wasmtime_cranelift/
compiler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
use crate::debug::DwarfSectionRelocTarget;
use crate::func_environ::FuncEnvironment;
use crate::translate::FuncTranslator;
use crate::TRAP_INTERNAL_ASSERT;
use crate::{array_call_signature, CompiledFunction, ModuleTextBuilder};
use crate::{builder::LinkOptions, wasm_call_signature, BuiltinFunctionSignatures};
use anyhow::{Context as _, Result};
use cranelift_codegen::binemit::CodeOffset;
use cranelift_codegen::bitset::CompoundBitSet;
use cranelift_codegen::ir::condcodes::IntCC;
use cranelift_codegen::ir::{self, InstBuilder, MemFlags, UserExternalName, UserFuncName, Value};
use cranelift_codegen::isa::{
    unwind::{UnwindInfo, UnwindInfoKind},
    OwnedTargetIsa, TargetIsa,
};
use cranelift_codegen::print_errors::pretty_error;
use cranelift_codegen::{CompiledCode, Context};
use cranelift_entity::PrimaryMap;
use cranelift_frontend::FunctionBuilder;
use object::write::{Object, StandardSegment, SymbolId};
use object::{RelocationEncoding, RelocationFlags, RelocationKind, SectionKind};
use std::any::Any;
use std::cmp;
use std::collections::HashMap;
use std::mem;
use std::path;
use std::sync::{Arc, Mutex};
use wasmparser::{FuncValidatorAllocations, FunctionBody};
use wasmtime_environ::{
    AddressMapSection, BuiltinFunctionIndex, CacheStore, CompileError, DefinedFuncIndex, FlagValue,
    FunctionBodyData, FunctionLoc, HostCall, ModuleTranslation, ModuleTypesBuilder, PtrSize,
    RelocationTarget, StackMapInformation, StaticModuleIndex, TrapEncodingBuilder, TrapSentinel,
    TripleExt, Tunables, VMOffsets, WasmFuncType, WasmFunctionInfo, WasmValType,
};

#[cfg(feature = "component-model")]
mod component;

struct IncrementalCacheContext {
    #[cfg(feature = "incremental-cache")]
    cache_store: Arc<dyn CacheStore>,
    num_hits: usize,
    num_cached: usize,
}

struct CompilerContext {
    func_translator: FuncTranslator,
    codegen_context: Context,
    incremental_cache_ctx: Option<IncrementalCacheContext>,
    validator_allocations: FuncValidatorAllocations,
}

impl Default for CompilerContext {
    fn default() -> Self {
        Self {
            func_translator: FuncTranslator::new(),
            codegen_context: Context::new(),
            incremental_cache_ctx: None,
            validator_allocations: Default::default(),
        }
    }
}

/// A compiler that compiles a WebAssembly module with Compiler, translating
/// the Wasm to Compiler IR, optimizing it and then translating to assembly.
pub struct Compiler {
    tunables: Tunables,
    contexts: Mutex<Vec<CompilerContext>>,
    isa: OwnedTargetIsa,
    linkopts: LinkOptions,
    cache_store: Option<Arc<dyn CacheStore>>,
    clif_dir: Option<path::PathBuf>,
    #[cfg(feature = "wmemcheck")]
    pub(crate) wmemcheck: bool,
}

impl Drop for Compiler {
    fn drop(&mut self) {
        if self.cache_store.is_none() {
            return;
        }

        let mut num_hits = 0;
        let mut num_cached = 0;
        for ctx in self.contexts.lock().unwrap().iter() {
            if let Some(ref cache_ctx) = ctx.incremental_cache_ctx {
                num_hits += cache_ctx.num_hits;
                num_cached += cache_ctx.num_cached;
            }
        }

        let total = num_hits + num_cached;
        if num_hits + num_cached > 0 {
            log::trace!(
                "Incremental compilation cache stats: {}/{} = {}% (hits/lookup)\ncached: {}",
                num_hits,
                total,
                (num_hits as f32) / (total as f32) * 100.0,
                num_cached
            );
        }
    }
}

impl Compiler {
    pub fn new(
        tunables: Tunables,
        isa: OwnedTargetIsa,
        cache_store: Option<Arc<dyn CacheStore>>,
        linkopts: LinkOptions,
        clif_dir: Option<path::PathBuf>,
        wmemcheck: bool,
    ) -> Compiler {
        let _ = wmemcheck;
        Compiler {
            contexts: Default::default(),
            tunables,
            isa,
            linkopts,
            cache_store,
            clif_dir,
            #[cfg(feature = "wmemcheck")]
            wmemcheck,
        }
    }

    /// Perform an indirect call from Cranelift-generated code to native code in
    /// Wasmtime itself.
    ///
    /// For native platforms this is a simple `call_indirect` instruction but
    /// for the Pulley backend this is special as it's transitioning from
    /// Cranelift-generated bytecode to native code on the host. That requires a
    /// special opcode in the interpreter and is modeled slightly differently in
    /// Cranelift IR.
    fn call_indirect_host(
        &self,
        builder: &mut FunctionBuilder<'_>,
        hostcall: impl Into<HostCall>,
        sig: ir::SigRef,
        addr: Value,
        args: &[Value],
    ) -> ir::Inst {
        let signature = &builder.func.dfg.signatures[sig];

        // When calling the host we should always be using the platform's
        // default calling convention since it'll be calling Rust code in
        // Wasmtime itself.
        assert_eq!(signature.call_conv, self.isa.default_call_conv());

