redis/aio/
connection_manager.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
use super::RedisFuture;
use crate::cmd::Cmd;
use crate::types::{RedisError, RedisResult, Value};
use crate::{
    aio::{ConnectionLike, MultiplexedConnection, Runtime},
    Client,
};
#[cfg(all(not(feature = "tokio-comp"), feature = "async-std-comp"))]
use ::async_std::net::ToSocketAddrs;
use arc_swap::ArcSwap;
use futures::{
    future::{self, Shared},
    FutureExt,
};
use futures_util::future::BoxFuture;
use std::sync::Arc;
use tokio_retry::strategy::{jitter, ExponentialBackoff};
use tokio_retry::Retry;

/// A `ConnectionManager` is a proxy that wraps a [multiplexed
/// connection][multiplexed-connection] and automatically reconnects to the
/// server when necessary.
///
/// Like the [`MultiplexedConnection`][multiplexed-connection], this
/// manager can be cloned, allowing requests to be be sent concurrently on
/// the same underlying connection (tcp/unix socket).
///
/// ## Behavior
///
/// - When creating an instance of the `ConnectionManager`, an initial
///   connection will be established and awaited. Connection errors will be
///   returned directly.
/// - When a command sent to the server fails with an error that represents
///   a "connection dropped" condition, that error will be passed on to the
///   user, but it will trigger a reconnection in the background.
/// - The reconnect code will atomically swap the current (dead) connection
///   with a future that will eventually resolve to a `MultiplexedConnection`
///   or to a `RedisError`
/// - All commands that are issued after the reconnect process has been
///   initiated, will have to await the connection future.
/// - If reconnecting fails, all pending commands will be failed as well. A
///   new reconnection attempt will be triggered if the error is an I/O error.
///
/// [multiplexed-connection]: struct.MultiplexedConnection.html
#[derive(Clone)]
pub struct ConnectionManager {
    /// Information used for the connection. This is needed to be able to reconnect.
    client: Client,
    /// The connection future.
    ///
    /// The `ArcSwap` is required to be able to replace the connection
    /// without making the `ConnectionManager` mutable.
    connection: Arc<ArcSwap<SharedRedisFuture<MultiplexedConnection>>>,

    runtime: Runtime,
    retry_strategy: ExponentialBackoff,
    number_of_retries: usize,
    response_timeout: std::time::Duration,
    connection_timeout: std::time::Duration,
}

/// A `RedisResult` that can be cloned because `RedisError` is behind an `Arc`.
type CloneableRedisResult<T> = Result<T, Arc<RedisError>>;

/// Type alias for a shared boxed future that will resolve to a `CloneableRedisResult`.
type SharedRedisFuture<T> = Shared<BoxFuture<'static, CloneableRedisResult<T>>>;

/// Handle a command result. If the connection was dropped, reconnect.
macro_rules! reconnect_if_dropped {
    ($self:expr, $result:expr, $current:expr) => {
        if let Err(ref e) = $result {
            if e.is_unrecoverable_error() {
                $self.reconnect($current);
            }
        }
    };
}

/// Handle a connection result. If there's an I/O error, reconnect.
/// Propagate any error.
macro_rules! reconnect_if_io_error {
    ($self:expr, $result:expr, $current:expr) => {
        if let Err(e) = $result {
            if e.is_io_error() {
                $self.reconnect($current);
            }
            return Err(e);
        }
    };
}

impl ConnectionManager {
    const DEFAULT_CONNECTION_RETRY_EXPONENT_BASE: u64 = 2;
    const DEFAULT_CONNECTION_RETRY_FACTOR: u64 = 100;
    const DEFAULT_NUMBER_OF_CONNECTION_RETRIESE: usize = 6;

    /// Connect to the server and store the connection inside the returned `ConnectionManager`.
    ///
    /// This requires the `connection-manager` feature, which will also pull in
    /// the Tokio executor.
    pub async fn new(client: Client) -> RedisResult<Self> {
        Self::new_with_backoff(
            client,
            Self::DEFAULT_CONNECTION_RETRY_EXPONENT_BASE,
            Self::DEFAULT_CONNECTION_RETRY_FACTOR,
            Self::DEFAULT_NUMBER_OF_CONNECTION_RETRIESE,
        )
        .await
    }

    /// Connect to the server and store the connection inside the returned `ConnectionManager`.
    ///
    /// This requires the `connection-manager` feature, which will also pull in
    /// the Tokio executor.
    ///
    /// In case of reconnection issues, the manager will retry reconnection
    /// number_of_retries times, with an exponentially increasing delay, calculated as
    /// rand(0 .. factor * (exponent_base ^ current-try)).
    pub async fn new_with_backoff(
        client: Client,
        exponent_base: u64,
        factor: u64,
        number_of_retries: usize,
    ) -> RedisResult<Self> {
        Self::new_with_backoff_and_timeouts(
            client,
            exponent_base,
            factor,
            number_of_retries,
            std::time::Duration::MAX,
            std::time::Duration::MAX,
        )
        .await
    }

