rustc_hash/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
//! A speedy, non-cryptographic hashing algorithm used by `rustc`.
//!
//! # Example
//!
//! ```rust
//! # #[cfg(feature = "std")]
//! # fn main() {
//! use rustc_hash::FxHashMap;
//!
//! let mut map: FxHashMap<u32, u32> = FxHashMap::default();
//! map.insert(22, 44);
//! # }
//! # #[cfg(not(feature = "std"))]
//! # fn main() { }
//! ```
#![no_std]
#![cfg_attr(feature = "nightly", feature(hasher_prefixfree_extras))]
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "rand")]
extern crate rand;
#[cfg(feature = "rand")]
mod random_state;
mod seeded_state;
use core::default::Default;
use core::hash::{BuildHasher, Hasher};
#[cfg(feature = "std")]
use std::collections::{HashMap, HashSet};
/// Type alias for a hash map that uses the Fx hashing algorithm.
#[cfg(feature = "std")]
pub type FxHashMap<K, V> = HashMap<K, V, FxBuildHasher>;
/// Type alias for a hash set that uses the Fx hashing algorithm.
#[cfg(feature = "std")]
pub type FxHashSet<V> = HashSet<V, FxBuildHasher>;
#[cfg(feature = "rand")]
pub use random_state::{FxHashMapRand, FxHashSetRand, FxRandomState};
pub use seeded_state::FxSeededState;
#[cfg(feature = "std")]
pub use seeded_state::{FxHashMapSeed, FxHashSetSeed};
/// A speedy hash algorithm for use within rustc. The hashmap in liballoc
/// by default uses SipHash which isn't quite as speedy as we want. In the
/// compiler we're not really worried about DOS attempts, so we use a fast
/// non-cryptographic hash.
///
/// The current implementation is a fast polynomial hash with a single
/// bit rotation as a finishing step designed by Orson Peters.
#[derive(Clone)]
pub struct FxHasher {
hash: usize,
}
// One might view a polynomial hash
// m[0] * k + m[1] * k^2 + m[2] * k^3 + ...
// as a multilinear hash with keystream k[..]
// m[0] * k[0] + m[1] * k[1] + m[2] * k[2] + ...
// where keystream k just happens to be generated using a multiplicative
// congrential pseudorandom number generator (MCG). For that reason we chose a
// constant that was found to be good for a MCG in:
// "Computationally Easy, Spectrally Good Multipliers for Congruential
// Pseudorandom Number Generators" by Guy Steele and Sebastiano Vigna.
#[cfg(target_pointer_width = "64")]
const K: usize = 0xf1357aea2e62a9c5;
#[cfg(target_pointer_width = "32")]
const K: usize = 0x93d765dd;
impl FxHasher {
/// Creates a `fx` hasher with a given seed.
pub const fn with_seed(seed: usize) -> FxHasher {
FxHasher { hash: seed }
}
/// Creates a default `fx` hasher.
pub const fn default() -> FxHasher {
FxHasher { hash: 0 }
}
}
impl Default for FxHasher {
#[inline]
fn default() -> FxHasher {
Self::default()
}
}
impl FxHasher {
#[inline]
fn add_to_hash(&mut self, i: usize) {
self.hash = self.hash.wrapping_add(i).wrapping_mul(K);
}
}
impl Hasher for FxHasher {
#[inline]
fn write(&mut self, bytes: &[u8]) {
// Compress the byte string to a single u64 and add to our hash.
self.write_u64(hash_bytes(bytes));
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.add_to_hash(i as usize);
#[cfg(target_pointer_width = "32")]
self.add_to_hash((i >> 32) as usize);
}
#[inline]
fn write_u128(&mut self, i: u128) {
self.add_to_hash(i as usize);
#[cfg(target_pointer_width = "32")]
self.add_to_hash((i >> 32) as usize);
self.add_to_hash((i >> 64) as usize);
#[cfg(target_pointer_width = "32")]
self.add_to_hash((i >> 96) as usize);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.add_to_hash(i);
}
#[cfg(feature = "nightly")]
#[inline]
fn write_length_prefix(&mut self, _len: usize) {
// Most cases will specialize hash_slice to call write(), which encodes
// the length already in a more efficient manner than we could here. For
// HashDoS-resistance you would still need to include this for the
// non-slice collection hashes, but for the purposes of rustc we do not
// care and do not wish to pay the performance penalty of mixing in len
// for those collections.