        // If this target is actually pulley then the goal is to emit the custom
        // `call_indirect_host` pulley opcode. That's encoded in Cranelift as a
        // `call` instruction where the name is `colocated: false`. This will
        // force a pulley-specific relocation to get emitted in addition to
        // using the `call_indirect_host` instruction.
        if self.isa.triple().is_pulley() {
            let mut new_signature = signature.clone();
            new_signature
                .params
                .insert(0, ir::AbiParam::new(self.isa.pointer_type()));
            let new_sig = builder.func.import_signature(new_signature);
            let name = ir::ExternalName::User(builder.func.declare_imported_user_function(
                ir::UserExternalName {
                    namespace: crate::NS_PULLEY_HOSTCALL,
                    index: hostcall.into().index(),
                },
            ));
            let func = builder.func.import_function(ir::ExtFuncData {
                name,
                signature: new_sig,
                // This is the signal that a special `call_indirect_host`
                // opcode is used to jump from pulley to the host.
                colocated: false,
            });
            let mut raw_args = vec![addr];
            raw_args.extend_from_slice(args);
            return builder.ins().call(func, &raw_args);
        }

        builder.ins().call_indirect(sig, addr, args)
    }
}

impl wasmtime_environ::Compiler for Compiler {
    fn compile_function(
        &self,
        translation: &ModuleTranslation<'_>,
        func_index: DefinedFuncIndex,
        input: FunctionBodyData<'_>,
        types: &ModuleTypesBuilder,
    ) -> Result<(WasmFunctionInfo, Box<dyn Any + Send>), CompileError> {
        let isa = &*self.isa;
        let module = &translation.module;
        let func_index = module.func_index(func_index);
        let sig = translation.module.functions[func_index]
            .signature
            .unwrap_module_type_index();
        let wasm_func_ty = types[sig].unwrap_func();

        let mut compiler = self.function_compiler();

        let context = &mut compiler.cx.codegen_context;
        context.func.signature = wasm_call_signature(isa, wasm_func_ty, &self.tunables);
        context.func.name = UserFuncName::User(UserExternalName {
            namespace: crate::NS_WASM_FUNC,
            index: func_index.as_u32(),
        });

        if self.tunables.generate_native_debuginfo {
            context.func.collect_debug_info();
        }

        let mut func_env = FuncEnvironment::new(self, translation, types, wasm_func_ty);

        // The `stack_limit` global value below is the implementation of stack
        // overflow checks in Wasmtime.
        //
        // The Wasm spec defines that stack overflows will raise a trap, and
        // there's also an added constraint where as an embedder you frequently
        // are running host-provided code called from wasm. WebAssembly and
        // native code currently share the same call stack, so Wasmtime needs to
        // make sure that host-provided code will have enough call-stack
        // available to it.
        //
        // The way that stack overflow is handled here is by adding a prologue
        // check to all functions for how much native stack is remaining. The
        // `VMContext` pointer is the first argument to all functions, and the
        // first field of this structure is `*const VMStoreContext` and the
        // first field of that is the stack limit. Note that the stack limit in
        // this case means "if the stack pointer goes below this, trap". Each
        // function which consumes stack space or isn't a leaf function starts
        // off by loading the stack limit, checking it against the stack
        // pointer, and optionally traps.
        //
        // This manual check allows the embedder to give wasm a relatively
        // precise amount of stack allocation. Using this scheme we reserve a
        // chunk of stack for wasm code relative from where wasm code was
        // called. This ensures that native code called by wasm should have
        // native stack space to run, and the numbers of stack spaces here
        // should all be configurable for various embeddings.
        //
        // Note that this check is independent of each thread's stack guard page
        // here. If the stack guard page is reached that's still considered an
        // abort for the whole program since the runtime limits configured by
        // the embedder should cause wasm to trap before it reaches that
        // (ensuring the host has enough space as well for its functionality).
        if !isa.triple().is_pulley() {
            let vmctx = context
                .func
                .create_global_value(ir::GlobalValueData::VMContext);
            let interrupts_ptr = context.func.create_global_value(ir::GlobalValueData::Load {
                base: vmctx,
                offset: i32::from(func_env.offsets.ptr.vmctx_runtime_limits()).into(),
                global_type: isa.pointer_type(),
                flags: MemFlags::trusted().with_readonly(),
            });
            let stack_limit = context.func.create_global_value(ir::GlobalValueData::Load {
                base: interrupts_ptr,
                offset: i32::from(func_env.offsets.ptr.vmstore_context_stack_limit()).into(),
                global_type: isa.pointer_type(),
                flags: MemFlags::trusted(),
            });
            if self.tunables.signals_based_traps {
                context.func.stack_limit = Some(stack_limit);
            } else {
                func_env.stack_limit_at_function_entry = Some(stack_limit);
            }
        }
        let FunctionBodyData { validator, body } = input;
        let mut validator =
            validator.into_validator(mem::take(&mut compiler.cx.validator_allocations));
        compiler.cx.func_translator.translate_body(
            &mut validator,
            body.clone(),
            &mut context.func,
            &mut func_env,
        )?;

        let (info, func) = compiler.finish_with_info(
            Some((&body, &self.tunables)),
            &format!("wasm_func_{}", func_index.as_u32()),
        )?;

        let timing = cranelift_codegen::timing::take_current();
        log::debug!("{:?} translated in {:?}", func_index, timing.total());
        log::trace!("{:?} timing info\n{}", func_index, timing);