    /// Connect to the server and store the connection inside the returned `ConnectionManager`.
    ///
    /// This requires the `connection-manager` feature, which will also pull in
    /// the Tokio executor.
    ///
    /// In case of reconnection issues, the manager will retry reconnection
    /// number_of_retries times, with an exponentially increasing delay, calculated as
    /// rand(0 .. factor * (exponent_base ^ current-try)).
    ///
    /// The new connection will timeout operations after `response_timeout` has passed.
    /// Each connection attempt to the server will timeout after `connection_timeout`.
    pub async fn new_with_backoff_and_timeouts(
        client: Client,
        exponent_base: u64,
        factor: u64,
        number_of_retries: usize,
        response_timeout: std::time::Duration,
        connection_timeout: std::time::Duration,
    ) -> RedisResult<Self> {
        // Create a MultiplexedConnection and wait for it to be established

        let runtime = Runtime::locate();
        let retry_strategy = ExponentialBackoff::from_millis(exponent_base).factor(factor);
        let connection = Self::new_connection(
            client.clone(),
            retry_strategy.clone(),
            number_of_retries,
            response_timeout,
            connection_timeout,
        )
        .await?;

        // Wrap the connection in an `ArcSwap` instance for fast atomic access
        Ok(Self {
            client,
            connection: Arc::new(ArcSwap::from_pointee(
                future::ok(connection).boxed().shared(),
            )),
            runtime,
            number_of_retries,
            retry_strategy,
            response_timeout,
            connection_timeout,
        })
    }

    async fn new_connection(
        client: Client,
        exponential_backoff: ExponentialBackoff,
        number_of_retries: usize,
        response_timeout: std::time::Duration,
        connection_timeout: std::time::Duration,
    ) -> RedisResult<MultiplexedConnection> {
        let retry_strategy = exponential_backoff.map(jitter).take(number_of_retries);
        Retry::spawn(retry_strategy, || {
            client.get_multiplexed_async_connection_with_timeouts(
                response_timeout,
                connection_timeout,
            )
        })
        .await
    }

    /// Reconnect and overwrite the old connection.
    ///
    /// The `current` guard points to the shared future that was active
    /// when the connection loss was detected.
    fn reconnect(&self, current: arc_swap::Guard<Arc<SharedRedisFuture<MultiplexedConnection>>>) {
        let client = self.client.clone();
        let retry_strategy = self.retry_strategy.clone();
        let number_of_retries = self.number_of_retries;
        let response_timeout = self.response_timeout;
        let connection_timeout = self.connection_timeout;
        let new_connection: SharedRedisFuture<MultiplexedConnection> = async move {
            Ok(Self::new_connection(
                client,
                retry_strategy,
                number_of_retries,
                response_timeout,
                connection_timeout,
            )
            .await?)
        }
        .boxed()
        .shared();

        // Update the connection in the connection manager
        let new_connection_arc = Arc::new(new_connection.clone());
        let prev = self
            .connection
            .compare_and_swap(&current, new_connection_arc);

        // If the swap happened...
        if Arc::ptr_eq(&prev, &current) {
            // ...start the connection attempt immediately but do not wait on it.
            self.runtime.spawn(new_connection.map(|_| ()));
        }
    }

    /// Sends an already encoded (packed) command into the TCP socket and
    /// reads the single response from it.
    pub async fn send_packed_command(&mut self, cmd: &Cmd) -> RedisResult<Value> {
        // Clone connection to avoid having to lock the ArcSwap in write mode
        let guard = self.connection.load();
        let connection_result = (**guard)
            .clone()
            .await
            .map_err(|e| e.clone_mostly("Reconnecting failed"));
        reconnect_if_io_error!(self, connection_result, guard);
        let result = connection_result?.send_packed_command(cmd).await;
        reconnect_if_dropped!(self, &result, guard);
        result
    }

    /// Sends multiple already encoded (packed) command into the TCP socket
    /// and reads `count` responses from it.  This is used to implement
    /// pipelining.
    pub async fn send_packed_commands(
        &mut self,
        cmd: &crate::Pipeline,
        offset: usize,
        count: usize,
    ) -> RedisResult<Vec<Value>> {
        // Clone shared connection future to avoid having to lock the ArcSwap in write mode
        let guard = self.connection.load();
        let connection_result = (**guard)
            .clone()
            .await
            .map_err(|e| e.clone_mostly("Reconnecting failed"));
        reconnect_if_io_error!(self, connection_result, guard);
        let result = connection_result?
            .send_packed_commands(cmd, offset, count)
            .await;
        reconnect_if_dropped!(self, &result, guard);
        result
    }
}

impl ConnectionLike for ConnectionManager {
    fn req_packed_command<'a>(&'a mut self, cmd: &'a Cmd) -> RedisFuture<'a, Value> {
        (async move { self.send_packed_command(cmd).await }).boxed()
    }

    fn req_packed_commands<'a>(
        &'a mut self,
        cmd: &'a crate::Pipeline,
        offset: usize,
        count: usize,
    ) -> RedisFuture<'a, Vec<Value>> {
        (async move { self.send_packed_commands(cmd, offset, count).await }).boxed()
    }

    fn get_db(&self) -> i64 {
        self.client.connection_info().redis.db
    }
}