pulley_interpreter/
regs.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
//! Pulley registers.

use crate::U6;
use core::hash::Hash;
use core::marker::PhantomData;
use core::{fmt, ops::Range};

use cranelift_bitset::ScalarBitSet;

/// Trait for common register operations.
pub trait Reg: Sized + Copy + Eq + Ord + Hash + Into<AnyReg> + fmt::Debug + fmt::Display {
    /// Range of valid register indices.
    const RANGE: Range<u8>;

    /// Convert a register index to a register, without bounds checking.
    unsafe fn new_unchecked(index: u8) -> Self;

    /// Convert a register index to a register, with bounds checking.
    fn new(index: u8) -> Option<Self> {
        if Self::RANGE.contains(&index) {
            Some(unsafe { Self::new_unchecked(index) })
        } else {
            None
        }
    }

    /// Convert a register to its index.
    fn to_u8(self) -> u8;

    /// Convert a register to its index.
    fn index(self) -> usize {
        self.to_u8().into()
    }
}

macro_rules! impl_reg {
    ($reg_ty:ty, $any:ident, $range:expr) => {
        impl From<$reg_ty> for AnyReg {
            fn from(r: $reg_ty) -> Self {
                AnyReg::$any(r)
            }
        }

        impl fmt::Display for $reg_ty {
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                fmt::Debug::fmt(&self, f)
            }
        }

        impl Reg for $reg_ty {
            const RANGE: Range<u8> = $range;

            unsafe fn new_unchecked(index: u8) -> Self {
                core::mem::transmute(index)
            }

            fn to_u8(self) -> u8 {
                self as u8
            }
        }
    };
}

/// An `x` register: integers.
#[repr(u8)]
#[derive(Debug,Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[allow(missing_docs, reason = "self-describing variants")]
#[expect(non_camel_case_types, reason = "matching in-asm register names")]
#[rustfmt::skip]
pub enum XReg {
    x0,  x1,  x2,  x3,  x4,  x5,  x6,  x7,  x8,  x9,
    x10, x11, x12, x13, x14, x15, x16, x17, x18, x19,
    x20, x21, x22, x23, x24, x25, x26, x27, x28, x29,

    /// The special `sp` stack pointer register.
    sp,

    /// The special `spilltmp0` scratch register.
    spilltmp0,

}

impl XReg {
    /// Index of the first "special" register.
    pub const SPECIAL_START: u8 = XReg::sp as u8;

    /// Is this `x` register a special register?
    pub fn is_special(self) -> bool {
        matches!(self, Self::sp | Self::spilltmp0)
    }
}

#[test]
fn assert_special_start_is_right() {
    for i in 0..XReg::SPECIAL_START {
        assert!(!XReg::new(i).unwrap().is_special());
    }
    for i in XReg::SPECIAL_START.. {
        match XReg::new(i) {
            Some(r) => assert!(r.is_special()),
            None => break,
        }
    }
}

/// An `f` register: floats.
#[repr(u8)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[allow(missing_docs, reason = "self-describing variants")]
#[expect(non_camel_case_types, reason = "matching in-asm register names")]
#[rustfmt::skip]
pub enum FReg {
    f0,  f1,  f2,  f3,  f4,  f5,  f6,  f7,  f8,  f9,
    f10, f11, f12, f13, f14, f15, f16, f17, f18, f19,
    f20, f21, f22, f23, f24, f25, f26, f27, f28, f29,
    f30, f31,
}

/// A `v` register: vectors.
#[repr(u8)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
#[allow(missing_docs, reason = "self-describing variants")]
#[expect(non_camel_case_types, reason = "matching in-asm register names")]
#[rustfmt::skip]
pub enum VReg {
    v0,  v1,  v2,  v3,  v4,  v5,  v6,  v7,  v8,  v9,
    v10, v11, v12, v13, v14, v15, v16, v17, v18, v19,
    v20, v21, v22, v23, v24, v25, v26, v27, v28, v29,
    v30, v31,
}

impl_reg!(XReg, X, 0..32);
impl_reg!(FReg, F, 0..32);
impl_reg!(VReg, V, 0..32);