        Ok((info, Box::new(func)))
    }

    fn compile_array_to_wasm_trampoline(
        &self,
        translation: &ModuleTranslation<'_>,
        types: &ModuleTypesBuilder,
        def_func_index: DefinedFuncIndex,
    ) -> Result<Box<dyn Any + Send>, CompileError> {
        let func_index = translation.module.func_index(def_func_index);
        let sig = translation.module.functions[func_index]
            .signature
            .unwrap_module_type_index();
        let wasm_func_ty = types[sig].unwrap_func();

        let isa = &*self.isa;
        let pointer_type = isa.pointer_type();
        let wasm_call_sig = wasm_call_signature(isa, wasm_func_ty, &self.tunables);
        let array_call_sig = array_call_signature(isa);

        let mut compiler = self.function_compiler();
        let func = ir::Function::with_name_signature(Default::default(), array_call_sig);
        let (mut builder, block0) = compiler.builder(func);

        let (vmctx, caller_vmctx, values_vec_ptr, values_vec_len) = {
            let params = builder.func.dfg.block_params(block0);
            (params[0], params[1], params[2], params[3])
        };

        // First load the actual arguments out of the array.
        let mut args = self.load_values_from_array(
            wasm_func_ty.params(),
            &mut builder,
            values_vec_ptr,
            values_vec_len,
        );
        args.insert(0, caller_vmctx);
        args.insert(0, vmctx);

        // Just before we enter Wasm, save our stack pointer.
        //
        // Assert that we were really given a core Wasm vmctx, since that's
        // what we are assuming with our offsets below.
        debug_assert_vmctx_kind(isa, &mut builder, vmctx, wasmtime_environ::VMCONTEXT_MAGIC);
        let offsets = VMOffsets::new(isa.pointer_bytes(), &translation.module);
        let vm_runtime_limits_offset = offsets.ptr.vmctx_runtime_limits();
        save_last_wasm_entry_fp(
            &mut builder,
            pointer_type,
            &offsets.ptr,
            vm_runtime_limits_offset.into(),
            vmctx,
        );

        // Then call the Wasm function with those arguments.
        let call = declare_and_call(&mut builder, wasm_call_sig, func_index.as_u32(), &args);
        let results = builder.func.dfg.inst_results(call).to_vec();

        // Then store the results back into the array.
        self.store_values_to_array(
            &mut builder,
            wasm_func_ty.returns(),
            &results,
            values_vec_ptr,
            values_vec_len,
        );

        // At this time wasm functions always signal traps with longjmp or some
        // similar sort of routine, so if we got this far that means that the
        // function did not trap, so return a "true" value here to indicate that
        // to satisfy the ABI of the array-call signature.
        let true_return = builder.ins().iconst(ir::types::I8, 1);
        builder.ins().return_(&[true_return]);
        builder.finalize();

        Ok(Box::new(compiler.finish(&format!(
            "array_to_wasm_{}",
            func_index.as_u32(),
        ))?))
    }

    fn compile_wasm_to_array_trampoline(
        &self,
        wasm_func_ty: &WasmFuncType,
    ) -> Result<Box<dyn Any + Send>, CompileError> {
        let isa = &*self.isa;
        let pointer_type = isa.pointer_type();
        let wasm_call_sig = wasm_call_signature(isa, wasm_func_ty, &self.tunables);
        let array_call_sig = array_call_signature(isa);

        let mut compiler = self.function_compiler();
        let func = ir::Function::with_name_signature(Default::default(), wasm_call_sig);
        let (mut builder, block0) = compiler.builder(func);

        let args = builder.func.dfg.block_params(block0).to_vec();
        let callee_vmctx = args[0];
        let caller_vmctx = args[1];

        // We are exiting Wasm, so save our PC and FP.
        //
        // Assert that the caller vmctx really is a core Wasm vmctx, since
        // that's what we are assuming with our offsets below.
        debug_assert_vmctx_kind(
            isa,
            &mut builder,
            caller_vmctx,
            wasmtime_environ::VMCONTEXT_MAGIC,
        );
        let ptr = isa.pointer_bytes();
        let vm_store_context = builder.ins().load(
            pointer_type,
            MemFlags::trusted(),
            caller_vmctx,
            i32::from(ptr.vmcontext_store_context()),
        );
        save_last_wasm_exit_fp_and_pc(&mut builder, pointer_type, &ptr, vm_store_context);

        // Spill all wasm arguments to the stack in `ValRaw` slots.
        let (args_base, args_len) =
            self.allocate_stack_array_and_spill_args(wasm_func_ty, &mut builder, &args[2..]);
        let args_len = builder.ins().iconst(pointer_type, i64::from(args_len));

        // Load the actual callee out of the
        // `VMArrayCallHostFuncContext::host_func`.
        let ptr_size = isa.pointer_bytes();
        let callee = builder.ins().load(
            pointer_type,
            MemFlags::trusted(),
            callee_vmctx,
            ptr_size.vmarray_call_host_func_context_func_ref() + ptr_size.vm_func_ref_array_call(),
        );

        // Do an indirect call to the callee.
        let callee_signature = builder.func.import_signature(array_call_sig);
        let call = self.call_indirect_host(
            &mut builder,
            HostCall::ArrayCall,
            callee_signature,
            callee,
            &[callee_vmctx, caller_vmctx, args_base, args_len],
        );
        let succeeded = builder.func.dfg.inst_results(call)[0];
        self.raise_if_host_trapped(&mut builder, caller_vmctx, succeeded);
        let results =
            self.load_values_from_array(wasm_func_ty.returns(), &mut builder, args_base, args_len);
        builder.ins().return_(&results);
        builder.finalize();

