redis/aio/connection_manager.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
use super::{AsyncPushSender, HandleContainer, RedisFuture};
use crate::{
aio::{check_resp3, ConnectionLike, MultiplexedConnection, Runtime},
cmd,
subscription_tracker::{SubscriptionAction, SubscriptionTracker},
types::{RedisError, RedisResult, Value},
AsyncConnectionConfig, Client, Cmd, Pipeline, PushInfo, PushKind, ToRedisArgs,
};
use arc_swap::ArcSwap;
use backon::{ExponentialBuilder, Retryable};
use futures_channel::oneshot;
use futures_util::future::{self, BoxFuture, FutureExt, Shared};
use std::sync::Arc;
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver};
use tokio::sync::Mutex;
/// The configuration for reconnect mechanism and request timing for the [ConnectionManager]
#[derive(Clone)]
pub struct ConnectionManagerConfig {
/// The resulting duration is calculated by taking the base to the `n`-th power,
/// where `n` denotes the number of past attempts.
exponent_base: u64,
/// A multiplicative factor that will be applied to the retry delay.
///
/// For example, using a factor of `1000` will make each delay in units of seconds.
factor: u64,
/// number_of_retries times, with an exponentially increasing delay
number_of_retries: usize,
/// Apply a maximum delay between connection attempts. The delay between attempts won't be longer than max_delay milliseconds.
max_delay: Option<u64>,
/// The new connection will time out operations after `response_timeout` has passed.
response_timeout: Option<std::time::Duration>,
/// Each connection attempt to the server will time out after `connection_timeout`.
connection_timeout: Option<std::time::Duration>,
/// sender channel for push values
push_sender: Option<Arc<dyn AsyncPushSender>>,
/// if true, the manager should resubscribe automatically to all pubsub channels after reconnect.
resubscribe_automatically: bool,
tcp_settings: crate::io::tcp::TcpSettings,
}
impl std::fmt::Debug for ConnectionManagerConfig {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> Result<(), std::fmt::Error> {
let &Self {
exponent_base,
factor,
number_of_retries,
max_delay,
response_timeout,
connection_timeout,
push_sender,
resubscribe_automatically,
tcp_settings,
} = &self;
f.debug_struct("ConnectionManagerConfig")
.field("exponent_base", &exponent_base)
.field("factor", &factor)
.field("number_of_retries", &number_of_retries)
.field("max_delay", &max_delay)
.field("response_timeout", &response_timeout)
.field("connection_timeout", &connection_timeout)
.field("resubscribe_automatically", &resubscribe_automatically)
.field(
"push_sender",
if push_sender.is_some() {
&"set"
} else {
&"not set"
},
)
.field("tcp_settings", &tcp_settings)
.finish()
}
}
impl ConnectionManagerConfig {
const DEFAULT_CONNECTION_RETRY_EXPONENT_BASE: u64 = 2;
const DEFAULT_CONNECTION_RETRY_FACTOR: u64 = 100;
const DEFAULT_NUMBER_OF_CONNECTION_RETRIES: usize = 6;
const DEFAULT_RESPONSE_TIMEOUT: Option<std::time::Duration> = None;
const DEFAULT_CONNECTION_TIMEOUT: Option<std::time::Duration> = None;
/// Creates a new instance of the options with nothing set
pub fn new() -> Self {
Self::default()
}
/// A multiplicative factor that will be applied to the retry delay.
///
/// For example, using a factor of `1000` will make each delay in units of seconds.
pub fn set_factor(mut self, factor: u64) -> ConnectionManagerConfig {
self.factor = factor;
self
}
/// Apply a maximum delay between connection attempts. The delay between attempts won't be longer than max_delay milliseconds.
pub fn set_max_delay(mut self, time: u64) -> ConnectionManagerConfig {
self.max_delay = Some(time);
self
}
/// The resulting duration is calculated by taking the base to the `n`-th power,
/// where `n` denotes the number of past attempts.
pub fn set_exponent_base(mut self, base: u64) -> ConnectionManagerConfig {
self.exponent_base = base;
self
}
/// number_of_retries times, with an exponentially increasing delay
pub fn set_number_of_retries(mut self, amount: usize) -> ConnectionManagerConfig {
self.number_of_retries = amount;
self
}
/// The new connection will time out operations after `response_timeout` has passed.
pub fn set_response_timeout(
mut self,
duration: std::time::Duration,
) -> ConnectionManagerConfig {
self.response_timeout = Some(duration);
self
}
/// Each connection attempt to the server will time out after `connection_timeout`.
pub fn set_connection_timeout(
mut self,
duration: std::time::Duration,
) -> ConnectionManagerConfig {
self.connection_timeout = Some(duration);
self
}
/// Sets sender sender for push values.
