additionally ensure it's not accidentally in some other queue.
let waiter = waiter.inner.get_or_insert_with(|| {
Box::new(WaiterInner {
next: None,
prev: None,
notified: false,
thread: thread::current(),
})
});
assert!(waiter.next.is_none());
assert!(waiter.prev.is_none());
// Clear the `notified` flag if it was previously notified and
// configure the thread to wakeup as our own.
waiter.notified = false;
waiter.thread = thread::current();
let ptr = SendSyncPtr::new(NonNull::from(&mut **waiter));
let spot = inner.entry(key).or_insert_with(Spot::default);
unsafe {
// Enqueue our `waiter` in the internal queue for this spot.
spot.push(ptr);
// Wait for a notification to arrive. This is done through
// `std::thread::park_timeout` by dropping the lock that is held.
// This loop is somewhat similar to a condition variable.
//
// If no timeout was given then the maximum duration is effectively
// infinite (500 billion years), otherwise the timeout is
// calculated relative to the `deadline` specified.
//
// To handle spurious wakeups if the thread wakes up but a
// notification wasn't received then the thread goes back to sleep.
let timed_out = loop {
let timeout = match deadline {
Some(deadline) => {
let now = Instant::now();
if deadline <= now {
break true;
} else {
deadline - now
}
}
None => Duration::MAX,
};
drop(inner);
thread::park_timeout(timeout);
inner = self.inner.lock().unwrap();
if ptr.as_ref().notified {
break false;
}
};
if timed_out {
// If this thread timed out then it is still present in the
// waiter queue, so remove it.
inner.get_mut(&key).unwrap().remove(ptr);
WaitResult::TimedOut
} else {
// If this node was notified then we should not be in a queue
// at this point.
assert!(ptr.as_ref().next.is_none());
assert!(ptr.as_ref().prev.is_none());
WaitResult::Ok
}
}
}
/// Notify at most `n` threads that are blocked on the given address.
///
/// Returns the number of threads that were actually unparked.
pub fn notify<T>(&self, addr: &T, n: u32) -> u32 {
if n == 0 {
return 0;
}
let mut unparked = 0;
// It's known here that `n > 0` so dequeue items until `unparked`
// equals `n` or the queue runs out. Each thread dequeued is signaled
// that it's been notified and then woken up.
self.with_lot(addr, |spot| unsafe {
while let Some(mut head) = spot.pop() {
let head = head.as_mut();
assert!(head.next.is_none());
head.notified = true;
head.thread.unpark();
unparked += 1;
if unparked == n {
break;
}
}
});
unparked
}
fn with_lot<T, F: FnMut(&mut Spot)>(&self, addr: &T, mut f: F) {
let key = addr as *const _ as u64;
let mut inner = self
.inner
.lock()
.expect("failed to lock inner parking table");
if let Some(spot) = inner.get_mut(&key) {
f(spot);
}
}
}
impl Waiter {
pub const fn new() -> Waiter {
Waiter { inner: None }
}
}
impl Spot {
/// Adds `waiter` to the queue at the end.
///
/// # Unsafety
///
/// This method is `unsafe` as it can only be invoked under the parking
/// spot's mutex. Additionally `waiter` must be a valid pointer not already
/// in any other queue and additionally only exclusively used by this queue
/// now.
unsafe fn push(&mut self, mut waiter: SendSyncPtr<WaiterInner>) {
assert!(waiter.as_ref().next.is_none());
assert!(waiter.as_ref().prev.is_none());
waiter.as_mut().prev = self.tail;
match self.tail {
Some(mut tail) => tail.as_mut().next = Some(waiter),
None => self.head = Some(waiter),
}
self.tail = Some(waiter);
}
/// Removes `waiter` from the queue.
///
/// # Unsafety
///
/// This method is `unsafe` as it can only be invoked under the parking
/// spot's mutex. Additionally `waiter` must be a valid pointer in this
/// queue.
unsafe fn remove(&mut self, mut waiter: SendSyncPtr<WaiterInner>) {
let w = waiter.as_mut();
match w.prev {
Some(mut prev) => prev.as_mut().next = w.next,
None => self.head = w.next,
}
match w.next {
Some(mut next) => next.as_mut().prev = w.prev,
None => self.tail = w.prev,
}
w.prev = None;
w.next = None;
}
/// Pops the head of the queue from this linked list to wake up a waiter.