        Ok(Box::new(compiler.finish(&format!(
            "wasm_to_array_trampoline_{wasm_func_ty}"
        ))?))
    }

    fn append_code(
        &self,
        obj: &mut Object<'static>,
        funcs: &[(String, Box<dyn Any + Send>)],
        resolve_reloc: &dyn Fn(usize, RelocationTarget) -> usize,
    ) -> Result<Vec<(SymbolId, FunctionLoc)>> {
        let mut builder =
            ModuleTextBuilder::new(obj, self, self.isa.text_section_builder(funcs.len()));
        if self.linkopts.force_jump_veneers {
            builder.force_veneers();
        }
        let mut addrs = AddressMapSection::default();
        let mut traps = TrapEncodingBuilder::default();

        let mut ret = Vec::with_capacity(funcs.len());
        for (i, (sym, func)) in funcs.iter().enumerate() {
            let func = func.downcast_ref::<CompiledFunction>().unwrap();
            let (sym, range) = builder.append_func(&sym, func, |idx| resolve_reloc(i, idx));
            if self.tunables.generate_address_map {
                let addr = func.address_map();
                addrs.push(range.clone(), &addr.instructions);
            }
            traps.push(range.clone(), &func.traps().collect::<Vec<_>>());
            builder.append_padding(self.linkopts.padding_between_functions);
            let info = FunctionLoc {
                start: u32::try_from(range.start).unwrap(),
                length: u32::try_from(range.end - range.start).unwrap(),
            };
            ret.push((sym, info));
        }

        builder.finish();

        if self.tunables.generate_address_map {
            addrs.append_to(obj);
        }
        traps.append_to(obj);

        Ok(ret)
    }

    fn triple(&self) -> &target_lexicon::Triple {
        self.isa.triple()
    }

    fn flags(&self) -> Vec<(&'static str, FlagValue<'static>)> {
        crate::clif_flags_to_wasmtime(self.isa.flags().iter())
    }

    fn isa_flags(&self) -> Vec<(&'static str, FlagValue<'static>)> {
        crate::clif_flags_to_wasmtime(self.isa.isa_flags())
    }

    fn is_branch_protection_enabled(&self) -> bool {
        self.isa.is_branch_protection_enabled()
    }

    #[cfg(feature = "component-model")]
    fn component_compiler(&self) -> &dyn wasmtime_environ::component::ComponentCompiler {
        self
    }

    fn append_dwarf<'a>(
        &self,
        obj: &mut Object<'_>,
        translations: &'a PrimaryMap<StaticModuleIndex, ModuleTranslation<'a>>,
        get_func: &'a dyn Fn(
            StaticModuleIndex,
            DefinedFuncIndex,
        ) -> (SymbolId, &'a (dyn Any + Send)),
        dwarf_package_bytes: Option<&'a [u8]>,
        tunables: &'a Tunables,
    ) -> Result<()> {
        let get_func = move |m, f| {
            let (sym, any) = get_func(m, f);
            (
                sym,
                any.downcast_ref::<CompiledFunction>().unwrap().metadata(),
            )
        };
        let mut compilation = crate::debug::Compilation::new(
            &*self.isa,
            translations,
            &get_func,
            dwarf_package_bytes,
            tunables,
        );
        let dwarf_sections = crate::debug::emit_dwarf(&*self.isa, &mut compilation)
            .with_context(|| "failed to emit DWARF debug information")?;

        let (debug_bodies, debug_relocs): (Vec<_>, Vec<_>) = dwarf_sections
            .iter()
            .map(|s| ((s.name, &s.body), (s.name, &s.relocs)))
            .unzip();
        let mut dwarf_sections_ids = HashMap::new();
        for (name, body) in debug_bodies {
            let segment = obj.segment_name(StandardSegment::Debug).to_vec();
            let section_id = obj.add_section(segment, name.as_bytes().to_vec(), SectionKind::Debug);
            dwarf_sections_ids.insert(name, section_id);
            obj.append_section_data(section_id, &body, 1);
        }

        // Write all debug data relocations.
        for (name, relocs) in debug_relocs {
            let section_id = *dwarf_sections_ids.get(name).unwrap();
            for reloc in relocs {
                let target_symbol = match reloc.target {
                    DwarfSectionRelocTarget::Func(id) => compilation.symbol_id(id),
                    DwarfSectionRelocTarget::Section(name) => {
                        obj.section_symbol(dwarf_sections_ids[name])
                    }
                };
                obj.add_relocation(
                    section_id,
                    object::write::Relocation {
                        offset: u64::from(reloc.offset),
                        symbol: target_symbol,
                        addend: i64::from(reloc.addend),
                        flags: RelocationFlags::Generic {
                            size: reloc.size << 3,
                            kind: RelocationKind::Absolute,
                            encoding: RelocationEncoding::Generic,
                        },
                    },
                )?;
            }
        }

        Ok(())
    }

    fn create_systemv_cie(&self) -> Option<gimli::write::CommonInformationEntry> {
        self.isa.create_systemv_cie()
    }

    fn compile_wasm_to_builtin(
        &self,
        index: BuiltinFunctionIndex,
    ) -> Result<Box<dyn Any + Send>, CompileError> {
        let isa = &*self.isa;
        let ptr_size = isa.pointer_bytes();
        let pointer_type = isa.pointer_type();
        let sigs = BuiltinFunctionSignatures::new(self);
        let wasm_sig = sigs.wasm_signature(index);
        let host_sig = sigs.host_signature(index);

        let mut compiler = self.function_compiler();
        let func = ir::Function::with_name_signature(Default::default(), wasm_sig.clone());
        let (mut builder, block0) = compiler.builder(func);
        let vmctx = builder.block_params(block0)[0];