/// Any register, regardless of class.
///
/// Never appears inside an instruction -- instructions always name a particular
/// class of register -- but this is useful for testing and things like that.
#[allow(missing_docs, reason = "self-describing variants")]
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub enum AnyReg {
    X(XReg),
    F(FReg),
    V(VReg),
}

impl fmt::Display for AnyReg {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(self, f)
    }
}

impl fmt::Debug for AnyReg {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> core::fmt::Result {
        match self {
            AnyReg::X(r) => fmt::Debug::fmt(r, f),
            AnyReg::F(r) => fmt::Debug::fmt(r, f),
            AnyReg::V(r) => fmt::Debug::fmt(r, f),
        }
    }
}

/// Operands to a binary operation, packed into a 16-bit word (5 bits per register).
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct BinaryOperands<D, S1 = D, S2 = D> {
    /// The destination register, packed in bits 0..5.
    pub dst: D,
    /// The first source register, packed in bits 5..10.
    pub src1: S1,
    /// The second source register, packed in bits 10..15.
    pub src2: S2,
}

impl<D, S1, S2> BinaryOperands<D, S1, S2> {
    /// Convenience constructor for applying `Into`
    pub fn new(dst: impl Into<D>, src1: impl Into<S1>, src2: impl Into<S2>) -> Self {
        Self {
            dst: dst.into(),
            src1: src1.into(),
            src2: src2.into(),
        }
    }
}

impl<D: Reg, S1: Reg, S2: Reg> BinaryOperands<D, S1, S2> {
    /// Convert to dense 16 bit encoding.
    pub fn to_bits(self) -> u16 {
        let dst = self.dst.to_u8();
        let src1 = self.src1.to_u8();
        let src2 = self.src2.to_u8();
        (dst as u16) | ((src1 as u16) << 5) | ((src2 as u16) << 10)
    }

    /// Convert from dense 16 bit encoding. The topmost bit is ignored.
    pub fn from_bits(bits: u16) -> Self {
        Self {
            dst: D::new((bits & 0b11111) as u8).unwrap(),
            src1: S1::new(((bits >> 5) & 0b11111) as u8).unwrap(),
            src2: S2::new(((bits >> 10) & 0b11111) as u8).unwrap(),
        }
    }
}

impl<D: Reg, S1: Reg> BinaryOperands<D, S1, U6> {
    /// Convert to dense 16 bit encoding.
    pub fn to_bits(self) -> u16 {
        let dst = self.dst.to_u8();
        let src1 = self.src1.to_u8();
        let src2 = u8::from(self.src2);
        (dst as u16) | ((src1 as u16) << 5) | ((src2 as u16) << 10)
    }

    /// Convert from dense 16 bit encoding. The topmost bit is ignored.
    pub fn from_bits(bits: u16) -> Self {
        Self {
            dst: D::new((bits & 0b11111) as u8).unwrap(),
            src1: S1::new(((bits >> 5) & 0b11111) as u8).unwrap(),
            src2: U6::new(((bits >> 10) & 0b111111) as u8).unwrap(),
        }
    }
}

/// A set of "upper half" registers, packed into a 16-bit bitset.
///
/// Registers stored in this bitset are offset by 16 and represent the upper
/// half of the 32 registers for each class.
pub struct UpperRegSet<R> {
    bitset: ScalarBitSet<u16>,
    phantom: PhantomData<R>,
}

impl<R: Reg> UpperRegSet<R> {
    /// Create a `RegSet` from a `ScalarBitSet`.
    pub fn from_bitset(bitset: ScalarBitSet<u16>) -> Self {
        Self {
            bitset,
            phantom: PhantomData,
        }
    }