///
/// The sender can be a channel, or an arbitrary function that handles [crate::PushInfo] values.
/// This will fail client creation if the connection isn't configured for RESP3 communications via the [crate::RedisConnectionInfo::protocol] field.
/// Setting this will mean that the connection manager actively listens to updates from the
/// server, and so it will cause the manager to reconnect after a disconnection, even if the manager was unused at
/// the time of the disconnect.
///
/// # Examples
///
/// ```rust
/// # use redis::aio::ConnectionManagerConfig;
/// let (tx, mut rx) = tokio::sync::mpsc::unbounded_channel();
/// let config = ConnectionManagerConfig::new().set_push_sender(tx);
/// ```
///
/// ```rust
/// # use std::sync::{Mutex, Arc};
/// # use redis::aio::ConnectionManagerConfig;
/// let messages = Arc::new(Mutex::new(Vec::new()));
/// let config = ConnectionManagerConfig::new().set_push_sender(move |msg|{
/// let Ok(mut messages) = messages.lock() else {
/// return Err(redis::aio::SendError);
/// };
/// messages.push(msg);
/// Ok(())
/// });
/// ```
pub fn set_push_sender(mut self, sender: impl AsyncPushSender) -> Self {
self.push_sender = Some(Arc::new(sender));
self
}
/// Configures the connection manager to automatically resubscribe to all pubsub channels after reconnecting.
pub fn set_automatic_resubscription(mut self) -> Self {
self.resubscribe_automatically = true;
self
}
/// Set the behavior of the underlying TCP connection.
pub fn set_tcp_settings(self, tcp_settings: crate::io::tcp::TcpSettings) -> Self {
Self {
tcp_settings,
..self
}
}
}
impl Default for ConnectionManagerConfig {
fn default() -> Self {
Self {
exponent_base: Self::DEFAULT_CONNECTION_RETRY_EXPONENT_BASE,
factor: Self::DEFAULT_CONNECTION_RETRY_FACTOR,
number_of_retries: Self::DEFAULT_NUMBER_OF_CONNECTION_RETRIES,
response_timeout: Self::DEFAULT_RESPONSE_TIMEOUT,
connection_timeout: Self::DEFAULT_CONNECTION_TIMEOUT,
max_delay: None,
push_sender: None,
resubscribe_automatically: false,
tcp_settings: Default::default(),
}
}
}
struct Internals {
/// Information used for the connection. This is needed to be able to reconnect.
client: Client,
/// The connection future.
///
/// The `ArcSwap` is required to be able to replace the connection
/// without making the `ConnectionManager` mutable.
connection: ArcSwap<SharedRedisFuture<MultiplexedConnection>>,
runtime: Runtime,
retry_strategy: ExponentialBuilder,
connection_config: AsyncConnectionConfig,
subscription_tracker: Option<Mutex<SubscriptionTracker>>,
_task_handle: HandleContainer,
}
/// A `ConnectionManager` is a proxy that wraps a [multiplexed
/// connection][multiplexed-connection] and automatically reconnects to the
/// server when necessary.
///
/// Like the [`MultiplexedConnection`][multiplexed-connection], this
/// manager can be cloned, allowing requests to be sent concurrently on
/// the same underlying connection (tcp/unix socket).
///
/// ## Behavior
///
/// - When creating an instance of the `ConnectionManager`, an initial
/// connection will be established and awaited. Connection errors will be
/// returned directly.
/// - When a command sent to the server fails with an error that represents
/// a "connection dropped" condition, that error will be passed on to the
/// user, but it will trigger a reconnection in the background.
/// - The reconnect code will atomically swap the current (dead) connection
/// with a future that will eventually resolve to a `MultiplexedConnection`
/// or to a `RedisError`
/// - All commands that are issued after the reconnect process has been
/// initiated, will have to await the connection future.
/// - If reconnecting fails, all pending commands will be failed as well. A
/// new reconnection attempt will be triggered if the error is an I/O error.