        // Debug-assert that this is the right kind of vmctx, and then
        // additionally perform the "routine of the exit trampoline" of saving
        // fp/pc/etc.
        debug_assert_vmctx_kind(isa, &mut builder, vmctx, wasmtime_environ::VMCONTEXT_MAGIC);
        let vm_store_context = builder.ins().load(
            pointer_type,
            MemFlags::trusted(),
            vmctx,
            ptr_size.vmcontext_store_context(),
        );
        save_last_wasm_exit_fp_and_pc(&mut builder, pointer_type, &ptr_size, vm_store_context);

        // Now it's time to delegate to the actual builtin. Forward all our own
        // arguments to the libcall itself.
        let args = builder.block_params(block0).to_vec();
        let call = self.call_builtin(&mut builder, vmctx, &args, index, host_sig);
        let results = builder.func.dfg.inst_results(call).to_vec();

        // Libcalls do not explicitly `longjmp` for example but instead return a
        // code indicating whether they trapped or not. This means that it's the
        // responsibility of the trampoline to check for an trapping return
        // value and raise a trap as appropriate. With the `results` above check
        // what `index` is and for each libcall that has a trapping return value
        // process it here.
        match index.trap_sentinel() {
            Some(TrapSentinel::Falsy) => {
                self.raise_if_host_trapped(&mut builder, vmctx, results[0]);
            }
            Some(TrapSentinel::NegativeTwo) => {
                let ty = builder.func.dfg.value_type(results[0]);
                let trapped = builder.ins().iconst(ty, -2);
                let succeeded = builder.ins().icmp(IntCC::NotEqual, results[0], trapped);
                self.raise_if_host_trapped(&mut builder, vmctx, succeeded);
            }
            Some(TrapSentinel::Negative) => {
                let ty = builder.func.dfg.value_type(results[0]);
                let zero = builder.ins().iconst(ty, 0);
                let succeeded =
                    builder
                        .ins()
                        .icmp(IntCC::SignedGreaterThanOrEqual, results[0], zero);
                self.raise_if_host_trapped(&mut builder, vmctx, succeeded);
            }
            Some(TrapSentinel::NegativeOne) => {
                let ty = builder.func.dfg.value_type(results[0]);
                let minus_one = builder.ins().iconst(ty, -1);
                let succeeded = builder.ins().icmp(IntCC::NotEqual, results[0], minus_one);
                self.raise_if_host_trapped(&mut builder, vmctx, succeeded);
            }
            None => {}
        }

        // And finally, return all the results of this libcall.
        builder.ins().return_(&results);
        builder.finalize();

        Ok(Box::new(
            compiler.finish(&format!("wasm_to_builtin_{}", index.name()))?,
        ))
    }

    fn compiled_function_relocation_targets<'a>(
        &'a self,
        func: &'a dyn Any,
    ) -> Box<dyn Iterator<Item = RelocationTarget> + 'a> {
        let func = func.downcast_ref::<CompiledFunction>().unwrap();
        Box::new(func.relocations().map(|r| r.reloc_target))
    }
}

#[cfg(feature = "incremental-cache")]
mod incremental_cache {
    use super::*;

    struct CraneliftCacheStore(Arc<dyn CacheStore>);

    impl cranelift_codegen::incremental_cache::CacheKvStore for CraneliftCacheStore {
        fn get(&self, key: &[u8]) -> Option<std::borrow::Cow<[u8]>> {
            self.0.get(key)
        }
        fn insert(&mut self, key: &[u8], val: Vec<u8>) {
            self.0.insert(key, val);
        }
    }

    pub(super) fn compile_maybe_cached<'a>(
        context: &'a mut Context,
        isa: &dyn TargetIsa,
        cache_ctx: Option<&mut IncrementalCacheContext>,
    ) -> Result<CompiledCode, CompileError> {
        let cache_ctx = match cache_ctx {
            Some(ctx) => ctx,
            None => return compile_uncached(context, isa),
        };

        let mut cache_store = CraneliftCacheStore(cache_ctx.cache_store.clone());
        let (_compiled_code, from_cache) = context
            .compile_with_cache(isa, &mut cache_store, &mut Default::default())
            .map_err(|error| CompileError::Codegen(pretty_error(&error.func, error.inner)))?;

        if from_cache {
            cache_ctx.num_hits += 1;
        } else {
            cache_ctx.num_cached += 1;
        }

        Ok(context.take_compiled_code().unwrap())
    }
}

#[cfg(feature = "incremental-cache")]
use incremental_cache::*;

#[cfg(not(feature = "incremental-cache"))]
fn compile_maybe_cached<'a>(
    context: &'a mut Context,
    isa: &dyn TargetIsa,
    _cache_ctx: Option<&mut IncrementalCacheContext>,
) -> Result<CompiledCode, CompileError> {
    compile_uncached(context, isa)
}

fn compile_uncached<'a>(
    context: &'a mut Context,
    isa: &dyn TargetIsa,
) -> Result<CompiledCode, CompileError> {
    context
        .compile(isa, &mut Default::default())
        .map_err(|error| CompileError::Codegen(pretty_error(&error.func, error.inner)))?;
    Ok(context.take_compiled_code().unwrap())
}

impl Compiler {
    /// This function will allocate a stack slot suitable for storing both the
    /// arguments and return values of the function, and then the arguments will
    /// all be stored in this block.
    ///
    /// `block0` must be the entry block of the function and `ty` must be the
    /// Wasm function type of the trampoline.
    ///
    /// The stack slot pointer is returned in addition to the size, in units of
    /// `ValRaw`, of the stack slot.
    fn allocate_stack_array_and_spill_args(
        &self,
        ty: &WasmFuncType,
        builder: &mut FunctionBuilder,
        args: &[ir::Value],
    ) -> (Value, u32) {
        let isa = &*self.isa;
        let pointer_type = isa.pointer_type();