}
#[cfg(feature = "nightly")]
#[inline]
fn write_str(&mut self, s: &str) {
// Similarly here, write already encodes the length, so nothing special
// is needed.
self.write(s.as_bytes())
}
#[inline]
fn finish(&self) -> u64 {
// Since we used a multiplicative hash our top bits have the most
// entropy (with the top bit having the most, decreasing as you go).
// As most hash table implementations (including hashbrown) compute
// the bucket index from the bottom bits we want to move bits from the
// top to the bottom. Ideally we'd rotate left by exactly the hash table
// size, but as we don't know this we'll choose 20 bits, giving decent
// entropy up until 2^20 table sizes. On 32-bit hosts we'll dial it
// back down a bit to 15 bits.
#[cfg(target_pointer_width = "64")]
const ROTATE: u32 = 20;
#[cfg(target_pointer_width = "32")]
const ROTATE: u32 = 15;
self.hash.rotate_left(ROTATE) as u64
// A bit reversal would be even better, except hashbrown also expects
// good entropy in the top 7 bits and a bit reverse would fill those
// bits with low entropy. More importantly, bit reversals are very slow
// on x86-64. A byte reversal is relatively fast, but still has a 2
// cycle latency on x86-64 compared to the 1 cycle latency of a rotate.
// It also suffers from the hashbrown-top-7-bit-issue.
}
}
// Nothing special, digits of pi.
const SEED1: u64 = 0x243f6a8885a308d3;
const SEED2: u64 = 0x13198a2e03707344;
const PREVENT_TRIVIAL_ZERO_COLLAPSE: u64 = 0xa4093822299f31d0;
#[inline]
fn multiply_mix(x: u64, y: u64) -> u64 {
#[cfg(target_pointer_width = "64")]
{
// We compute the full u64 x u64 -> u128 product, this is a single mul
// instruction on x86-64, one mul plus one mulhi on ARM64.
let full = (x as u128) * (y as u128);
let lo = full as u64;
let hi = (full >> 64) as u64;
// The middle bits of the full product fluctuate the most with small
// changes in the input. This is the top bits of lo and the bottom bits
// of hi. We can thus make the entire output fluctuate with small
// changes to the input by XOR'ing these two halves.
lo ^ hi
// Unfortunately both 2^64 + 1 and 2^64 - 1 have small prime factors,
// otherwise combining with + or - could result in a really strong hash, as:
// x * y = 2^64 * hi + lo = (-1) * hi + lo = lo - hi, (mod 2^64 + 1)
// x * y = 2^64 * hi + lo = 1 * hi + lo = lo + hi, (mod 2^64 - 1)
// Multiplicative hashing is universal in a field (like mod p).
}
#[cfg(target_pointer_width = "32")]
{
// u64 x u64 -> u128 product is prohibitively expensive on 32-bit.
// Decompose into 32-bit parts.
let lx = x as u32;
let ly = y as u32;
let hx = (x >> 32) as u32;
let hy = (y >> 32) as u32;
// u32 x u32 -> u64 the low bits of one with the high bits of the other.
let afull = (lx as u64) * (hy as u64);
let bfull = (hx as u64) * (ly as u64);
// Combine, swapping low/high of one of them so the upper bits of the
// product of one combine with the lower bits of the other.
afull ^ bfull.rotate_right(32)
}
}
/// A wyhash-inspired non-collision-resistant hash for strings/slices designed
/// by Orson Peters, with a focus on small strings and small codesize.
///
/// The 64-bit version of this hash passes the SMHasher3 test suite on the full
/// 64-bit output, that is, f(hash_bytes(b) ^ f(seed)) for some good avalanching
/// permutation f() passed all tests with zero failures. When using the 32-bit
/// version of multiply_mix this hash has a few non-catastrophic failures where
/// there are a handful more collisions than an optimal hash would give.