///
/// [multiplexed-connection]: struct.MultiplexedConnection.html
#[derive(Clone)]
pub struct ConnectionManager(Arc<Internals>);
/// A `RedisResult` that can be cloned because `RedisError` is behind an `Arc`.
type CloneableRedisResult<T> = Result<T, Arc<RedisError>>;
/// Type alias for a shared boxed future that will resolve to a `CloneableRedisResult`.
type SharedRedisFuture<T> = Shared<BoxFuture<'static, CloneableRedisResult<T>>>;
/// Handle a command result. If the connection was dropped, reconnect.
macro_rules! reconnect_if_dropped {
($self:expr, $result:expr, $current:expr) => {
if let Err(ref e) = $result {
if e.is_unrecoverable_error() {
$self.reconnect($current);
}
}
};
}
/// Handle a connection result. If there's an I/O error, reconnect.
/// Propagate any error.
macro_rules! reconnect_if_io_error {
($self:expr, $result:expr, $current:expr) => {
if let Err(e) = $result {
if e.is_io_error() {
$self.reconnect($current);
}
return Err(e);
}
};
}
impl ConnectionManager {
/// Connect to the server and store the connection inside the returned `ConnectionManager`.
///
/// This requires the `connection-manager` feature, which will also pull in
/// the Tokio executor.
pub async fn new(client: Client) -> RedisResult<Self> {
let config = ConnectionManagerConfig::new();
Self::new_with_config(client, config).await
}
/// Connect to the server and store the connection inside the returned `ConnectionManager`.
///
/// This requires the `connection-manager` feature, which will also pull in
/// the Tokio executor.
///
/// In case of reconnection issues, the manager will retry reconnection
/// number_of_retries times, with an exponentially increasing delay, calculated as
/// rand(0 .. factor * (exponent_base ^ current-try)).
#[deprecated(note = "Use `new_with_config`")]
pub async fn new_with_backoff(
client: Client,
exponent_base: u64,
factor: u64,
number_of_retries: usize,
) -> RedisResult<Self> {
let config = ConnectionManagerConfig::new()
.set_exponent_base(exponent_base)
.set_factor(factor)
.set_number_of_retries(number_of_retries);
Self::new_with_config(client, config).await
}
/// Connect to the server and store the connection inside the returned `ConnectionManager`.
///
/// This requires the `connection-manager` feature, which will also pull in
/// the Tokio executor.
///
/// In case of reconnection issues, the manager will retry reconnection
/// number_of_retries times, with an exponentially increasing delay, calculated as
/// rand(0 .. factor * (exponent_base ^ current-try)).
///
/// The new connection will time out operations after `response_timeout` has passed.
/// Each connection attempt to the server will time out after `connection_timeout`.
#[deprecated(note = "Use `new_with_config`")]
pub async fn new_with_backoff_and_timeouts(
client: Client,
exponent_base: u64,
factor: u64,
number_of_retries: usize,
response_timeout: std::time::Duration,
connection_timeout: std::time::Duration,
) -> RedisResult<Self> {
let config = ConnectionManagerConfig::new()
.set_exponent_base(exponent_base)
.set_factor(factor)
.set_number_of_retries(number_of_retries)
.set_response_timeout(response_timeout)
.set_connection_timeout(connection_timeout);
Self::new_with_config(client, config).await
}
/// Connect to the server and store the connection inside the returned `ConnectionManager`.
///
/// This requires the `connection-manager` feature, which will also pull in
/// the Tokio executor.
///
/// In case of reconnection issues, the manager will retry reconnection
/// number_of_retries times, with an exponentially increasing delay, calculated as
/// rand(0 .. factor * (exponent_base ^ current-try)).
///
/// Apply a maximum delay. No retry delay will be longer than this ConnectionManagerConfig.max_delay` .
///
/// The new connection will time out operations after `response_timeout` has passed.
/// Each connection attempt to the server will time out after `connection_timeout`.