///
/// # Unsafety
///
/// This method is `unsafe` as it can only be invoked under the parking
/// spot's mutex.
unsafe fn pop(&mut self) -> Option<SendSyncPtr<WaiterInner>> {
let ret = self.head?;
self.remove(ret);
Some(ret)
}
#[cfg(test)]
fn num_parked(&self) -> u32 {
let mut ret = 0;
let mut cur = self.head;
while let Some(next) = cur {
ret += 1;
cur = unsafe { next.as_ref().next };
}
ret
}
}
#[cfg(test)]
mod tests {
use super::{ParkingSpot, Waiter};
use crate::prelude::*;
use std::sync::atomic::{AtomicU64, Ordering};
use std::thread;
use std::time::{Duration, Instant};
#[test]
fn atomic_wait_notify() {
let parking_spot = ParkingSpot::default();
let atomic = AtomicU64::new(0);
let wait_until_value = |val: u64, waiter: &mut Waiter| loop {
let cur = atomic.load(Ordering::SeqCst);
if cur == val {
break;
} else {
parking_spot.wait64(&atomic, cur, None, waiter);
}
};
thread::scope(|s| {
let thread1 = s.spawn(|| {
let mut waiter = Waiter::default();
atomic.store(1, Ordering::SeqCst);
parking_spot.notify(&atomic, u32::MAX);
parking_spot.wait64(&atomic, 1, None, &mut waiter);
});
let thread2 = s.spawn(|| {
let mut waiter = Waiter::default();
wait_until_value(1, &mut waiter);
atomic.store(2, Ordering::SeqCst);
parking_spot.notify(&atomic, u32::MAX);
parking_spot.wait64(&atomic, 2, None, &mut waiter);
});
let thread3 = s.spawn(|| {
let mut waiter = Waiter::default();
wait_until_value(2, &mut waiter);
atomic.store(3, Ordering::SeqCst);
parking_spot.notify(&atomic, u32::MAX);
parking_spot.wait64(&atomic, 3, None, &mut waiter);
});
let mut waiter = Waiter::default();
wait_until_value(3, &mut waiter);
atomic.store(4, Ordering::SeqCst);
parking_spot.notify(&atomic, u32::MAX);
thread1.join().unwrap();
thread2.join().unwrap();
thread3.join().unwrap();
});
}
mod parking_lot {
// This is a modified version of the parking_lot_core tests,
// which are licensed under the MIT and Apache 2.0 licenses.
use super::*;
use std::sync::atomic::AtomicU32;
use std::sync::Arc;
macro_rules! test {
( $( $name:ident(
repeats: $repeats:expr,
latches: $latches:expr,
delay: $delay:expr,
threads: $threads:expr,
single_unparks: $single_unparks:expr);
)* ) => {
$(
#[test]
#[cfg_attr(miri, ignore)]
fn $name() {
if std::env::var("WASMTIME_TEST_NO_HOG_MEMORY").is_ok() {
return;
}
let delay = Duration::from_micros($delay);
for _ in 0..$repeats {
run_parking_test($latches, delay, $threads, $single_unparks);
}
})*
};
}
test! {
unpark_all_one_fast(
repeats: 10000, latches: 1, delay: 0, threads: 1, single_unparks: 0
);
unpark_all_hundred_fast(
repeats: 100, latches: 1, delay: 0, threads: 100, single_unparks: 0
);
unpark_one_one_fast(
repeats: 1000, latches: 1, delay: 0, threads: 1, single_unparks: 1
);
unpark_one_hundred_fast(
repeats: 20, latches: 1, delay: 0, threads: 100, single_unparks: 100
);
unpark_one_fifty_then_fifty_all_fast(
repeats: 50, latches: 1, delay: 0, threads: 100, single_unparks: 50
);
unpark_all_one(
repeats: 100, latches: 1, delay: 10000, threads: 1, single_unparks: 0
);
unpark_all_hundred(
repeats: 100, latches: 1, delay: 10000, threads: 100, single_unparks: 0
);
unpark_one_one(
repeats: 10, latches: 1, delay: 10000, threads: 1, single_unparks: 1
);
unpark_one_fifty(
repeats: 1, latches: 1, delay: 10000, threads: 50, single_unparks: 50
);
unpark_one_fifty_then_fifty_all(
repeats: 2, latches: 1, delay: 10000, threads: 100, single_unparks: 50
);
hundred_unpark_all_one_fast(
repeats: 100, latches: 100, delay: 0, threads: 1, single_unparks: 0
);
hundred_unpark_all_one(
repeats: 1, latches: 100, delay: 10000, threads: 1, single_unparks: 0
);
}
fn run_parking_test(
num_latches: usize,
delay: Duration,
num_threads: u32,
num_single_unparks: u32,
) {
let spot = ParkingSpot::default();
thread::scope(|s| {
let mut tests = Vec::with_capacity(num_latches);
for _ in 0..num_latches {
let test = Arc::new(SingleLatchTest::new(num_threads, &spot));
let mut threads = Vec::with_capacity(num_threads as _);
for _ in 0..num_threads {
let test = test.clone();
threads.push(s.spawn(move || test.run()));
}
tests.push((test, threads));
}
for unpark_index in 0..num_single_unparks {
thread::sleep(delay);
for (test, _) in &tests {
test.unpark_one(unpark_index);
}
}
for (test, threads) in tests {
test.finish(num_single_unparks);
for thread in threads {
thread.join().expect("Test thread panic");
}
}
});
}
struct SingleLatchTest<'a> {
semaphore: AtomicU32,
num_awake: AtomicU32,
/// Total number of threads participating in this test.