    /// Convert a `UpperRegSet` into a `ScalarBitSet`.
    pub fn to_bitset(self) -> ScalarBitSet<u16> {
        self.bitset
    }
}

impl<R: Reg> From<ScalarBitSet<u16>> for UpperRegSet<R> {
    fn from(bitset: ScalarBitSet<u16>) -> Self {
        Self {
            bitset,
            phantom: PhantomData,
        }
    }
}

impl<R: Reg> Into<ScalarBitSet<u16>> for UpperRegSet<R> {
    fn into(self) -> ScalarBitSet<u16> {
        self.bitset
    }
}

impl<R: Reg> IntoIterator for UpperRegSet<R> {
    type Item = R;
    type IntoIter = UpperRegSetIntoIter<R>;

    fn into_iter(self) -> Self::IntoIter {
        UpperRegSetIntoIter {
            iter: self.bitset.into_iter(),
            _marker: PhantomData,
        }
    }
}

/// Returned iterator from `UpperRegSet::into_iter`
pub struct UpperRegSetIntoIter<R> {
    iter: cranelift_bitset::scalar::Iter<u16>,
    _marker: PhantomData<R>,
}

impl<R: Reg> Iterator for UpperRegSetIntoIter<R> {
    type Item = R;
    fn next(&mut self) -> Option<R> {
        Some(R::new(self.iter.next()? + 16).unwrap())
    }
}

impl<R: Reg> DoubleEndedIterator for UpperRegSetIntoIter<R> {
    fn next_back(&mut self) -> Option<R> {
        Some(R::new(self.iter.next_back()? + 16).unwrap())
    }
}

impl<R: Reg> Default for UpperRegSet<R> {
    fn default() -> Self {
        Self {
            bitset: Default::default(),
            phantom: Default::default(),
        }
    }
}

impl<R: Reg> Copy for UpperRegSet<R> {}
impl<R: Reg> Clone for UpperRegSet<R> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<R: Reg> PartialEq for UpperRegSet<R> {
    fn eq(&self, other: &Self) -> bool {
        self.bitset == other.bitset
    }
}
impl<R: Reg> Eq for UpperRegSet<R> {}

impl<R: Reg> fmt::Debug for UpperRegSet<R> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_set().entries(self.into_iter()).finish()
    }
}

#[cfg(feature = "arbitrary")]
impl<'a, R: Reg> arbitrary::Arbitrary<'a> for UpperRegSet<R> {
    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
        ScalarBitSet::arbitrary(u).map(Self::from)
    }
}

/// Immediate used for the "o32" addresing mode.
///
/// This addressing mode represents a host address stored in `self.addr` which
/// is byte-offset by `self.offset`.
///
/// This addressing mode cannot generate a trap.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct AddrO32 {
    /// The base address of memory.
    pub addr: XReg,
    /// A byte offset from `addr`.
    pub offset: i32,
}

/// Immediate used for the "z" addresing mode.
///
/// This addressing mode represents a host address stored in `self.addr` which
/// is byte-offset by `self.offset`.
///
/// If the `addr` specified is NULL then operating on this value will generate a
/// trap.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct AddrZ {
    /// The base address of memory, or NULL.
    pub addr: XReg,
    /// A byte offset from `addr`.
    pub offset: i32,
}

/// Immediate used for the "g32" addressing mode.
///
/// This addressing mode represents the computation of a WebAssembly address for
/// a 32-bit linear memory. This automatically folds a bounds-check into the
/// address computation to generate a trap if the address is out-of-bounds.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct AddrG32 {
    /// The register holding the base address of the linear memory that is being
    /// accessed.
    pub host_heap_base: XReg,

    /// The register holding the byte bound limit of the heap being accessed.
    pub host_heap_bound: XReg,

    /// The register holding a 32-bit WebAssembly address into linear memory.
    ///
    /// This is zero-extended on 64-bit platforms when performing the bounds
    /// check.
    pub wasm_addr: XReg,

    /// A static byte offset from `host_heap_base` that is added to `wasm_addr`
    /// when computing the bounds check.
    pub offset: u16,
}

impl AddrG32 {
    /// Decodes this immediate from a 32-bit integer.
    pub fn from_bits(bits: u32) -> AddrG32 {
        let host_heap_base = XReg::new(((bits >> 26) & 0b11111) as u8).unwrap();
        let bound_reg = XReg::new(((bits >> 21) & 0b11111) as u8).unwrap();
        let wasm_addr = XReg::new(((bits >> 16) & 0b11111) as u8).unwrap();
        AddrG32 {
            host_heap_base,
            host_heap_bound: bound_reg,
            wasm_addr,
            offset: bits as u16,
        }
    }