///
/// We don't bother avalanching here as we'll feed this hash into a
/// multiplication after which we take the high bits, which avalanches for us.
#[inline]
fn hash_bytes(bytes: &[u8]) -> u64 {
let len = bytes.len();
let mut s0 = SEED1;
let mut s1 = SEED2;
if len <= 16 {
// XOR the input into s0, s1.
if len >= 8 {
s0 ^= u64::from_le_bytes(bytes[0..8].try_into().unwrap());
s1 ^= u64::from_le_bytes(bytes[len - 8..].try_into().unwrap());
} else if len >= 4 {
s0 ^= u32::from_le_bytes(bytes[0..4].try_into().unwrap()) as u64;
s1 ^= u32::from_le_bytes(bytes[len - 4..].try_into().unwrap()) as u64;
} else if len > 0 {
let lo = bytes[0];
let mid = bytes[len / 2];
let hi = bytes[len - 1];
s0 ^= lo as u64;
s1 ^= ((hi as u64) << 8) | mid as u64;
}
} else {
// Handle bulk (can partially overlap with suffix).
let mut off = 0;
while off < len - 16 {
let x = u64::from_le_bytes(bytes[off..off + 8].try_into().unwrap());
let y = u64::from_le_bytes(bytes[off + 8..off + 16].try_into().unwrap());
// Replace s1 with a mix of s0, x, and y, and s0 with s1.
// This ensures the compiler can unroll this loop into two
// independent streams, one operating on s0, the other on s1.
//
// Since zeroes are a common input we prevent an immediate trivial
// collapse of the hash function by XOR'ing a constant with y.
let t = multiply_mix(s0 ^ x, PREVENT_TRIVIAL_ZERO_COLLAPSE ^ y);
s0 = s1;
s1 = t;
off += 16;
}
let suffix = &bytes[len - 16..];
s0 ^= u64::from_le_bytes(suffix[0..8].try_into().unwrap());
s1 ^= u64::from_le_bytes(suffix[8..16].try_into().unwrap());
}
multiply_mix(s0, s1) ^ (len as u64)
}
/// An implementation of [`BuildHasher`] that produces [`FxHasher`]s.
///
/// ```
/// use std::hash::BuildHasher;
/// use rustc_hash::FxBuildHasher;
/// assert_ne!(FxBuildHasher.hash_one(1), FxBuildHasher.hash_one(2));
/// ```
#[derive(Copy, Clone, Default)]
pub struct FxBuildHasher;
impl BuildHasher for FxBuildHasher {
type Hasher = FxHasher;
fn build_hasher(&self) -> FxHasher {
FxHasher::default()
}
}
#[cfg(test)]
mod tests {
#[cfg(not(any(target_pointer_width = "64", target_pointer_width = "32")))]
compile_error!("The test suite only supports 64 bit and 32 bit usize");
use crate::{FxBuildHasher, FxHasher};
use core::hash::{BuildHasher, Hash, Hasher};
macro_rules! test_hash {
(
$(
hash($value:expr) == $result:expr,
)*
) => {
$(
assert_eq!(FxBuildHasher.hash_one($value), $result);
)*
};
}
const B32: bool = cfg!(target_pointer_width = "32");
#[test]
fn unsigned() {
test_hash! {
hash(0_u8) == 0,
hash(1_u8) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_u8) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(u8::MAX) == if B32 { 999399879 } else { 17600987023830959190 },
hash(0_u16) == 0,
hash(1_u16) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_u16) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(u16::MAX) == if B32 { 3440503042 } else { 4001367065645062987 },
hash(0_u32) == 0,
hash(1_u32) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_u32) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(u32::MAX) == if B32 { 1293006356 } else { 17126373362251322066 },
hash(0_u64) == 0,
hash(1_u64) == if B32 { 275023839 } else { 12583873379513078615 },
hash(100_u64) == if B32 { 1732383522 } else { 4008740938959785536 },
hash(u64::MAX) == if B32 { 1017982517 } else { 5862870694197521576 },
hash(0_u128) == 0,
