geo_types/geometry/
triangle.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
use crate::{polygon, Coord, CoordNum, Line, Point, Polygon};
use core::cmp::Ordering;

/// A bounded 2D area whose three vertices are defined by
/// `Coord`s. The semantics and validity are that of
/// the equivalent [`Polygon`]; in addition, the three
/// vertices **must not** be collinear and they *must* be distinct.
///
/// # Notes
/// Irrespective of input order the resulting geometry has ccw order and its vertices are yielded in ccw order by iterators
#[derive(Copy, Clone, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Triangle<T: CoordNum = f64>(pub Coord<T>, pub Coord<T>, pub Coord<T>);

impl<T: CoordNum> Triangle<T> {
    /// Instantiate Self from the raw content value
    pub fn new(v1: Coord<T>, v2: Coord<T>, v3: Coord<T>) -> Self {
        // determine cross product of input points. NB: non-robust
        let orientation = Point::from(v1).cross_prod(v2.into(), v3.into());
        match orientation.partial_cmp(&T::zero()) {
            Some(Ordering::Greater) => Self(v1, v2, v3),
            Some(Ordering::Less) => Self(v3, v2, v1),
            // we told you not to do this!
            _ => Self(v1, v2, v3),
        }
    }

    pub fn to_array(&self) -> [Coord<T>; 3] {
        [self.0, self.1, self.2]
    }

    pub fn to_lines(&self) -> [Line<T>; 3] {
        [
            Line::new(self.0, self.1),
            Line::new(self.1, self.2),
            Line::new(self.2, self.0),
        ]
    }

    /// Create a `Polygon` from the `Triangle`.
    ///
    /// # Examples
    ///
    /// ```rust
    /// use geo_types::{coord, Triangle, polygon};
    ///
    /// // Input is CW
    /// let triangle = Triangle::new(
    ///     coord! { x: 0., y: 0. },
    ///     coord! { x: 10., y: 20. },
    ///     coord! { x: 20., y: -10. },
    /// );
    ///
    /// // Output is CCW
    /// assert_eq!(
    ///     triangle.to_polygon(),
    ///     polygon![
    ///         (x: 20., y: -10.),
    ///         (x: 10., y: 20.),
    ///         (x: 0., y: 0.),
    ///         (x: 20., y: -10.),
    ///     ],
    /// );
    /// ```
    pub fn to_polygon(self) -> Polygon<T> {
        polygon![self.0, self.1, self.2, self.0]
    }
}

impl<IC: Into<Coord<T>> + Copy, T: CoordNum> From<[IC; 3]> for Triangle<T> {
    fn from(array: [IC; 3]) -> Self {
        Self(array[0].into(), array[1].into(), array[2].into())
    }
}

#[cfg(any(feature = "approx", test))]
mod approx_integration {
    use super::*;
    use approx::{AbsDiffEq, RelativeEq, UlpsEq};

    impl<T> RelativeEq for Triangle<T>
    where
        T: CoordNum + RelativeEq<Epsilon = T>,
    {
        #[inline]
        fn default_max_relative() -> Self::Epsilon {
            T::default_max_relative()
        }

        /// Equality assertion within a relative limit.
        ///
        /// # Examples
        ///
        /// ```
        /// use geo_types::{point, Triangle};
        ///
        /// let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
        /// let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());
        ///
        /// approx::assert_relative_eq!(a, b, max_relative=0.1);
        /// approx::assert_relative_ne!(a, b, max_relative=0.0001);
        /// ```
        #[inline]
        fn relative_eq(
            &self,
            other: &Self,
            epsilon: Self::Epsilon,
            max_relative: Self::Epsilon,
        ) -> bool {
            if !self.0.relative_eq(&other.0, epsilon, max_relative) {
                return false;
            }
            if !self.1.relative_eq(&other.1, epsilon, max_relative) {
                return false;
            }
            if !self.2.relative_eq(&other.2, epsilon, max_relative) {
                return false;
            }

            true
        }
    }

    impl<T> AbsDiffEq for Triangle<T>
    where
        T: CoordNum + AbsDiffEq<Epsilon = T>,
    {
        type Epsilon = T;

        #[inline]
        fn default_epsilon() -> Self::Epsilon {
            T::default_epsilon()
        }

        /// Equality assertion with an absolute limit.
        ///
        /// # Examples
        ///
        /// ```
        /// use geo_types::{point, Triangle};
        ///
        /// let a = Triangle::new((0.0, 0.0).into(), (10.0, 10.0).into(), (0.0, 5.0).into());
        /// let b = Triangle::new((0.0, 0.0).into(), (10.01, 10.0).into(), (0.0, 5.0).into());
        ///
        /// approx::abs_diff_eq!(a, b, epsilon=0.1);
        /// approx::abs_diff_ne!(a, b, epsilon=0.001);
        /// ```
        #[inline]
        fn abs_diff_eq(&self, other: &Self, epsilon: Self::Epsilon) -> bool {
            if !self.0.abs_diff_eq(&other.0, epsilon) {
                return false;
            }
            if !self.1.abs_diff_eq(&other.1, epsilon) {
                return false;
            }
            if !self.2.abs_diff_eq(&other.2, epsilon) {
                return false;
            }

            true
        }
    }

    impl<T> UlpsEq for Triangle<T>
    where
        T: CoordNum + UlpsEq<Epsilon = T>,
    {
        fn default_max_ulps() -> u32 {
            T::default_max_ulps()
        }

        fn ulps_eq(&self, other: &Self, epsilon: Self::Epsilon, max_ulps: u32) -> bool {
            if !self.0.ulps_eq(&other.0, epsilon, max_ulps) {
                return false;
            }
            if !self.1.ulps_eq(&other.1, epsilon, max_ulps) {
                return false;
            }
            if !self.2.ulps_eq(&other.2, epsilon, max_ulps) {
                return false;
            }
            true
        }
    }
}

#[cfg(any(
    feature = "rstar_0_8",
    feature = "rstar_0_9",
    feature = "rstar_0_10",
    feature = "rstar_0_11",
    feature = "rstar_0_12"
))]
macro_rules! impl_rstar_triangle {
    ($rstar:ident) => {
        impl<T> ::$rstar::RTreeObject for Triangle<T>
        where
            T: ::num_traits::Float + ::$rstar::RTreeNum,
        {
            type Envelope = ::$rstar::AABB<Point<T>>;

            fn envelope(&self) -> Self::Envelope {
                let bounding_rect =
                    crate::private_utils::get_bounding_rect(self.to_array()).unwrap();
                ::$rstar::AABB::from_corners(bounding_rect.min().into(), bounding_rect.max().into())
            }
        }
    };
}

#[cfg(feature = "rstar_0_8")]
impl_rstar_triangle!(rstar_0_8);

#[cfg(feature = "rstar_0_9")]
impl_rstar_triangle!(rstar_0_9);

#[cfg(feature = "rstar_0_10")]
impl_rstar_triangle!(rstar_0_10);

#[cfg(feature = "rstar_0_11")]
impl_rstar_triangle!(rstar_0_11);

#[cfg(feature = "rstar_0_12")]
impl_rstar_triangle!(rstar_0_12);