num_threads: u32,
spot: &'a ParkingSpot,
}
impl<'a> SingleLatchTest<'a> {
pub fn new(num_threads: u32, spot: &'a ParkingSpot) -> Self {
Self {
// This implements a fair (FIFO) semaphore, and it starts out unavailable.
semaphore: AtomicU32::new(0),
num_awake: AtomicU32::new(0),
num_threads,
spot,
}
}
pub fn run(&self) {
// Get one slot from the semaphore
self.down();
self.num_awake.fetch_add(1, Ordering::SeqCst);
}
pub fn unpark_one(&self, _single_unpark_index: u32) {
let num_awake_before_up = self.num_awake.load(Ordering::SeqCst);
self.up();
// Wait for a parked thread to wake up and update num_awake + last_awoken.
while self.num_awake.load(Ordering::SeqCst) != num_awake_before_up + 1 {
thread::yield_now();
}
}
pub fn finish(&self, num_single_unparks: u32) {
// The amount of threads not unparked via unpark_one
let mut num_threads_left =
self.num_threads.checked_sub(num_single_unparks).unwrap();
// Wake remaining threads up with unpark_all. Has to be in a loop, because there might
// still be threads that has not yet parked.
while num_threads_left > 0 {
let mut num_waiting_on_address = 0;
self.spot.with_lot(&self.semaphore, |thread_data| {
num_waiting_on_address = thread_data.num_parked();
});
assert!(num_waiting_on_address <= num_threads_left);
let num_awake_before_unpark = self.num_awake.load(Ordering::SeqCst);
let num_unparked = self.spot.notify(&self.semaphore, u32::MAX);
assert!(num_unparked >= num_waiting_on_address);
assert!(num_unparked <= num_threads_left);
// Wait for all unparked threads to wake up and update num_awake + last_awoken.
while self.num_awake.load(Ordering::SeqCst)
!= num_awake_before_unpark + num_unparked
{
thread::yield_now();
}
num_threads_left = num_threads_left.checked_sub(num_unparked).unwrap();
}
// By now, all threads should have been woken up
assert_eq!(self.num_awake.load(Ordering::SeqCst), self.num_threads);
// Make sure no thread is parked on our semaphore address
let mut num_waiting_on_address = 0;
self.spot.with_lot(&self.semaphore, |thread_data| {
num_waiting_on_address = thread_data.num_parked();
});
assert_eq!(num_waiting_on_address, 0);
}
pub fn down(&self) {
let mut old_semaphore_value = self.semaphore.fetch_sub(1, Ordering::SeqCst);
if (old_semaphore_value as i32) > 0 {
// We acquired the semaphore. Done.
return;
}
// Force this thread to go to sleep.
let mut waiter = Waiter::new();
loop {
match self
.spot
.wait32(&self.semaphore, old_semaphore_value, None, &mut waiter)
{
crate::runtime::vm::WaitResult::Mismatch => {}
_ => break,
}
old_semaphore_value = self.semaphore.load(Ordering::SeqCst);
}
}
pub fn up(&self) {
let old_semaphore_value = self.semaphore.fetch_add(1, Ordering::SeqCst) as i32;
// Check if anyone was waiting on the semaphore. If they were, then pass ownership to them.
if old_semaphore_value < 0 {
// We need to continue until we have actually unparked someone. It might be that
// the thread we want to pass ownership to has decremented the semaphore counter,
// but not yet parked.
loop {
match self.spot.notify(&self.semaphore, 1) {
1 => break,
0 => (),
i => panic!("Should not wake up {i} threads"),
}
}
}
}
}
}
#[test]
fn wait_with_timeout() {
let parking_spot = ParkingSpot::default();
let atomic = AtomicU64::new(0);
thread::scope(|s| {
const N: u64 = 5;
const M: u64 = if cfg!(miri) { 10 } else { 1000 };
let thread = s.spawn(|| {
let mut waiter = Waiter::new();
loop {
let cur = atomic.load(Ordering::SeqCst);
if cur == N * M {
break;
}
let timeout = Instant::now() + Duration::from_millis(1);
parking_spot.wait64(&atomic, cur, Some(timeout), &mut waiter);
}
});
let mut threads = vec![thread];
for _ in 0..N {
threads.push(s.spawn(|| {
for _ in 0..M {
atomic.fetch_add(1, Ordering::SeqCst);
parking_spot.notify(&atomic, 1);
}
}));
}
for thread in threads {
thread.join().unwrap();
}
});
}
}