hash(1_u128) == if B32 { 1860738631 } else { 12885773367358079611 },
hash(100_u128) == if B32 { 1389515751 } else { 15751995649841559633 },
hash(u128::MAX) == if B32 { 2156022013 } else { 11423841400550042156 },
hash(0_usize) == 0,
hash(1_usize) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_usize) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(usize::MAX) == if B32 { 1293006356 } else { 5862870694197521576 },
}
}
#[test]
fn signed() {
test_hash! {
hash(i8::MIN) == if B32 { 2000713177 } else { 5869058164817243095 },
hash(0_i8) == 0,
hash(1_i8) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_i8) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(i8::MAX) == if B32 { 3293686765 } else { 11731928859014764671 },
hash(i16::MIN) == if B32 { 1073764727 } else { 8292620222579070801 },
hash(0_i16) == 0,
hash(1_i16) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_i16) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(i16::MAX) == if B32 { 2366738315 } else { 14155490916776592377 },
hash(i32::MIN) == if B32 { 16384 } else { 5631751334026900245 },
hash(0_i32) == 0,
hash(1_i32) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_i32) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(i32::MAX) == if B32 { 1293022740 } else { 11494622028224421821 },
hash(i64::MIN) == if B32 { 16384 } else { 524288 },
hash(0_i64) == 0,
hash(1_i64) == if B32 { 275023839 } else { 12583873379513078615 },
hash(100_i64) == if B32 { 1732383522 } else { 4008740938959785536 },
hash(i64::MAX) == if B32 { 1017998901 } else { 5862870694198045864 },
hash(i128::MIN) == if B32 { 16384 } else { 524288 },
hash(0_i128) == 0,
hash(1_i128) == if B32 { 1860738631 } else { 12885773367358079611 },
hash(100_i128) == if B32 { 1389515751 } else { 15751995649841559633 },
hash(i128::MAX) == if B32 { 2156005629 } else { 11423841400549517868 },
hash(isize::MIN) == if B32 { 16384 } else { 524288 },
hash(0_isize) == 0,
hash(1_isize) == if B32 { 3001993707 } else { 12583873379513078615 },
hash(100_isize) == if B32 { 3844759569 } else { 4008740938959785536 },
hash(isize::MAX) == if B32 { 1293022740 } else { 5862870694198045864 },
}
}
// Avoid relying on any `Hash` implementations in the standard library.
struct HashBytes(&'static [u8]);
impl Hash for HashBytes {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
state.write(self.0);
}
}
#[test]
fn bytes() {
test_hash! {
hash(HashBytes(&[])) == if B32 { 2673204745 } else { 5175017818631658678 },
hash(HashBytes(&[0])) == if B32 { 2948228584 } else { 11037888512829180254 },
hash(HashBytes(&[0, 0, 0, 0, 0, 0])) == if B32 { 3223252423 } else { 6891281800865632452 },
hash(HashBytes(&[1])) == if B32 { 2943445104 } else { 4127763515449136980 },
hash(HashBytes(&[2])) == if B32 { 1055423297 } else { 11322700005987241762 },
hash(HashBytes(b"uwu")) == if B32 { 2699662140 } else { 2129615206728903013 },
hash(HashBytes(b"These are some bytes for testing rustc_hash.")) == if B32 { 2303640537 } else { 5513083560975408889 },
}
}
#[test]
fn with_seed_actually_different() {
let seeds = [
[1, 2],
[42, 17],
[124436707, 99237],
[usize::MIN, usize::MAX],
];
for [a_seed, b_seed] in seeds {
let a = || FxHasher::with_seed(a_seed);
let b = || FxHasher::with_seed(b_seed);
for x in u8::MIN..=u8::MAX {
let mut a = a();
let mut b = b();
x.hash(&mut a);
x.hash(&mut b);
assert_ne!(a.finish(), b.finish())
}
}
}
}