    /// Encodes this immediate into a 32-bit integer.
    pub fn to_bits(&self) -> u32 {
        u32::from(self.offset)
            | (u32::from(self.wasm_addr.to_u8()) << 16)
            | (u32::from(self.host_heap_bound.to_u8()) << 21)
            | (u32::from(self.host_heap_base.to_u8()) << 26)
    }
}

/// Similar structure to the [`AddrG32`] addressing mode but "g32bne" also
/// represents that the bound to linear memory is stored itself in memory.
///
/// This instruction will load the heap bound from memory and then perform the
/// same bounds check that [`AddrG32`] does.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "arbitrary", derive(arbitrary::Arbitrary))]
pub struct AddrG32Bne {
    /// The register holding the base address of the linear memory that is being
    /// accessed.
    pub host_heap_base: XReg,

    /// The register holding the address of where the heap bound is located in
    /// host memory.
    pub host_heap_bound_addr: XReg,

    /// The static offset from `self.host_heap_bound_addr` that the bound is
    /// located at.
    pub host_heap_bound_offset: u8,

    /// The register holding a 32-bit WebAssembly address into linear memory.
    ///
    /// This is zero-extended on 64-bit platforms when performing the bounds
    /// check.
    pub wasm_addr: XReg,

    /// A static byte offset from `host_heap_base` that is added to `wasm_addr`
    /// when computing the bounds check.
    ///
    /// Note that this is an 8-bit immediate instead of a 16-bit immediate
    /// unlike [`AddrG32`]. That's just to pack this structure into a 32-bit
    /// value for now but otherwise should be reasonable to extend to a larger
    /// width in the future if necessary.
    pub offset: u8,
}

impl AddrG32Bne {
    /// Decodes [`AddrG32Bne`] from the 32-bit immediate provided.
    pub fn from_bits(bits: u32) -> AddrG32Bne {
        let host_heap_base = XReg::new(((bits >> 26) & 0b11111) as u8).unwrap();
        let bound_reg = XReg::new(((bits >> 21) & 0b11111) as u8).unwrap();
        let wasm_addr = XReg::new(((bits >> 16) & 0b11111) as u8).unwrap();
        AddrG32Bne {
            host_heap_base,
            host_heap_bound_addr: bound_reg,
            host_heap_bound_offset: (bits >> 8) as u8,
            wasm_addr,
            offset: bits as u8,
        }
    }

    /// Encodes this immediate into a 32-bit integer.
    pub fn to_bits(&self) -> u32 {
        u32::from(self.offset)
            | (u32::from(self.host_heap_bound_offset) << 8)
            | (u32::from(self.wasm_addr.to_u8()) << 16)
            | (u32::from(self.host_heap_bound_addr.to_u8()) << 21)
            | (u32::from(self.host_heap_base.to_u8()) << 26)
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn special_x_regs() {
        assert!(XReg::sp.is_special());
        assert!(XReg::spilltmp0.is_special());
    }

    #[test]
    fn not_special_x_regs() {
        for i in 0..27 {
            assert!(!XReg::new(i).unwrap().is_special());
        }
    }

    #[test]
    fn binary_operands() {
        let mut i = 0;
        for src2 in XReg::RANGE {
            for src1 in XReg::RANGE {
                for dst in XReg::RANGE {
                    let operands = BinaryOperands {
                        dst: XReg::new(dst).unwrap(),
                        src1: XReg::new(src1).unwrap(),
                        src2: XReg::new(src2).unwrap(),
                    };
                    assert_eq!(operands.to_bits(), i);
                    assert_eq!(BinaryOperands::<XReg>::from_bits(i), operands);
                    assert_eq!(BinaryOperands::<XReg>::from_bits(0x8000 | i), operands);
                    i += 1;
                }
            }
        }
    }
}