pub async fn new_with_config(
client: Client,
config: ConnectionManagerConfig,
) -> RedisResult<Self> {
// Create a MultiplexedConnection and wait for it to be established
let runtime = Runtime::locate();
if config.resubscribe_automatically && config.push_sender.is_none() {
return Err((crate::ErrorKind::ClientError, "Cannot set resubscribe_automatically without setting a push sender to receive messages.").into());
}
let mut retry_strategy = ExponentialBuilder::default()
.with_factor(config.factor as f32)
.with_max_times(config.number_of_retries)
.with_jitter();
if let Some(max_delay) = config.max_delay {
retry_strategy =
retry_strategy.with_max_delay(std::time::Duration::from_millis(max_delay));
}
let mut connection_config = AsyncConnectionConfig::new();
if let Some(connection_timeout) = config.connection_timeout {
connection_config = connection_config.set_connection_timeout(connection_timeout);
}
if let Some(response_timeout) = config.response_timeout {
connection_config = connection_config.set_response_timeout(response_timeout);
}
connection_config = connection_config.set_tcp_settings(config.tcp_settings);
let (oneshot_sender, oneshot_receiver) = oneshot::channel();
let _task_handle = HandleContainer::new(
runtime.spawn(Self::check_for_disconnect_pushes(oneshot_receiver)),
);
let mut components_for_reconnection_on_push = None;
if let Some(push_sender) = config.push_sender.clone() {
check_resp3!(
client.connection_info.redis.protocol,
"Can only pass push sender to a connection using RESP3"
);
let (internal_sender, internal_receiver) = unbounded_channel();
components_for_reconnection_on_push = Some((internal_receiver, push_sender));
connection_config =
connection_config.set_push_sender_internal(Arc::new(internal_sender));
}
let connection =
Self::new_connection(&client, retry_strategy, &connection_config, None).await?;
let subscription_tracker = if config.resubscribe_automatically {
Some(Mutex::new(SubscriptionTracker::default()))
} else {
None
};
let new_self = Self(Arc::new(Internals {
client,
connection: ArcSwap::from_pointee(future::ok(connection).boxed().shared()),
runtime,
retry_strategy,
connection_config,
subscription_tracker,
_task_handle,
}));
if let Some((internal_receiver, external_sender)) = components_for_reconnection_on_push {
oneshot_sender
.send((new_self.clone(), internal_receiver, external_sender))
.map_err(|_| {
crate::RedisError::from((
crate::ErrorKind::ClientError,
"Failed to set automatic resubscription",
))
})?;
}
Ok(new_self)
}
async fn new_connection(
client: &Client,
exponential_backoff: ExponentialBuilder,
connection_config: &AsyncConnectionConfig,
additional_commands: Option<Pipeline>,
) -> RedisResult<MultiplexedConnection> {
let connection_config = connection_config.clone();
let get_conn = || async {
client
.get_multiplexed_async_connection_with_config(&connection_config)
.await
};
let mut conn = get_conn
.retry(exponential_backoff)
.sleep(|duration| async move { Runtime::locate().sleep(duration).await })
.await?;
if let Some(pipeline) = additional_commands {
// TODO - should we ignore these failures?
let _ = pipeline.exec_async(&mut conn).await;
}
Ok(conn)
}
/// Reconnect and overwrite the old connection.
///
/// The `current` guard points to the shared future that was active
/// when the connection loss was detected.
fn reconnect(&self, current: arc_swap::Guard<Arc<SharedRedisFuture<MultiplexedConnection>>>) {
let self_clone = self.clone();
let new_connection: SharedRedisFuture<MultiplexedConnection> = async move {
let additional_commands = match &self_clone.0.subscription_tracker {
Some(subscription_tracker) => Some(
subscription_tracker
.lock()
.await
.get_subscription_pipeline(),
),
None => None,
};
let con = Self::new_connection(
&self_clone.0.client,
self_clone.0.retry_strategy,
&self_clone.0.connection_config,
additional_commands,
)
.await?;
Ok(con)
}
.boxed()
.shared();
// Update the connection in the connection manager
let new_connection_arc = Arc::new(new_connection.clone());
let prev = self
.0
.connection
.compare_and_swap(¤t, new_connection_arc);
// If the swap happened...
if Arc::ptr_eq(&prev, ¤t) {
// ...start the connection attempt immediately but do not wait on it.
self.0.runtime.spawn(new_connection.map(|_| ()));
}
}
async fn check_for_disconnect_pushes(
receiver: oneshot::Receiver<(
ConnectionManager,
UnboundedReceiver<PushInfo>,
Arc<dyn AsyncPushSender>,
)>,
) {
let Ok((this, mut internal_receiver, external_sender)) = receiver.await else {
return;
};
while let Some(push_info) = internal_receiver.recv().await {
if push_info.kind == PushKind::Disconnection {
this.reconnect(this.0.connection.load());
}
if external_sender.send(push_info).is_err() {
return;
}
}
}
/// Sends an already encoded (packed) command into the TCP socket and
/// reads the single response from it.
pub async fn send_packed_command(&mut self, cmd: &Cmd) -> RedisResult<Value> {
// Clone connection to avoid having to lock the ArcSwap in write mode
let guard = self.0.connection.load();
let connection_result = (**guard)
.clone()
.await
.map_err(|e| e.clone_mostly("Reconnecting failed"));
reconnect_if_io_error!(self, connection_result, guard);
let result = connection_result?.send_packed_command(cmd).await;
reconnect_if_dropped!(self, &result, guard);
result
}
/// Sends multiple already encoded (packed) command into the TCP socket
/// and reads `count` responses from it. This is used to implement
/// pipelining.
pub async fn send_packed_commands(
&mut self,
cmd: &crate::Pipeline,
offset: usize,
count: usize,
) -> RedisResult<Vec<Value>> {
// Clone shared connection future to avoid having to lock the ArcSwap in write mode
let guard = self.0.connection.load();
let connection_result = (**guard)
.clone()
.await
.map_err(|e| e.clone_mostly("Reconnecting failed"));
reconnect_if_io_error!(self, connection_result, guard);
let result = connection_result?