        // Compute the size of the values vector.
        let value_size = mem::size_of::<u128>();
        let values_vec_len = cmp::max(ty.params().len(), ty.returns().len());
        let values_vec_byte_size = u32::try_from(value_size * values_vec_len).unwrap();
        let values_vec_len = u32::try_from(values_vec_len).unwrap();

        let slot = builder.func.create_sized_stack_slot(ir::StackSlotData::new(
            ir::StackSlotKind::ExplicitSlot,
            values_vec_byte_size,
            4,
        ));
        let values_vec_ptr = builder.ins().stack_addr(pointer_type, slot, 0);

        {
            let values_vec_len = builder
                .ins()
                .iconst(ir::types::I32, i64::from(values_vec_len));
            self.store_values_to_array(builder, ty.params(), args, values_vec_ptr, values_vec_len);
        }

        (values_vec_ptr, values_vec_len)
    }

    /// Store values to an array in the array calling convention.
    ///
    /// Used either to store arguments to the array when calling a function
    /// using the array calling convention, or used to store results to the
    /// array when implementing a function that exposes the array calling
    /// convention.
    fn store_values_to_array(
        &self,
        builder: &mut FunctionBuilder,
        types: &[WasmValType],
        values: &[Value],
        values_vec_ptr: Value,
        values_vec_capacity: Value,
    ) {
        debug_assert_eq!(types.len(), values.len());
        debug_assert_enough_capacity_for_length(builder, types.len(), values_vec_capacity);

        // Note that loads and stores are unconditionally done in the
        // little-endian format rather than the host's native-endianness,
        // despite this load/store being unrelated to execution in wasm itself.
        // For more details on this see the `ValRaw` type in
        // `wasmtime::runtime::vm`.
        let flags = ir::MemFlags::new()
            .with_notrap()
            .with_endianness(ir::Endianness::Little);

        let value_size = mem::size_of::<u128>();
        for (i, val) in values.iter().copied().enumerate() {
            crate::unbarriered_store_type_at_offset(
                &mut builder.cursor(),
                flags,
                values_vec_ptr,
                i32::try_from(i * value_size).unwrap(),
                val,
            );
        }
    }

    /// Used for loading the values of an array-call host function's value
    /// array.
    ///
    /// This can be used to load arguments out of the array if the trampoline we
    /// are building exposes the array calling convention, or it can be used to
    /// load results out of the array if the trampoline we are building calls a
    /// function that uses the array calling convention.
    fn load_values_from_array(
        &self,
        types: &[WasmValType],
        builder: &mut FunctionBuilder,
        values_vec_ptr: Value,
        values_vec_capacity: Value,
    ) -> Vec<ir::Value> {
        let isa = &*self.isa;
        let value_size = mem::size_of::<u128>();

        debug_assert_enough_capacity_for_length(builder, types.len(), values_vec_capacity);

        // Note that this is little-endian like `store_values_to_array` above,
        // see notes there for more information.
        let flags = MemFlags::new()
            .with_notrap()
            .with_endianness(ir::Endianness::Little);

        let mut results = Vec::new();
        for (i, ty) in types.iter().enumerate() {
            results.push(crate::unbarriered_load_type_at_offset(
                isa,
                &mut builder.cursor(),
                *ty,
                flags,
                values_vec_ptr,
                i32::try_from(i * value_size).unwrap(),
            ));
        }
        results
    }

    fn function_compiler(&self) -> FunctionCompiler<'_> {
        let saved_context = self.contexts.lock().unwrap().pop();
        FunctionCompiler {
            compiler: self,
            cx: saved_context
                .map(|mut ctx| {
                    ctx.codegen_context.clear();
                    ctx
                })
                .unwrap_or_else(|| CompilerContext {
                    #[cfg(feature = "incremental-cache")]
                    incremental_cache_ctx: self.cache_store.as_ref().map(|cache_store| {
                        IncrementalCacheContext {
                            cache_store: cache_store.clone(),
                            num_hits: 0,
                            num_cached: 0,
                        }
                    }),
                    ..Default::default()
                }),
        }
    }

    /// Invokes the `raise` libcall in `vmctx` if the `succeeded` value
    /// indicates if a trap happened.
    ///
    /// This helper is used when the host returns back to WebAssembly. The host
    /// returns a `bool` indicating whether the call succeeded. If the call
    /// failed then Cranelift needs to unwind back to the original invocation
    /// point. The unwind right now is then implemented in Wasmtime with a
    /// `longjmp`, but one day this might be implemented differently with an
    /// unwind inside of Cranelift.
    ///
    /// Additionally in the future for pulley this will emit a special trap
    /// opcode for Pulley itself to cease interpretation and exit the
    /// interpreter.
    pub fn raise_if_host_trapped(
        &self,
        builder: &mut FunctionBuilder<'_>,
        vmctx: ir::Value,
        succeeded: ir::Value,
    ) {
        let trapped_block = builder.create_block();
        let continuation_block = builder.create_block();
        builder.set_cold_block(trapped_block);
        builder
            .ins()
            .brif(succeeded, continuation_block, &[], trapped_block, &[]);

        builder.seal_block(trapped_block);
        builder.seal_block(continuation_block);

        builder.switch_to_block(trapped_block);
        let sigs = BuiltinFunctionSignatures::new(self);
        let sig = sigs.host_signature(BuiltinFunctionIndex::raise());
        self.call_builtin(builder, vmctx, &[vmctx], BuiltinFunctionIndex::raise(), sig);
        builder.ins().trap(TRAP_INTERNAL_ASSERT);

        builder.switch_to_block(continuation_block);
    }

    /// Helper to load the core `builtin` from `vmctx` and invoke it with
    /// `args`.
    fn call_builtin(
        &self,
        builder: &mut FunctionBuilder<'_>,
        vmctx: ir::Value,
        args: &[ir::Value],
        builtin: BuiltinFunctionIndex,
        sig: ir::Signature,
    ) -> ir::Inst {
        let isa = &*self.isa;
        let ptr_size = isa.pointer_bytes();
        let pointer_type = isa.pointer_type();

        // Builtins are stored in an array in all `VMContext`s. First load the
        // base pointer of the array and then load the entry of the array that
        // corresponds to this builtin.
        let mem_flags = ir::MemFlags::trusted().with_readonly();
        let array_addr = builder.ins().load(
            pointer_type,
            mem_flags,
            vmctx,
            i32::from(ptr_size.vmcontext_builtin_functions()),
        );
        let body_offset = i32::try_from(builtin.index() * pointer_type.bytes()).unwrap();
        let func_addr = builder
            .ins()
            .load(pointer_type, mem_flags, array_addr, body_offset);

        let sig = builder.func.import_signature(sig);
        self.call_indirect_host(builder, builtin, sig, func_addr, args)
    }

    pub fn isa(&self) -> &dyn TargetIsa {
        &*self.isa
    }

    pub fn tunables(&self) -> &Tunables {
        &self.tunables
    }
}

struct FunctionCompiler<'a> {
    compiler: &'a Compiler,
    cx: CompilerContext,
}

impl FunctionCompiler<'_> {
    fn builder(&mut self, func: ir::Function) -> (FunctionBuilder<'_>, ir::Block) {
        self.cx.codegen_context.func = func;
        let mut builder = FunctionBuilder::new(
            &mut self.cx.codegen_context.func,
            self.cx.func_translator.context(),
        );

        let block0 = builder.create_block();
        builder.append_block_params_for_function_params(block0);
        builder.switch_to_block(block0);
        builder.seal_block(block0);
        (builder, block0)
    }

    fn finish(self, clif_filename: &str) -> Result<CompiledFunction, CompileError> {
        let (info, func) = self.finish_with_info(None, clif_filename)?;
        assert!(info.stack_maps.is_empty());
        Ok(func)
    }

    fn finish_with_info(
        mut self,
        body_and_tunables: Option<(&FunctionBody<'_>, &Tunables)>,
        clif_filename: &str,
    ) -> Result<(WasmFunctionInfo, CompiledFunction), CompileError> {
        let context = &mut self.cx.codegen_context;
        let isa = &*self.compiler.isa;

        // Run compilation, but don't propagate the error just yet. This'll
        // mutate `context` and the IR contained within (optionally) but it may
        // fail if the backend has a bug in it. Use `context` after this
        // finishes to optionally emit CLIF and then after that's done actually
        // propagate the error if one happened.
        let compilation_result =
            compile_maybe_cached(context, isa, self.cx.incremental_cache_ctx.as_mut());

        if let Some(path) = &self.compiler.clif_dir {
            use std::io::Write;

            let mut path = path.join(clif_filename);
            path.set_extension("clif");

            let mut output = std::fs::File::create(path).unwrap();
            write!(output, "{}", context.func.display()).unwrap();
        }

        let mut compiled_code = compilation_result?;

        // Give wasm functions, user defined code, a "preferred" alignment
        // instead of the minimum alignment as this can help perf in niche
        // situations.
        let preferred_alignment = if body_and_tunables.is_some() {
            self.compiler.isa.function_alignment().preferred
        } else {
            1
        };

        let alignment = compiled_code.buffer.alignment.max(preferred_alignment);
        let mut compiled_function = CompiledFunction::new(
            compiled_code.buffer.clone(),
            context.func.params.user_named_funcs().clone(),
            alignment,
        );

        if let Some((body, tunables)) = body_and_tunables {
            let data = body.get_binary_reader();
            let offset = data.original_position();
            let len = data.bytes_remaining();
            compiled_function.set_address_map(
                offset.try_into().unwrap(),
                len.try_into().unwrap(),
                tunables.generate_address_map,
            );
        }

        if isa.flags().unwind_info() {
            let unwind = compiled_code
                .create_unwind_info(isa)
                .map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?;

            if let Some(unwind_info) = unwind {
                compiled_function.set_unwind_info(unwind_info);
            }
        }

        if body_and_tunables
            .map(|(_, t)| t.generate_native_debuginfo)
            .unwrap_or(false)
        {
            compiled_function.set_value_labels_ranges(compiled_code.value_labels_ranges.clone());