.send_packed_commands(cmd, offset, count)
.await;
reconnect_if_dropped!(self, &result, guard);
result
}
async fn update_subscription_tracker(
&self,
action: SubscriptionAction,
args: impl ToRedisArgs,
) {
let Some(subscription_tracker) = &self.0.subscription_tracker else {
return;
};
let mut guard = subscription_tracker.lock().await;
guard.update_with_request(action, args.to_redis_args().into_iter());
}
/// Subscribes to a new channel(s).
///
/// Updates from the sender will be sent on the push sender that was passed to the manager.
/// If the manager was configured without a push sender, the connection won't be able to pass messages back to the user.
///
/// This method is only available when the connection is using RESP3 protocol, and will return an error otherwise.
/// It should be noted that unless [ConnectionManagerConfig::set_automatic_resubscription] was called,
/// the subscription will be removed on a disconnect and must be re-subscribed.
pub async fn subscribe(&mut self, channel_name: impl ToRedisArgs) -> RedisResult<()> {
check_resp3!(self.0.client.connection_info.redis.protocol);
let mut cmd = cmd("SUBSCRIBE");
cmd.arg(&channel_name);
cmd.exec_async(self).await?;
self.update_subscription_tracker(SubscriptionAction::Subscribe, channel_name)
.await;
Ok(())
}
/// Unsubscribes from channel(s).
///
/// This method is only available when the connection is using RESP3 protocol, and will return an error otherwise.
pub async fn unsubscribe(&mut self, channel_name: impl ToRedisArgs) -> RedisResult<()> {
check_resp3!(self.0.client.connection_info.redis.protocol);
let mut cmd = cmd("UNSUBSCRIBE");
cmd.arg(&channel_name);
cmd.exec_async(self).await?;
self.update_subscription_tracker(SubscriptionAction::Unsubscribe, channel_name)
.await;
Ok(())
}
/// Subscribes to new channel(s) with pattern(s).
///
/// Updates from the sender will be sent on the push sender that was passed to the manager.
/// If the manager was configured without a push sender, the manager won't be able to pass messages back to the user.
///
/// This method is only available when the connection is using RESP3 protocol, and will return an error otherwise.
/// It should be noted that unless [ConnectionManagerConfig::set_automatic_resubscription] was called,
/// the subscription will be removed on a disconnect and must be re-subscribed.
pub async fn psubscribe(&mut self, channel_pattern: impl ToRedisArgs) -> RedisResult<()> {
check_resp3!(self.0.client.connection_info.redis.protocol);
let mut cmd = cmd("PSUBSCRIBE");
cmd.arg(&channel_pattern);
cmd.exec_async(self).await?;
self.update_subscription_tracker(SubscriptionAction::PSubscribe, channel_pattern)
.await;
Ok(())
}
/// Unsubscribes from channel pattern(s).
///
/// This method is only available when the connection is using RESP3 protocol, and will return an error otherwise.
pub async fn punsubscribe(&mut self, channel_pattern: impl ToRedisArgs) -> RedisResult<()> {
check_resp3!(self.0.client.connection_info.redis.protocol);
let mut cmd = cmd("PUNSUBSCRIBE");
cmd.arg(&channel_pattern);
cmd.exec_async(self).await?;
self.update_subscription_tracker(SubscriptionAction::PUnsubscribe, channel_pattern)
.await;
Ok(())
}
}
impl ConnectionLike for ConnectionManager {
fn req_packed_command<'a>(&'a mut self, cmd: &'a Cmd) -> RedisFuture<'a, Value> {
(async move { self.send_packed_command(cmd).await }).boxed()
}
fn req_packed_commands<'a>(
&'a mut self,
cmd: &'a crate::Pipeline,
offset: usize,
count: usize,
) -> RedisFuture<'a, Vec<Value>> {
(async move { self.send_packed_commands(cmd, offset, count).await }).boxed()
}
fn get_db(&self) -> i64 {
self.0.client.connection_info().redis.db
}
}