            // DWARF debugging needs the CFA-based unwind information even on Windows.
            if !matches!(
                compiled_function.metadata().unwind_info,
                Some(UnwindInfo::SystemV(_))
            ) {
                let cfa_unwind = compiled_code
                    .create_unwind_info_of_kind(isa, UnwindInfoKind::SystemV)
                    .map_err(|error| CompileError::Codegen(pretty_error(&context.func, error)))?;

                if let Some(UnwindInfo::SystemV(cfa_unwind_info)) = cfa_unwind {
                    compiled_function.set_cfa_unwind_info(cfa_unwind_info);
                }
            }
        }

        let stack_maps =
            clif_to_env_stack_maps(compiled_code.buffer.take_user_stack_maps().into_iter());
        compiled_function
            .set_sized_stack_slots(std::mem::take(&mut context.func.sized_stack_slots));
        self.compiler.contexts.lock().unwrap().push(self.cx);

        Ok((
            WasmFunctionInfo {
                start_srcloc: compiled_function.metadata().address_map.start_srcloc,
                stack_maps: stack_maps.into(),
            },
            compiled_function,
        ))
    }
}

/// Convert from Cranelift's representation of a stack map to Wasmtime's
/// compiler-agnostic representation.
fn clif_to_env_stack_maps(
    clif_stack_maps: impl ExactSizeIterator<Item = (CodeOffset, u32, ir::UserStackMap)>,
) -> Vec<StackMapInformation> {
    let mut stack_maps = Vec::with_capacity(clif_stack_maps.len());
    for (code_offset, mapped_bytes, stack_map) in clif_stack_maps {
        let mut bitset = CompoundBitSet::new();
        for (ty, offset) in stack_map.entries() {
            assert_eq!(ty, ir::types::I32);
            bitset.insert(usize::try_from(offset).unwrap());
        }
        if bitset.is_empty() {
            continue;
        }
        let stack_map = wasmtime_environ::StackMap::new(mapped_bytes, bitset);
        stack_maps.push(StackMapInformation {
            code_offset,
            stack_map,
        });
    }
    stack_maps.sort_unstable_by_key(|info| info.code_offset);
    stack_maps
}

fn declare_and_call(
    builder: &mut FunctionBuilder,
    signature: ir::Signature,
    func_index: u32,
    args: &[ir::Value],
) -> ir::Inst {
    let name = ir::ExternalName::User(builder.func.declare_imported_user_function(
        ir::UserExternalName {
            namespace: crate::NS_WASM_FUNC,
            index: func_index,
        },
    ));
    let signature = builder.func.import_signature(signature);
    let callee = builder.func.dfg.ext_funcs.push(ir::ExtFuncData {
        name,
        signature,
        colocated: true,
    });
    builder.ins().call(callee, &args)
}

fn debug_assert_enough_capacity_for_length(
    builder: &mut FunctionBuilder,
    length: usize,
    capacity: ir::Value,
) {
    if cfg!(debug_assertions) {
        let enough_capacity = builder.ins().icmp_imm(
            ir::condcodes::IntCC::UnsignedGreaterThanOrEqual,
            capacity,
            ir::immediates::Imm64::new(length.try_into().unwrap()),
        );
        builder.ins().trapz(enough_capacity, TRAP_INTERNAL_ASSERT);
    }
}

fn debug_assert_vmctx_kind(
    isa: &dyn TargetIsa,
    builder: &mut FunctionBuilder,
    vmctx: ir::Value,
    expected_vmctx_magic: u32,
) {
    if cfg!(debug_assertions) {
        let magic = builder.ins().load(
            ir::types::I32,
            MemFlags::trusted().with_endianness(isa.endianness()),
            vmctx,
            0,
        );
        let is_expected_vmctx = builder.ins().icmp_imm(
            ir::condcodes::IntCC::Equal,
            magic,
            i64::from(expected_vmctx_magic),
        );
        builder.ins().trapz(is_expected_vmctx, TRAP_INTERNAL_ASSERT);
    }
}

fn save_last_wasm_entry_fp(
    builder: &mut FunctionBuilder,
    pointer_type: ir::Type,
    ptr_size: &impl PtrSize,
    vm_store_context_offset: u32,
    vmctx: Value,
) {
    // First we need to get the `VMStoreContext`.
    let vm_store_context = builder.ins().load(
        pointer_type,
        MemFlags::trusted(),
        vmctx,
        i32::try_from(vm_store_context_offset).unwrap(),
    );

    // Then store our current stack pointer into the appropriate slot.
    let fp = builder.ins().get_frame_pointer(pointer_type);
    builder.ins().store(
        MemFlags::trusted(),
        fp,
        vm_store_context,
        ptr_size.vmstore_context_last_wasm_entry_fp(),
    );
}

fn save_last_wasm_exit_fp_and_pc(
    builder: &mut FunctionBuilder,
    pointer_type: ir::Type,
    ptr: &impl PtrSize,
    limits: Value,
) {
    // Save the exit Wasm FP to the limits. We dereference the current FP to get
    // the previous FP because the current FP is the trampoline's FP, and we
    // want the Wasm function's FP, which is the caller of this trampoline.
    let trampoline_fp = builder.ins().get_frame_pointer(pointer_type);
    let wasm_fp = builder.ins().load(
        pointer_type,
        MemFlags::trusted(),
        trampoline_fp,
        // The FP always points to the next older FP for all supported
        // targets. See assertion in
        // `crates/wasmtime/src/runtime/vm/traphandlers/backtrace.rs`.
        0,
    );
    builder.ins().store(
        MemFlags::trusted(),
        wasm_fp,
        limits,
        ptr.vmstore_context_last_wasm_exit_fp(),
    );
    // Finally save the Wasm return address to the limits.
    let wasm_pc = builder.ins().get_return_address(pointer_type);
    builder.ins().store(
        MemFlags::trusted(),
        wasm_pc,
        limits,
        ptr.vmstore_context_last_wasm_exit_pc(),
    );
}